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Abstract

It is suggested that the degree distribution for networks of the cell-metabolism for simple organisms reflects a ubiquitous
randomness. This implies that natural selection has exerted no or very little pressure on the network degree distribution
during evolution. The corresponding random network, here termed the blind watchmaker network has a power-law degree
distribution with an exponent c$2. It is random with respect to a complete set of network states characterized by a
description of which links are attached to a node as well as a time-ordering of these links. No a priory assumption of any
growth mechanism or evolution process is made. It is found that the degree distribution of the blind watchmaker network
agrees very precisely with that of the metabolic networks. This implies that the evolutionary pathway of the cell-
metabolism, when projected onto a metabolic network representation, has remained statistically random with respect to a
complete set of network states. This suggests that even a biological system, which due to natural selection has developed
an enormous specificity like the cellular metabolism, nevertheless can, at the same time, display well defined characteristics
emanating from the ubiquitous inherent random element of Darwinian evolution. The fact that also completely random
networks may have scale-free node distributions gives a new perspective on the origin of scale-free networks in general.
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Introduction

A network is a representation of who or what is connected to, or

influenced by, whom or what. To characterize the structure of a

network, researchers often measure its degree distribution N(k), the

number of nodes with k links attached. Numerous studies have found

that real-world networks often have very broad degree distributions

for larger k, N(k),k2c; These fat tailed distributions approximate a

power law in their structure [1][2][3][4][5]. They are also called

scale-free networks because a power-law tail indicates the lack of an

intrinsic characteristic degree size. Biological networks are particu-

larly interesting because the structure of these networks have, directly

or indirectly, arisen through the process of evolution by natural

selection. These networks have been constructed as if by a blind

watchmaker, through the interplay between a random stochastic

evolution and a natural selection process [6]. So what can we learn

from the observation that a biological network such as the network of

the metabolism of a cell has a power law distribution [7]? In order to

answer this question we define and investigate a blind watchmaker

network. We demonstrate that the empirically observed degree

distributions for networks of the cellular metabolism for simple

organisms are good approximations of this random structure.

Previous authors have ascribed the scale-free structure of biological

networks to various aspects of the evolutionary process: Either the

scale-free network structure has been suggested to confer an

evolutionary advantage[8][9], or the elementary mechanism for

growth of the network has been suggested to generate a priori a scale-

free network [10][11][12][13]. Our findings are to the contrary: The

close correspondence between the blind watchmaker network and

the structure of empirical networks implies that the evolutionary

pathway leading to the construction of the cell-metabolism, when

projected onto our network representation, is statistically random

with respect to a complete set of network states (see Figs. 1 and 2).

Thus our findings provide a new perspective on the origin of scale-

free network structures [1][2][3][4][5].

The cells living today have evolved into their present forms during

some 46109 years. An important part of the cell is its metabolism

which provides the cell with substances necessary for sustaining life.

It is a chemical mini-factory usually involving of the order of 500 to

1000 substances in a complex network of metabolic reactions. Some

substances like water and NAD+ take part in very many chemical

reactions producing new substances either needed in the chemical

mini-factory itself to produce other substances, or needed in some

other function in the cell, or in fact both [14][15]. Other substances

like iron are just needed for some specific purpose in the cell.

One possible metabolic network representation is constructed as

follows: Substrates and products in the cell metabolism are nodes.

Two nodes are connected if the substance of one is a substrate in a

metabolic reaction which produces the substance represented by

the other node. This means that each node corresponds to a

particular substance and that the links denote its connections to

other substances. One characteristic feature of a network is its

degree distribution N(k). In the present context this is the number

of substances which are connected to precisely k other substances.

Figure 3(b) shows the degree distribution for the metabolic

network of the E. Coli. bacteria. Here the substance with the most

connection is water with 302 connections followed by NAD+ with

141 connections. In Fig. 3(b) these two substances corresponds to
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the two split off nodes with the largest k. The bulk part of the N(k)-

distribution of E. Coli. is broad and power law like. The straight

line in the figure corresponds to N(k),k2c with c$2 and illustrates

that the node-degree distribution for metabolic networks is broad

and power-law like, as was first demonstrated in Ref. [16]. This

power law like distribution is even more pronounced when taking

an average over many different metabolic networks as shown in

Fig. 3(a).

As the complex metabolic system is projected and reduced into

a network, the relevant possibilities also reduce to the correspond-

ing relevant possibilities of the network. A possible state of a

network corresponds to a possible way of assembling its parts i.e. it

includes both a description of what nodes a particular node is

connected to and a description of the time order this particular

node was connected to these other nodes. The blind watchmaker

network is the network which is unbiased with respect to these

different assembling possibilities. In the following we will briefly

explain what the properties of the blind watchmaker network are

and how they are obtained (with more details in supporting

information in Text S1).

Results

We start from a simplified network model, the constrained-balls-

in-boxes(CBB)-model [17]. The mapping between the CBB-model

Figure 1. The mapping between network and the balls-in-
boxes model. The left half shows a network of nodes and links with
the link-ends enumerated. The right half shows the equivalent balls-in-
boxes model. The vertical position of the balls in a box gives the order
in which they arrived into the box, or more generally a ranking.
doi:10.1371/journal.pone.0001690.g001

Figure 2. The most unbiased box(node)-size distribution. Panels a-d show the most unbiased distributions n(k) obtained by the algorithm
method: a) The variational solution n(k) = A exp(2bk)/k for the statistical states of the CBB-model compared to the average Sn(k)T solution from the
algorithm method in case of N = 1000 and M/N = 4. The fact that the two solutions agree reflects that the algorithm contains the least possible
information compatible with the constraints: b) The same thing for the blind watchmaker version of the CBB-model. In this case the variational
solution is n(k) = A exp(2bk)/k2 and the agreement again reflects that no additional information is contained in the algorithm. The two curves in the
panel corresponds to N = 1000 and M/N = 2 and 4, respectively. As seen the distribution becomes more power law like with increasing ratio
M=N~SkT : c) The corresponding network solution. The most unbiased solution in this case gives the blind watchmaker network structure. The
variational solution cannot be simply obtained for the network case because of the network constraints. By contrast these constraints are easily
incorporated into the algorithm method. The panel shows the average solution for M/N = 4 and N = 1000. The solution has a fat tail power law
n(k),k2c with c<2.1 : d) A real network is just one representation n(k) and not an average Sn(k)T. The panel shows a single network for N = 1000 and
M/N = 4. A single network always contain large split-off nodes.
doi:10.1371/journal.pone.0001690.g002
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and the corresponding network goes as follows: a link is defined by

its link-ends such that an enumeration of the links is given by

(1,2),(3,4)……..(M21,M) where the link ends corresponds to balls

enumerated by 1,2,…,M as is illustrated in Fig. 1: The nodes

correspond to boxes and the link-ends to the enumerated balls.

The balls in the boxes are given a ranking by the vertical position

of the balls in a box. The time-order of connections gives the

ranking: earliest connection corresponds to the bottom position

and the latest to the top. The existence of this time-order ranking is crucial

in the following. The point is that the existence of an implicit time-

ordering is an un-avoidable consequence of any sequential process.

Natural selection is but one example of such a process.

For simplicity we here consider undirected links. A network is

then an association of link-ends where the associated link-ends

form nodes. Note that this means that a node will always contain

at least one link-end. This is the origin of ‘‘constrained’’ in the

Figure 3. Metabolic networks and the blind watchmaker network. The first two panels show the data for real metabolic networks (the data is
taken from Ref. [ma03a][ma03b]): Panel a) shows the average distribution Sn(k)T over 107 metabolic networks. This average distribution has a fat
power-law tail Sn(k)T*k{c with c<2.2. Note that the nodes with only one link are fewer (by roughly a factor of 5) than the nodes with two links. The
average size of these 107 networks is N<640 and M/N<5.35 b) the specific metabolic network distribution n(k) for the E.Coli bacteria (N<970 and M/
N<5.8). This network has 6 nodes with more than 100 links. Panel c) makes a direct comparison between the 107 metabolic networks in Panel a and
107 blind watchmaker networks with the same N and M. The agreement implies a common origin. Panel d) makes the same comparison between the
E.Coli network and a single random blind watchmaker network for the same N and M. Apart from a general agreement (modulo the larger statistical
spread inherent in comparing single networks) , the distribution of the split-off nodes are similar. Panel e) compares the average of the metabolic
networks with the corresponding average of the blind watchmaker networks including a constraint decreasing the abundance of the single link node
to the same average number, n(1), as for the metabolic networks (a = 0.07). The agreement is extraordinary. Panel f) makes the same comparison for
the E. Coli. network (a = 0.08) again with a striking agreement.
doi:10.1371/journal.pone.0001690.g003
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name of the model: a box always contains at least one ball.

Obviously, any association of the balls corresponds to a network.

However, it is customary to include additional constraints in the

definition of a network. The most common for an undirected

network are: 1) a network must be connected, 2) only one link between two

nodes, 3) no self-loops (which means that the two link-ends of the same link

cannot belong to the same node). We will first discuss the model without

the additional network constraints. In order to make connection to

standard statistical mechanics we will consider the case with a

fixed number of balls M and a fixed number of boxes N.

The total number of ways you can distribute M balls into N

boxes, V, is by elementary combinatorics V~
M!

Pk~0N(k)!
where

the factors N(k)! in the denominator is the number of identical

ways you can place the same balls in the same order into N(k)

boxes of size k . However, in the CBB-model one ball is assigned to

each box to start with. This means that the distinguishable number

of ways you can distribute the remaining k-1 balls into a box which

already contains one ball, is k times less the number of ways to put

k balls into the same box. Thus the total number of distinguishable

ways you can distribute balls into the boxes is for the CBB-model

reduced by a combinatorial factor Pk~1kN(k) (more details in

Supporting Information Text S1).

The most unbiased estimate of V corresponds to the maximum

and this maximum corresponds to one particular distribution N(k).

This is completely equivalent to the maximum entropy principle in

statistical mechanics [18]: Once the statistical states are identified,

the most unbiased system corresponds to the maximum of such

states or equivalently to the maximum of the entropy S = lnV. This

maximum is achieved when all statistical states are equally

probable. The last statement is the counterpart of the postulate

of a priory equal probabilities is statistical mechanics [18]. From

an information perspective the maximum of S gives a measure of

the maximum information which can be contained in the system

[18]. For the CBB-model two statistical states are equal provided

that there exists a one to one mapping between boxes containing

the same balls and furthermore that for each such mapped pair of

boxes the time order in which the balls arrived to the boxes differ

by at most a cyclic permutation. The point is that this degeneracy

of the statistical states is enforced by the constraint that the boxes

always contain at least one ball: The statistical state of the CBB-model

and its network counterpart contain a k-degeneracy.

The practical issue is to determine the distribution N(k) which

maximizes V[N(k)] subject to the appropriate constraints. One way

is to find an update algorithm which picks the statistical states with

equal probability, since such an algorithm automatically yields

N(k). For the CBB-model the obvious algorithm is as follows: Pick

two balls randomly and then move one to the same box as the other. If the

attempted move involves emptying a box you try again with two new randomly

picked balls. If you start with a random distribution with at least one

ball in each box, then the restriction of ‘‘always at least one ball in

all boxes’’ is in this way implemented without any additional bias.

The resulting distribution, N(k), is shown in Fig. 2(a). An

alternative is to directly find N(k) using a mathematical standard

method called variational calculus (see supporting information

Text S1). Both alternatives give the same as result (see Fig. 2(a)).

The advantage with the algorithm method is that it directly gives a

complete characterization of the unbiased situation: the average

SN(k)T which maximizes S SN(k)Tð Þ and at the same time

maximizes the noise D~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN(k)2T{SN(k)T2

q
[19]. As will be

shown below this noise, or equivalently the spread of the data,

provides important characteristics of the metabolic networks.

The definition of the statistical state is a direct consequence of

the maximum number of distinguishable ways you can distribute

the balls in the boxes: The statistical states, when picked with equal

probability, give the global maximum of the entropy. However,

our requirement is that the relevant states are picked with equal

probability: in our case the rankings of the balls in the boxes is

relevant. As emphasized above, this is a direct consequence of the

sequential element implicit in the natural selection process and

which imposes a time-order ranking on the balls in the boxes. The

crucial assumption is that the blind watchmaker network is random with

respect to these relevant states. The key observation is that many such

relevant states correspond to the same statistical state. Thus

unbiased, or equivalently random, with respect to the relevant

states inevitably means biased with respect to the statistical states.

Furthermore, biased with respect to the statistical states means

smaller entropy S. What bias is imposed on the statistical states? In

order to see this we note that the entropy ~SS is related to the

probability ~pp of obtaining a new statistical state when choosing a

new relevant state: ~SS~ ln ~ppV. When the relevant states and

statistical states are identical, this reduces to ~pp~1 and S = lnV. If

several relevant states correspond to the same statistical state then

~ppv1 and ~SSvS. In the present case ~pp~1=Pk~1kN(k) because

Pk~1kN(k) is the number of different time-orders which gives the

same statistical state. Thus ~SS~lnV=Pk~1kN(k)~lnV{

Sa where Sa~
P

k~1 N(k)lnk. Consequently, the most unbiased

situation in terms of the relevant states corresponds to the N(k)

which maximizes ~SS.

The corresponding least biased algorithm which achieves this

maximization goes as follows:

1) pick two boxes (nodes) A and B randomly with probability

p,k2

2) pick a random ball in A and move to B.

3) If the attempted move is forbidden by a constraint choose

another ball in A. Repeat until one ball is moved. Then

choose two new boxes (nodes)

4) If no ball can be moved from A, choose two new boxes

(nodes).

The important point here is that this algorithm incorporates the

constraints in the most unbiased way and consequently yields the

optimal N(k). Figure 2(b) illustrates that the algorithm solutions

which have the functional form N(k),exp(2bk)/k2 (see Supporting

Information in Text S1). Note that the distribution has an

exponential decay for smaller values of average degree

SkT~M=N but becomes very power law like for larger SkT.

In order to find the variational solution for the network case,

one needs to introduce the network constraints. These constraints

can be directly implemented into the corresponding algorithm

method: Moves which violates the network constraint are

discarded.(see Supporting Information in Text S1) When the

network constraints are included the distribution follows a power

law SN(k)T*k{c over a large range with c.2, as illustrated in

Fig. 2(c). An important point to notice is that average distribution

SN(k)T is different from the individual network configurations

N(k). The striking difference is that a single network configurations

always contains large split-off nodes, as illustrated in Fig. 2(d). These

split-off nodes constitute an essential characteristic of the network.

Discussion

How does the blind watchmakers random network compare to

real networks? Fig. 3 illustrates this for the case of metabolic

networks: Fig. 3(a) shows the average distribution obtained from

107 such networks and Fig. 3(b) the metabolic network for the E.

Coli. bacteria (the data is taken from Ref. [14][15]). In Fig. 3(c)
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and 3(d) these networks are compared to the corresponding blind

watchmaker network: the only information contained in this latter

network is the number of nodes and links and the number of

networks involved in the average. We again stress that both the shape

of the distribution and the spread of the data are important

characteristics of a real network. As apparent from Fig. 3(c) the

overlap between the two data-sets is striking. From this we conclude

that metabolic networks are to large extent blind watchmaker

networks. Figure 3(d) compare a single metabolic network (E. Coli.)

with the corresponding random network. A particular feature in this

comparison is the large split off nodes. In case of E. Coli. there are 6

nodes with more than 100 links and for the corresponding blind

watchmaker there are on the average 5.361.5.

Even if the blind watchmaker network explains the overall

feature such as the fat tails of biological networks like the metabolic

ones, there are of course differences. One such difference is the low

number of nodes with only one link in case of metabolic networks.

Such systematic deviations signal additional constraints in the real

network. Whenever such constraints are present the entropy of the

distribution is lower than for the blind watchmaker network. To

illustrate this we in Fig. 3(e) and 3(f) compare the real networks

with the corresponding blind watchmaker network including the

least biased constraint which adjusts the number of single-link

nodes (details in Supporting Information Text S1). Now the

agreement is extraordinary considering the fact that only one data

point, the number of single-link nodes at the very beginning of the

distribution, has been adjusted. It clearly demonstrates that it is

rather the deviations from the blind watchmaker network which

needs to be explained (like in the present case the smaller number

of single -link nodes): These deviations contain information about

the system in addition to the less system specific information

represented by the blind watchmaker network.

In the present work we focus on the different possible states a

network can be found in. These network states distinguishes

between the time order in which a node is connected to its

neigbours. No a priory assumption of any growth mechanism or

evolution process is made. We introduce the concept of random with

respect to the network states and call the corresponding network the blind

watchmaker network. It is found that the blind watchmaker network is

scale-free and that metabolic networks to large extent are blind

watchmaker networks. This means that the evolutionary path of

the cell-metabolism, when projected onto a metabolic network

representation, is statistically random with respect to a complete

set of network states. This randomness emanates from the inherent

randomness (the blind element) in Darwinian evolution and

suggests that natural selection has had no or little effect on the

network node degree distribution of metabolic networks.

Can these conclusions really be drawn from the agreement

between the node degree distribution, the split off nodes and the

stochastic spread of the data when comparing the actual data for

metabolic networks and the blind watchmaker model network? In

our opinion they can be drawn: The key is the quality of the

agreement in relation to the number of free adjustable parameters.

Earlier attempts to reproduce the degree distribution of metabolic

networks usually starts from some assumption about the actual

evolutionary path and has to our knowledge not been able to

reproduce the data in the way demonstrated here [13]. So why

does the evolution of metabolic networks choose this particular

stochastic node degree distribution displayed by the blind

watchmaker model network? According to us, the answer is that

this degree distribution is neutral with respect to natural selection

and hence, in this sense, has not been chosen at all. The notion

that the node degree distribution for metabolic networks could be

neutral with respect to natural selection has also been suggested on

the bases of a comparison between the node degree distribution in

atmospheric chemical reaction networks (no natural selection) and

metabolic networks [20][21].

Materials and Methods

The theoretical framework used in the analysis is classical

statistical mechanics, both in its conventional variational form

described in Text S1 and in its stochastical algorithm form

described in Results.

The cell- metabolisms data represented by the metabolic

networks are taken from Ma and Zeng in Ref. [14] and [15].

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0001690.s001 (0.05 MB

PDF)
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