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Abstract

Signaling and regulatory pathways that guide gene expression have only been partially defined for most organisms.
However, given the increasing number of microarray measurements, it may be possible to reconstruct such pathways and
uncover missing connections directly from experimental data. Using a compendium of microarray gene expression data
obtained from Escherichia coli, we constructed a series of Bayesian network models for the reactive oxygen species (ROS)
pathway as defined by EcoCyc. A consensus Bayesian network model was generated using those networks sharing the top
recovered score. This microarray-based network only partially agreed with the known ROS pathway curated from the
literature and databases. A top network was then expanded to predict genes that could enhance the Bayesian network
model using an algorithm we termed ‘BN+1’. This expansion procedure predicted many stress-related genes (e.g., dusB and
uspE), and their possible interactions with other ROS pathway genes. A term enrichment method discovered that biofilm-
associated microarray data usually contained high expression levels of both uspE and gadX. The predicted involvement of
gene uspE in the ROS pathway and interactions between uspE and gadX were confirmed experimentally using E. coli
reporter strains. Genes gadX and uspE showed a feedback relationship in regulating each other’s expression. Both genes
were verified to regulate biofilm formation through gene knockout experiments. These data suggest that the BN+1
expansion method can faithfully uncover hidden or unknown genes for a selected pathway with significant biological roles.
The presently reported BN+1 expansion method is a generalized approach applicable to the characterization and expansion
of other biological pathways and living systems.
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Introduction

In this study, we explore how a biological pathway can be

defined, and identify a set of methods to automatically learn a

pathway from experimental data. Although many biological

pathways have been described in the literature, these pathways

likely represent only a small portion of the known underlying

network of interactions. Recently, such pathway representations

have been systematized in databases such as EcoCyc [1],

RegulonDB [2], and KEGG [3]. The pathways represented in

these databases are commonly used as a starting point (seed

network) to analyze gene expression data and identify pathway

activity using computational tools such as GSEA [4] and DAVID

[5]. However, when an annotated pathway is used to analyze

microarray gene expression data, the assumption is made that the

ideal microarray derived network will be the same as that in the

literature. This assumption may not hold since many pathways are

defined based on observed protein-protein and protein-DNA

interactions, metabolic fluxes, and subsets of particularly well-

studied genes. Each of these factors may contribute to the

substantial inconsistency between RNA-level microarray-based

networks and currently defined pathways. Furthermore, the

selected pathway representation may be incomplete and not

include relevant regulator or effector molecules, thus necessitating

computational prediction and subsequent validation. To address

this issue, we introduce a method to systematically expand a

pathway by identifying new genes that, from a gene expression

perspective, better define the pathway itself.

Biological pathways have been constructed from the existing

literature and annotation information using a wide range of

methods [6,7,8,9,10,11,12,13,14]. One method of pathway

reconstruction uses Bayesian networks (BNs) to learn and model

relationships between variables (e.g., genes). Bayesian networks are

graphical models that describe causal or apparently causal
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interactions between variables. In this study, a Bayesian network is

defined as a set of interactions (edges or arrows) between variables

(nodes) selected from a set of known pathway genes. High scoring

BN topologies are learned from data based on scoring metrics such

as the BDe scoring metric introduced by Cooper et al. in 1992

[15], that incorporates the joint probabilities for variables

connected to one or more other variables. In this context, the

Bayesian model is a multinomial model with a uniform Dirichlet

prior. Bayesian networks such as these have been used to identify

relationships from gene expression data [9,16], protein-protein

interactions[17,18], and the regulation of phosphorylation states

[19]. Due to their flexibility, reliability, ability to model multi-

variable relationships, and human interpretability, Bayesian

networks are well suited for network modeling using high-

throughput data such as gene expression microarrays.

Networks learned from datasets such as gene expression data

can be used to expand our knowledge about a known pathway, by

independently testing the effects of added genes or variables on the

overall scores of the corresponding expanded networks. A general

network expansion framework to predict new components of a

pathway was suggested in 2001 [20]. Many of the pathway

expansion methods use correlation or Boolean functions

[20,21,22,23]. Compared to these methods, Bayesian network-

based expansion methods provide distinct advantages, including

prediction of both linear and nonlinear functions, identification of

causal influences representing interactions among genes. Bayesian

network-based expansion was also used for gene expression data

analysis [24,25]. However, these expansion approaches are

module-based methods that focus on identifying modules (or

groups) of additional genes to one gene [24] or a group of genes

with a fixed topology [25]. The mRNA-based networks were also

merged with protein data which often do not agree with each

other [25]. The topology of the biological pathways may not be

consistent with networks learned from transcriptional gene

expression data obtained via DNA microarray studies [21].

We hypothesize that Bayesian networks derived from micro-

array gene expression data are largely consistent with known

pathway models and can be used as a basis to predict novel factors

that influence a given pathway. In this study, the hypothesis was

examined using the Escherichia coli reactive oxygen species (ROS)

pathway. Because E. coli and the ROS pathway had been well

studied [26,27,28,29], we were able to test the effectiveness of our

network expansion algorithm and to assess the ability to

reconstruct and expand an accepted pathway using microarray

data. We identified many stress-related genes potentially involved

in the ROS pathway and predicted their interactions with known

ROS genes. Our prediction was confirmed experimentally for one

example gene, uspE. Our single-gene expansion approach, termed

‘BN+1’, was successful in predicting unknown stress interactions

that can be verified through experimental analysis, and could

demonstrably be applied to other biological systems of interest.

Results

Below we describe the Bayesian network pathways identified

from gene expression data, and the expansions to each network as

predicted using the BN+1 algorithm (Figure 1).

Microarray-Based Bayesian Network Overlapped with
Known ROS Pathway

Using a compendium of microarray gene expression data from

the M3D database [30], networks were constructed for the 27

genes contained in the ROS pathway as defined by the EcoCyc

database [1] (Figure 2). E. coli uses a complex detoxification

pathway to protect against the oxidative stress posed by reactive

oxygen species (ROS), including oxygen ions, free radicals, and

peroxides [28]. The 27 genes identified in the EcoCyc ROS

pathway include five ROS-processing enzymes (i.e., katE, katG,

sodA, sodB, sodC) and 22 transcriptional factors that regulate

transcription of these ROS-related enzymes. This E. coli expression

dataset incorporates a variety of experimental conditions including

time course studies, cell stress-inducing environments, over-

expression, and single and double knockout strains. These

conditions perturb the ROS pathway and provide a reasonable

data set for the evaluation of our hypothesis. Our simulation

results showed that more than one Bayesian network generated for

the ROS pathway shared the same top posterior probability score.

Therefore, a consensus network was derived using the 33 top

Figure 1. Schema for the BN+1 expansion algorithm. Bayesian networks are generated from discretized microarray data and ranked according
to log posterior score. One of the top-scoring networks was selected as a core network for subsequent expansion. Each gene not included in the core
network yet appearing in the microarray dataset was independently tested for its ability to acquire the best log posterior score versus the other
tested expansion genes.
doi:10.1371/journal.pone.0009513.g001
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networks that shared the best identical posterior probability. The

consensus network contains all 27 genes from the original ROS

detoxification list in EcoCyc.

A comparison of the consensus network to EcoCyc revealed that

29% of the edges in the consensus are supported by corresponding

edges in EcoCyc [1] or RegulonDB [31]. However, inclusion of

literature information in the comparison revealed that approxi-

mately 42% of the edges found in the consensus network were

confirmed (Table S1). The difference suggests that some new

literature results have not been collected in current databases such

as EcoCyc and RegulonDB.

BN+1 Pathway Expansions Predict ROS-Related Genes
and Gene Interactions

An expansion algorithm termed BN+1 was developed to identify

those genes that provide the best network score when added to an

existing core network topology (Figure 1). This core network is a

representative Bayesian network randomly selected from those

top-scoring networks. Each gene not yet included in the core

network is individually added to the set of variables for the

Bayesian network simulation (hence Bayesian network plus one

gene, or ‘BN+1’). The edges in the initial core network topology

are used as a ‘structural prior’ or starting point, and are allowed to

change over the course of the BN simulations. The added node is

initially disconnected from the existing core network and can

become connected to other variables over the course of the

simulation. Those genes which best improve the network score

when added to the existing core are expected to have the most

direct biological influence and/or relevance to the core network

genes.

The BN+1 expansion algorithm was used to identify additional

potential members of the ROS detoxification pathway. The top-

ranked results from these analyses are shown in Table 1. The

algorithm identifies whether a gene is strongly associated with a

particular network (e.g., the ROS detoxification pathway) and

which genes in the network may influence or be influenced by the

newly predicted gene. The predicted influences between core

genes and the top ‘‘+1’’ genes (including dusB and uspE) identified

by BN+1 expansion are shown in Figure 3.

Expansion of the core network revealed that many top predicted

genes have known relationships with ROS and stress regulation

(Table 1). The tRNA-dihydrouridine synthase B gene (dusB or

yhdG) was predicted to be the top-scoring BN+1 gene and to

interact with fis and sodC (Figure 3A). Fis is an important regulator

of oxidative stress [32]. Because all of the known enterobacterial fis

genes are preceded by dusB (also called yhdG) within the same

operon [32], it is reasonable that dusB is positioned as a parent of

fis in our prediction. The gene dusB is highly similar to nifR3 [32],

an element of the nitrogen regulatory system in bacteria [33]. A

phylogenetic anlaysis of fis and dusB indicated that both genes were

acquired by a lineage ancestral to c-proteobacteria (including E.

coli) from the nifR3-ntrBC operon of an ancestral a-proteobacterial

Figure 2. Consensus network for the ROS detoxification pathway based on gene expression data. Bayesian networks were generated
using twenty-seven genes from the reactive oxygen species (ROS) detoxification pathway as variables or nodes and 305 gene expression microarray
observations per variable. Edges which appear in the consensus and are supported by external data (e.g. EcoCyc, RegulonDB, and/or literature) are
indicated (see Table S1).
doi:10.1371/journal.pone.0009513.g002

Table 1. Top 10 genes identified by BN+1 expansion of the
top Bayesian network.

Rank Top BN+1 gene hits Posterior BN score

1 dusB (tRNA-dihydrouridine synthase B) S = 28295.81

2 fdhE (formate dehydrogenase formation protein) S = 28298.44

3 uspE (stress-induced protein); S = 28310.63

4 yohF (predicted oxidoreductase with
NAD(P)-binding Rossman-fold domain)

S = 28312.24

5 yncG (predicted enzyme); S = 28313.04

6 msyB (predicted protein); S = 28318.20

7 yedP (conserved protein); S = 28320.30

8 sra (30S ribosomal subunit protein S22) S = 28323.97

9 ydcK (predicted enzyme); S = 28325.91

10 ynhG (conserved protein); S = 28326.20

Note that the numbers shown after gene names are negative logs of posterior
probabilities for each top network containing the respective predicted gene.
doi:10.1371/journal.pone.0009513.t001
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lineage by lateral gene transfer [32]. Since fis is an important ROS

regulator, it is likely that dusB, which was acquired together with fis

and shares the same operon with fis, also plays an important role in

ROS regulation. However, further experimental evidence is

required to confirm the role of dusB in ROS regulation. Both fis

and sodC are crucial to bacterial defense against the deleterious

effects of reactive oxygen species (ROS) [34,35]. The interaction

between sodC and dusB is likely important for bacterial antioxidant

reactions. The second top predicted gene fdhE encodes an E. coli

formate dehydrogenase accessory protein that regulates the

activity of catalytic sites of aerobic formate dehydrogenases and

their redox activities [36]. A third gene, the universal stress protein

uspE, is a known major regulator of motility factors and cell

aggregation under stress conditions [37]. Several other predicted

enzymes (yncG and ydcK) and proteins (msyB) found in the BN+1

search have no currently known functions related to the ROS

pathway and stress response.

Pair-wise plots of the expression of BN+1 genes versus ROS

pathway genes show simple (dusB vs fis, Figure 3A) or complex

relationships (uspE vs. gadX, Figure 3B–C). The plots show that the

relationships between these genes may be nonlinear. For example,

a ‘‘V’’ shaped pattern is observed between the expression profiles

of gadX and uspE, where gadX is down-regulated at moderate levels

of uspE and up-regulated in either increased or decreased levels of

uspE (Figure 3C). This special non-linear gene interaction pattern

was not clearly demonstrated in a traditional hierarchical

clustering heatmap (Figure S1). Gene gadX is a transcriptional

regulator of glutamic acid decarboxylase system, which enables E.

coli to overcome acidic stress, while uspE is a universal stress-

induced protein. A term enrichment method was generated to

identify words that are preferentially grouped and reflect most

significant features of the interactions between two genes (e.g.,

gadX and uspE) as predicted by our BN method.

Based on our term enrichment analysis of gadX and uspE, one

term that clustered the data particularly well was ‘‘biofilm’’, which

was demonstrated in the annotated scatter plot (Figure 3). High

expression of gadX was correlated with high expression of uspE in

biofilms. Biofilms are aggregates of microorganisms that attach to

and grow on a surface in contact with liquid, such as water or

media. Induced expression of stress response genes, e.g., a

universal stress regulater uspA, was a general feature of biofilm

growth [38,39]. In fact, the biofilm microarray data used in the

term enrichment were obtained from two studies. One study

analyzed stress-oriented gene expression profiles of E. coli biofilm

at various time points [40]. A second biofilm microarray study

examined biofilm responses to acid resistance and oxidative stress

using wild type and single gene knockout mutant strains of E. coli

[41]. Our combined analysis of microarray gene expression and

term enrichment indicated that uspE and gadX were both up-

regulated in many samples (chips) where ‘biofilm’ was mentioned

in the sample title and/or description (Figure 3B–C). These

suggested a potential role of the uspE and gadX in the formation of

E. coli biofilm.

To further evaluate the interactions between uspE and gadX and

their regulatory roles in ROS stress and biofilm formation, several

wet-lab experiments were conducted as described below.

Confirmation of the Involvement of Gene uspE and gadX
in ROS Network

Regulation of gene expression involved in the ROS network

upon exposure to ROS was widely reported

[26,27,28,29,34,35,37]. Hydrogen peroxide is one of the com-

monly used ROS. To test the involvement of uspE and gadX in the

ROS network, gene expressions of uspE and gadX were monitored

after exposure of two reporter strains, E. coli BW25113/pgadX-gfp

and BW25113/puspE-gfp, to hydrogen peroxide. GFP fluorescence

Figure 3. The genes dusB(A) and uspE (B) were the top results for the large network expansion. (C) Scatter plot for uspE versus gadX
highlighting experiments with the word ‘‘biofilm’’ in the experiment title and/or description. High levels of uspE and gadX were observed for all
conditions mapped to ‘biofilm’. The dotted lines indicate boundaries for binning used in network learning. A similar profile was shown for gadE (not
shown).
doi:10.1371/journal.pone.0009513.g003

Bayesian Network, ROS, Biofilm
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of the reporter strain indicated expression of the corresponding

gene. Compared to a control not exposed to hydrogen peroxide,

GFP fluorescence of both reporter strains significantly increased in

exposure to both 1 mM and 10 mM hydrogen peroxide (Figure 4).

This indicated that expression of gadX or uspE was up-regulated

upon exposure to hydrogen peroxide. It confirmed that both genes

were involved in the ROS network as predicted by our BN+1

method.

Confirmation of Interactions between uspE and gadX
To measure the interactions between gene uspE and gadX, two

mutant reporter strains, DuspE/pgadX-gfp and DgadX/puspE-gfp

were generated with gadX and uspE deleted, respectively. The two

mutants provide a way to monitor the effect of deleting one gene

on the expression of the other gene. Specifically, GFP fluorescence

of mutant reporter strains DgadX/puspE-gfp and DuspE/pgadX-gfp

were compared to fluorescence of their corresponding wild type

reporter strains, BW25113/puspE-gfp and BW25113/pgadX-gfp,

respectively. The results showed that expression of gene uspE was

significantly decreased to half level when gene gadX was knocked

out, while gadX expression was significantly increased if gene uspE

was knocked out (p-value,0.0001) (Figure 5). The results

suggested that gadX induced the expression of gene uspE, while

uspE may repress the expression of gene gadX. The fact that gene

gadX and uspE influenced the expression of each other confirmed

our prediction of the influences between the two genes and further

refined their biological interactions.

GFP fluorescence of different E. coli strains (wild type or single

gene knockout mutant strains) carrying reporter plasmids pgadX-

gfp or puspE-gfp indicated expression of the gene gadX or uspE in

these strains, respectively, under the tested experimental condi-

tions. The expressions of the gene gadX and uspE (GFP

fluorescence of the different E. coli strains carrying the two

reporter plasmids) under different tested conditions in the above

confirmation experiments were plotted against each other

(Figure 6). This plot demonstrated a roughly ‘‘V’’ shaped pattern

similar to that shown in the plot of gene expression data pooled

from microarray studies (Figure 3C).

Figure 4. Expression profiles of E. coli gadX and uspE upon
exposure to hydrogen peroxide. Change of GFP fluorescence of
two reporter strains E. coli BW25113/pgadX-gfp and BW25113/puspE-gfp
upon exposure to 0 mM, 1 mM and 10 mM hydrogen peroxide for
20 min. Cells were cultured in LB broth at 30uC overnight and re-
suspended in 16PBS. Different concentration of hydrogen peroxide was
added into three aliquots for 20 min before cell density (OD) and
fluorescence intensity were measured. Presented GFP fluorescence for
each sample was normalized to OD. Error bar indicated standard
deviation from two replicated cell cultures.
doi:10.1371/journal.pone.0009513.g004

Figure 5. Analyses of the gadX-uspE interaction through
knockout studies. GFP fluorescence of wild type E. coli BW25113
and single gene knockout mutant DgadX carrying the reporter plasmid
puspE-gfp, and wild type E. coli and single gene knockout mutant DuspE
carrying the other reporter plasmid pgadX-gfp. Cells of each reporter
strain were cultured in LB broth at 30uC overnight and re-suspended in
16PBS before cell density (OD) and fluorescence intensity were
measured. GFP fluorescence for each strain was normalized to the OD
value. Error bars indicated standard deviations from two replicated
cultures each with four replicate readings.
doi:10.1371/journal.pone.0009513.g005

Figure 6. Summary of gadX and uspE gene expression under
various experimental conditions. Plot of the expressions of gadX (x-
axis) and uspE (y-axis) against each other in different strain backgrounds
and tested experimental conditions. The expression of gadX or uspE was
represented by the GFP fluorescence of the reporter strains carrying the
respective reporter plasmids pgadX-gfp or puspE-gfp. The strain
background or experimental conditions were noted by the data.
Expression of gene uspE or gadX was assumed as zero in its single gene
mutant DuspE or DgadX, respectively. Wild type strain was used in the
ROS exposure experiments using 1 mM and 10 mM hydrogen peroxide.
Error bars indicate standard deviation from replicates.
doi:10.1371/journal.pone.0009513.g006

Bayesian Network, ROS, Biofilm
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Confirmation of the Involvement of Gene uspE and gadX
on Biofilm Formation

Biofilm cells response to a wide range of stresses [42]. Many

ROS related genes have been found to be up-regulated in biofilms

[38,39]. For example, arcA (a gene in our ROS core network) was

reported to be important for competitiveness in E. coli biofilms

[42]. Our term enrichment method identified ‘‘biofilms’’ as a

significantly enriched term associated with the gene pair of uspE

and gadX. Those microarray chips containing ‘‘biofilms’’ in their

experimental descriptions frequently show high expressions of

both uspE and gadX as demonstrated in Figure 3. To test the

involvement of gene uspE and gadX in biofilm formation, initial

biofilm formation (3 h attachment and growth) on glass surface by

wild type E. coli BW25113 and single gene knockout mutants,

DgadX or DuspE, was examined using confocal laser scanning

microscopy (CLSM). The structure of biofilm formation was

measured by a typical en face image of biofilms of each strain

(Figure 7A–C). The extent of biofilm formation was quantified

using biofilm biomass (Figure 7D). The results showed that

biofilms formed by the DuspE strain contained higher biomass than

biofilms formed by the wild type strain. The DgadX biofilm had

similar biomass but different structures compared to biofilms by

wild type E. coli strain. Microcolonies were observed in biofilms of

wild type strain (Figure 7A), while biofilms of DgadX were mostly

single layer of attached cells at this observation stage (Figure 7B).

The observed difference in biofilm biomass and structure in

biofilms formed by the uspE or gadX knockout mutant and wild

type strain indicates that both gene uspE and gene gadX were

involved in biofilm formation by E. coli.

In summary, the BN+1 algorithm predicted that the uspE gene

was a new gene in the ROS network and that the uspE gene

interacts with many ROS-related genes including gadX. Our

further text mining analysis predicted that gadX and uspE gene may

be important in biofilm formation. These three predictions were

then successfully verified in experiments.

Discussion

In this study, we addressed two questions: (1) Does a

microarray-based Bayesian network reconstruction match with

the known pathway from the literature and existing database? (2)

Is a network expansion approach such as BN+1 useful in

predicting new, biologically significant genes?

For the first question, our studies indicated that the microarray-

based Bayesian network reconstruction did not always agree with

the known pathway from the literature and databases. Our studies

on the E. coli ROS pathway indicated that the network

reconstructed by our Bayesian network overlaps at 29% with the

known ROS pathway network in EcoCyc and RegulonDB (Table

S1). A 42% agreement was achieved when more evidences from

the literature search was included. Inclusion of RegulonDB and

literature resources made our comparison more comprehensive.

The reason for the large mismatch is probably due to the fact that

microarray-based transcriptional data may not reflect the complex

biological pathways which involve complex interactions of genes in

the protein, RNA, and DNA levels [43]. However, the Bayesian

networks built from microarray gene expression data are

transcriptional regulatory models that are predicted to reflect the

complex ROS pathway.

For the second question, the BN+1 expansion algorithm was

found to successfully predict biologically significant genes to the

ROS network that were further experimentally verified. Gene uspE

was one of the top list genes selected by the BN+1 algorithm. Its

up-regulation in response to the exposure of hydrogen peroxide

suggested that this gene was probably involved in the ROS

network, along with the ROS-related gene gadX (Figure 4).

Hierarchical clustering of the uspE gene showed a different

connectivity pattern in the dendrogram for genes than the

Bayesian network, suggesting that the Bayesian network identified

a non-traditional (e.g. nonlinear) relationship between the genes.

Furthermore, the BN+1 algorithm suggested where the new genes

could participate in the pathway, and in some cases the model

even differentiated between the parents and children genes of a

new gene (Figure 3–4). Specifically, the BN+1 algorithm found the

‘‘V’’ shape relationships between expressions of genes, e.g., gadX

and uspE, which would not have been identified using traditional

clustering approaches. The interaction between gene gadX and

uspE was also confirmed experimentally. Expression of one gene

was significantly affected when the other gene was knocked out

from the wild type E. coli strain (Figure 5). Plot of the expression of

gadX and uspE against each other under different tested

experimental conditions showed a similar ‘‘V’’ shaped pattern

(Figure 6), which was in agreement with the finding using the

BN+1 algorithm although the expression data from the experi-

mental study were at the translational level.

The term enrichment algorithm successfully identified experi-

mental conditions in which genes might be involved and

biologically related with each other. In this study, genes uspE

and gadX were founded to be both up-regulated in the growth of

biofilms. The involvement of the two genes in biofilms was

confirmed by the fact that single gene knockout mutant strains

DgadX and DuspE showed difference in the biofilm formation,

either biomass or structures, as compared to the E. coli wild type

strain (Figure 7). Experimental confirmation of predicted term

enrichment results indicates that term enrichment algorithm is a

Figure 7. The effect of gadX and uspE on E. coli biofilm
formation. Fluorescent micrograph of biofilms formed by (A) wild
type E. coli BW25113, (B) single gene knockout mutant DgadX, and (C)
single gene knockout mutant DuspE. Biomass of biofilms formed by
each strain was calculated (D) using the software COMSTAT. Biofilms
were formed on glass bottom of 24-well plates for 3 h after inoculation.
Suspended cells were gently removed. Biofilms were gently washed
with PBS twice and stained with Syto 60 for 10 min before microscopic
examination. Images were taken from randomly chosen spots near the
center of the well. Error bar in the calculated biomass was standard
deviation from three stacks of images. Scale bar = 10 mm.
doi:10.1371/journal.pone.0009513.g007

Bayesian Network, ROS, Biofilm
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useful method to identify experimental conditions in which gene

relationship may take place, or to propose additional areas of

investigation. Performance of the term enrichment approach likely

depends upon the quality of the experimental descriptions

provided by researchers available from the M3D database. The

approach may perform better with controlled term or concept

vocabularies, or could be further tested with Gene Ontology (GO)

terms and other information in future studies.

Bayesian networks can be used to expand a pathway network

based on microarray gene expression data. The BN+1 method

expands a top Bayesian network by adding one gene at a time and

running it iteratively based on microarray gene expression data.

The BN+1 expansion algorithm showed the ability to predict

important factors for a pathway network from thousands of genes

in a microarray study. The BN+1 approach is a generalized

method to refine and expand biological pathways. Although a

ROS pathway in E. coli was shown in this study, the BN+1

algorithm can readily be applied to other organisms, pathways,

and data types. We also plan to develop a BN+1 expansion

method based on dynamic Bayesian network analysis [44].

Furthermore, the term enrichment-based identification of exper-

imental conditions in the context of binned data for BN analysis

can provide beneficial information in the interpretation of

predicted expansion genes.

Methods

Data Preprocessing
A compilation dataset comprising 305 gene expression micro-

array observations and 4,217 genes from Escherichia coli MG1655

was obtained from the M3D database [30]. A coefficient of

variation threshold (c.v. $1.0) was used to select 4,205 genes for

analysis. Twenty-seven genes were identified from the EcoCyc

ROS detoxification pathway (downloaded on March 26, 2008)

and matched to unique features found in 305 available gene

expression microarray chips. Expression profiles for each gene

were discretized using a maximum entropy approach that uses

three equally-sized bins (q3 quantization).

Learning Bayesian Network Pathway Models
Given the set of 27 genes, Bayesian network analysis was used to

learn the structure of the model which served as our core starting

topology. To maximize the network search space, 4000 indepen-

dent simulations with random starts were used to search 2.56107

networks per start for a total of 161011 networks. The five top

networks were saved from each run, thereby generating a final list

of 20,000 top-scoring networks. These networks were used to

estimate the posterior distribution. During the search, each

network was scored using log of the BDe score [15,45] which is

the natural log of posterior probability (S~ln P MjDð Þð Þ). Here

P MjDð Þ is defined as:

P MjDð Þ! P
n

i~1
P
qi

j~1

ri{1ð Þ!
Nijzri{1
� �

!
P
ri

k~1
Nijk!,

where n is the number of variables, qi is the number of parent

configurations for given variable i, ri is the arity of variable i, Nij is

the number of observations with selected parent configuration qi,

Nijk is the number of observations of child in state k with parent

configuration qi [15]. The calculation of this score was imple-

mented using the software package BANJO [46].

A consensus network was generated using 33 networks which

shared the maximum or best log posterior score (ln(P(D|M)).

Specifically, directed edges in the consensus networks represent

those edges that appear with 100% frequency in one direction in

all of these top networks. Undirected edges represent those edges

appearing 100% of the time in both directions in all stored

networks (Figure 2).

Network Expansion Using BN+1
To expand an existing network, a top network used to generate

the consensus network was selected as a starting topology for the

BN+1 algorithm (Figure 1). A set of 4,178 genes (4,205–27), not

included in the top BN, were tested for their ability to improve

score of the initial core BN when added to the initial gene set. In

each iteration of the BN+1 simulation, the current BN+1 gene was

added to the original data file. This was followed by a simulated

annealing search of 16107 networks for the top network

expansion. Although the top network was selected as a starting

point or seed, during the learning round all edges could be

modified such that the addition of genes could change the

backbone structure of the resulting model (i.e., unfixed structural

prior). Genes were sorted based on their log posterior scores.

BN+1 searches for each of the top 200 genes recovered from the

initial top network were rerun (2.56107 networks/simulation with

150 replicate simulations) to allow sufficient convergence.

All calculations, including the network expansion, were

implemented in a publicly available, internally developed software

program MARIMBA (http://marimba.hegroup.org/).

Term Enrichment for Identifying Relevant Experimental
Observations

A term enrichment program was developed to identify which

descriptive terms in the experimental conditions show significant

enrichment in selected regions of the microarray data. A ‘term’

here is defined as any individual word appearing in the names or

descriptions for each microarray sample. For two selected genes, a

p-value was introduced to determine the chance of observing a

selected term in a selected bin. The p-value was calculated using

the Fisher’s exact test for appearance of ‘term’ and ‘non-term’ data

observations in a specific bin [47]. The bins used for microarray

BN analysis were adopted in this term enrichment analysis. For

example, the q3 quantization was used for the expression levels of

gadX and uspE.

Experimental Validation of our Prediction Using Gene
uspE as an Example

Strains and cell cultures. E. coli K-12 wild type strain

BW25113 and single gene knockout mutant strains (DuspE and

DgadX) were obtained from the KEIO collection [48]. Cell cultures

were inoculated from single colonies on Luria broth (LB) agar plates,

supplied with 20 mg/ml tetracycline, 30 mg/ml chloramphenicol, or

20 mg/ml kanamycin (Sigma-Aldrich, St. Louis, MO) appropriately.

Planktonic cell cultures were grown in LB overnight with a continue

shaking (250 rpm) at 30uC.

Plasmids construction. Plasmids pUA66 or pUA139

carrying a gfp-fusion with the promoter of gadX or uspE were

extracted from corresponding strains in the promoter library

PEC3877 (Open Biosystems, Huntsville, AL) [49]. A tetracycline

resistance gene (tetR) was cloned from pMP4655 [50] using the set

of forward and backward primers, ACATGGCTCTGC-

TGTAGTGA and CGACATGTCGTTTTCAGAAG respec-

tively. Clone tetR was inserted in the AfeI (NEB, Ipswich, MA)

digestion site of the reporter plasmids to acquire two reporter

plasmids named as pgadX-gfp and puspE-gfp. The two plasmids

were individually transformed into E. coli BW25113 strains by

electroporation (Bio-Rad, Hercules, CA). Single colonies of E. coli
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were acquired on selective agar plates containing 20 mg/ml

tetracycline. Reporter plasmids pgadX-gfp and puspE-gfp were

then extracted from single colonies of E. coli, and then transformed

into wild type E. coli strains and single gene knockout mutant

DuspE and DgadX, respectively, to get totally four reporter strains.
Gene expression analysis. Planktonic cultures of the four

reporter strains, wild type E. coli BW25113/pgadX-gfp, BW25113/

puspE-gfp, DuspE/pgadX-gfp, and DgadX/puspE-gfp, were washed

and re-suspended in phosphate buffered saline (PBS). Cell growth

(optical density OD at 600 nm) and fluorescence intensity of

tagged GFP were measured in a plate-reader (Bio Tek, Winooski,

VT). Normalized fluorescence to OD was calculated and used to

indicate expression of gene gadX and gene uspE in wild type E. coli

as well as in single gene knockout mutants. Two independent

cultures were performed, each with three replicates of

measurement.

Planktonic cultures of E. coli BW25113/pgadX-gfp and

BW25113/puspE-gfp were used to monitor expression of gene

gadX and gene uspE in response to the exposure of hydrogen

peroxide. Final concentration of 1 mM and 10 mM hydrogen

peroxide (Fisher Scientific, Pittsburgh, PA) was added into PBS re-

suspended E. coli cells for 20 min. OD and GFP fluorescence

intensity were measured in the plate-reader, using the same E. coli

strains without exposure to hydrogen peroxide as controls. OD

adjusted GFP fluorescence intensity was used to indicate gene

expression of gadX or uspE.

GFP fluorescence of different E. coli strains (wild type or single

gene knockout mutant strain) carrying reporter plasmids pgadX-gfp

or puspE-gfp was summarized in a plot (Figure 6), assuming that

expression of the gadX gene and the uspE gene were zero in its

corresponding knockout mutant, respectively.
Biofilm cultures and analysis. Planktonic cultures of wild

type E. coli and single gene knockout mutant DgadX and DuspE

were acquired from overnight cultures in 0.16LB. Cultures were

mixed with the same volume of fresh 0.16LB before second

culture at 30uC for 4 hours. New cultures were added into 24-well

glass bottom plates (1 ml/well, MatTek, Ashland, MA) and kept

static for three hours at room temperature to allow cells to attach

onto the surface and form biofilms. Supernatant was gently

removed and biofilms were washed with PBS twice. Biofilm cells

were stained with 5 mm Syto 60 (Invitrogen, Carlsbad, CA) for

10 min. Biofilms were imaged randomly across the surface in the

center of each well with a confocal laser scanning microscopy

equipped with the software FluoView 300 (Olympus, Center

Valley, PA). Biomass of biofilms was calculated using the program

COMSTAT [51].

Supporting Information

Figure S1 Heatmap of gene expression profiles of all core genes

and the predicted uspE gene. This hierarchical clustering was

generated using a Manhattan distance metric and average

clustering via the Heatplus module in R.

Found at: doi:10.1371/journal.pone.0009513.s001 (0.24 MB

DOC)

Table S1 Database and literature evidence to support predicted

Bayesian network interactions. Directed (R) and undirected (-)

edges are shown for each level of consensus in the BN consensus

networks.

Found at: doi:10.1371/journal.pone.0009513.s002 (0.12 MB

DOC)
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