
The Isolation, Differentiation, and Survival In Vivo of
Multipotent Cells from the Postnatal Rat filum terminale
Ruchira M. Jha1, Ryan Chrenek1,2, Laura M. Magnotti1*, David L. Cardozo1

1 Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Department of Genetics, Harvard Medical School, Boston,

Massachusetts, United States of America

Abstract

Neural stem cells (NSCs) are undifferentiated cells in the central nervous system (CNS) that are capable of self-renewal and
can be induced to differentiate into neurons and glia. Current sources of mammalian NSCs are confined to regions of the
CNS that are critical to normal function and surgically difficult to access, which limits their therapeutic potential in human
disease. We have found that the filum terminale (FT), a previously unexplored, expendable, and easily accessible tissue at the
caudal end of the spinal cord, is a source of multipotent cells in postnatal rats and humans. In this study, we used a rat
model to isolate and characterize the potential of these cells. Neurospheres derived from the rat FT are amenable to in vitro
expansion in the presence of a combination of growth factors. These proliferating, FT-derived cells formed neurospheres
that could be induced to differentiate into neural progenitor cells, neurons, astrocytes, and oligodendrocytes by exposure
to serum and/or adhesive substrates. Through directed differentiation using sonic hedgehog and retinoic acid in
combination with various neurotrophic factors, FT-derived neurospheres generated motor neurons that were capable of
forming neuromuscular junctions in vitro. In addition, FT-derived progenitors that were injected into chick embryos survived
and could differentiate into both neurons and glia in vivo.
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Received March 7, 2013; Accepted May 3, 2013; Published June 6, 2013

Copyright: � 2013 Jha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant from Vertex Pharmaceuticals. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have the following interests: This work was supported by a grant from Vertex Pharmaceuticals. This does not alter the
authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: laura_magnotti@hms.harvard.edu

Introduction

Both neural stem cells (NSCs), which are capable of unlimited

self-renewal, and neural progenitor cells (NPCs), which have a

more restricted potential, hold great promise for cell replacement

strategies to treat neurological diseases [1]. The hope is for these

cells to replace those lost due to a disease process or trauma [2,3].

In order for this strategy to be successful, NPCs have to produce

the appropriate cell types in appropriate numbers and must

integrate into the host nervous system to reproduce the correct

circuitry. In addition, the transplanted cells cannot lead to tumor

formation or initiate an immunological reaction.

The presence of multipotent NSCs has previously been

demonstrated in multiple regions of the adult mammalian CNS

in species ranging from rats to humans. These regions include the

olfactory bulb [4], subependymal lining of the ventricles [5–9],

hippocampus [10,11], cerebellum [12,13], spinal cord [14,15],

and retina [16,17]. Recent studies have used isolated NSCs to

generate specific neuronal types in vitro, such as retinal [18–21],

dopaminergic [22–25], and cholinergic neurons [26–28]. In

addition, NSCs transplanted into mammalian brains have retained

their ability to generate various cell lineages and have survived in

vivo [29–32].

Despite rapid advances in NSC biology, current sources of

mammalian NPCs are not ideal for transplantation therapy in

human disease because they are obtained from regions that are

difficult to access and are critical to normal brain function.

Surgical disruption of these areas leads to profound neurological

deficits, which renders their use impractical for harvesting

autologous NPCs.

The FT is an excellent candidate as a source of autologous,

multipotent cells. It provides distinct advantages over the presently

available sources in that it is both easily accessible and an

expendable tissue that persists in adults. It also has the potential to

be used for autologous replacement therapy, thereby avoiding

immunological problems. We have considered exploring the FT as

a potential source of multipotent cells because of its unique

developmental history [33], histologic environment [34], and

propensity to produce neuroectodermal tumors [35]. Early in

development, the FT provides innervation to the embryo’s

presumptive tail (or in rodents, temporary innervation of caudal-

most tail segments). As development continues, the coccygeal/tail

portion of the spinal cord gets reabsorbed and the cells undergo a

process termed by Streeter as ‘‘de-differentiation’’ [33,36]

(Figure 1). The coccygeal spinal cord reverts to an earlier

embryonic tissue type, which results in a collagenous structure

with a narrow central canal that is lined by ependymal cells and

surrounded by a loosely organized collection of fibroblasts,

neurons, and glia [33,36–38]. The resulting structure persists in

adults as the FT, a slender prolongation of the caudal end of the

spinal cord that anchors it to the coccyx. The postnatal FT is not

interconnected with the rest of the nervous system, nor does it

innervate the body. It is a vestigial remnant that is routinely

sectioned in humans with a condition known as tethered cord
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Figure 1. Developmental history of the FT. a) Illustration of two stages of a human embryo by Streeter (1919) [33], which demonstrates the de-
differentiation of the caudal spinal cord into the filum terminale (FT) following the re-absorption of the vestigial tail. The numbers below the drawing
indicate the length of the embryo. b) Drawings by Kunitomo (1918) [36]of the process of re-absorption of the embryonic tail. The numbers below the
illustrations indicate the age in weeks of the fetus, and the numbers above represent the length in millimeters.
doi:10.1371/journal.pone.0065974.g001

Multipotent Cells from the Rat filum terminale

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e65974



syndrome. In these cases, the spinal cord is tightly tethered to the

spine and lacks sufficient freedom of movement, so the FT is

sectioned to relieve that tension [39,40].

The histology of the FT has similarities to other CNS regions

that have been previously described as NSC niches [41]. It

contains peri-ventricular ependymal cells and a loosely organized

collection of fibroblasts, neurons, and glia surrounding the canal

[34,38,42–44]. In rats, FT neurons have been described as smaller

than usual and are hypothesized to possibly represent neurons in

an early stage of commitment and differentiation [45]. Paragan-

gliomas and other primitive neuroectodermal tumors arise from

the adult FT, again suggesting the possibility that NSCs are

present [35,46–48].

Recently, three laboratories (including our own) have identified

NPCs in the human FT. In a preliminary study, Varghese et al.

(2009) isolated neurospheres from the FT of four patients with

intraspinal tumors and demonstrated that they could generate

neurons and glia [49]. Arvidsson et al. (2011) identified NSC/NPC

markers in tissue isolated from both human and rat FT. They

isolated, expanded, and differentiated neurospheres from 13 out of

21 patients ranging in age from 1 to 60 years and noted a donor

age-dependent decrease in proliferative potential. In addition, they

isolated neurospheres from 5 out of 13 rat FTs [50]. Our

laboratory has reported isolating neurospheres from the FTs of 4

fetal and 33 postnatal donors (6 months to 18 years) that were able

to generate both neurons and glia. These neurospheres could also

be induced to differentiate into motor neurons capable of

innervating rat muscle in vitro. In agreement with the findings of

Arvidsson et al., FT tissue sections derived from 3 postnatal

surgeries and from 6 autopsies (51–81 years old) stained positively

for NSC/NPC markers [51].

A major difficulty in studying NPCs from the human FT is the

variability of the sources. The tissue is typically obtained from

tethered cord surgeries, and the donor age can vary from a few

months postnatal to adulthood. The precise location of the tissue

and the manner in which it is handled (including time to culture)

also varies from operation to operation and naturally between

clinical centers [39,40]. Therefore, we sought to develop a rodent

model for studying the FT that would permit the standardization

of experiments, provide unlimited amounts of tissue, allow

sampling at particular stages of the life cycle, and permit the use

of transgenic animals. In this paper, we report the establishment

and characterization of a rat model for generating NPCs from the

FT.

Materials and Methods

Ethics statement
All experiments have been approved by the Institutional Animal

Care and Use Committee at Harvard Medical School (protocol

#04305) and were conducted in accordance with the NIH Guide

for the Care and Use of Laboratory Animals.

Culturing FT-derived neurospheres
Primary Culture. All experiments were conducted accord-

ing to the guidelines of Harvard Medical School’s Institutional

Animal Care and Use Committee. Postnatal Sprague-Dawley rats

(Charles River, Wilmington, MA) aged P1–P12 were anesthetized

with isoflurane (Abbott, Abbott Park, IL) and killed by cervical

dislocation. The vertebral column was rapidly dissected in ice-cold

Hank’s buffered saline solution (HBSS). The FT was visualized

and identified under a microscope then dissected as illustrated in

Figure 2a. Each dissection was completed in less than 5 minutes to

minimize cell death. For most experiments, ,3 FTs were pooled

and transferred into a culture dish containing DMEM/F12 (1:1),

10% fetal bovine serum (FBS), and 100 U/ml collagenase type II

with 3 mM calcium. For experiments designed to determine the

yield of neurospheres as a function of age, one FT was used per

culture. The cultures were mechanically dissected and maintained

in a humidified incubator at 37uC with 5% CO2. Within 15–

24 hours, the tissue was rinsed, triturated, and transferred into

stem cell medium (SCM; [14,52–55] containing DMEM/F12

(1:1), 1% N2 and 2% B27 supplements, EGF (20 ng/ml), and

bFGF (20 ng/ml) (Invitrogen, Carlsbad, CA). The bFGF was

prepared in a solution containing 8 mg/ml heparin (Sigma, St.

Louis, MO) for stability. Primary stem cell proliferation was

detected after 3–5 days in vitro and was characterized by the

formation of spheres of undifferentiated cells [9].

Passaging Cultures. The cultures were passaged every 2–3

weeks. Neurospheres were incubated with 1X AccumaxTM

(Innovative Cell Technologies, San Diego, CA) for 5–8 min at

37uC followed by mechanical trituration to achieve partial

dissociation. Similar results were achieved through mechanical

trituration alone. Additionally, a single cell suspension could be

achieved by filtering the mechanically dissociated cells through a

100 mm cell strainer (BD Falcon, Franklin Lakes, NJ). The cells

were then centrifuged for 10 min at 1000 rpm and resuspended in

a 1:1 combination of fresh and conditioned medium.

Immunocytochemistry
Whole or differentiated neurospheres were attached to glass

coverslips, fixed with 4% formaldehyde in PBS (pH 7.4) for 20–

30 minutes, and washed thoroughly in PBS. Primary antibodies

were diluted in blocking solution (10% normal goat serum, 10%

fish skin gelatin, 0.3% Triton X-100, and 0.2% bovine serum

albumin in PBS), and each coverslip was incubated with the

appropriate primary antibody overnight at 4uC [goat polyclonal

anti-Nestin (1:50; R&D Systems), mouse monoclonal anti-Nestin

(1:100; Millipore, Billerica, MA), mouse monoclonal Olig-2

(prediluted, Dr. Connie Cepko, HMS), mouse monoclonal anti-

Vimentin (Zymed), rabbit polyclonal anti-Sox2 (1:1000; Abcam,

Cambridge, MA), rabbit polyclonal anti-b-tubulin III (Tuj-1;

1:1000; Covance, Princeton, NJ), rabbit polyclonal anti-GFAP

(1:1000; DAKO, Glostrup, Denmark), mouse monoclonal anti-

GFAP (1:1000, Sigma), mouse monoclonal Pax6 (developed by

Kawakami, A), mouse monoclonal anti-MNR2 (Developmental

Studies Hybridoma Bank, NICHD, University of Iowa Depart-

ment of Biological Sciences, Iowa City, IA)], goat polyclonal anti-

ChAT (1:100; Millipore), mouse monoclonal anti-MBP (1:500,

Covance), mouse monoclonal anti-neuron specific enolase (1:1000;

Millipore), and rabbit polyclonal anti-Hsp27 (1:1000; Enzo Life

Sciences, Farmingdale, NY)]. The coverslips were then washed in

PBS and incubated with the appropriate secondary antibody for

4 hours [AlexaFluor488-conjugated donkey anti-rabbit, Alexa-

Fluor488-conjugated donkey anti-mouse, AlexaFluor568-conju-

gated donkey anti-goat, AlexaFluor488-conjugated goat anti-

mouse, and AlexaFluor568-conjugated goat anti-rabbit (all

1:1000; Invitrogen)]. Finally, the coverslips were washed, incubat-

ed with DAPI (0.03 mg/ml) for 30 minutes, washed again, and

then mounted on glass slides with Vectashield mounting media

(Vector Labs). The slides were visualized for immunofluorescence

using a Zeiss photomicroscope and/or with confocal microscopy.

The approximate proportions of cells staining for a particular

marker were determined by the average count of 4–5 20X fields

that were randomly chosen by an unbiased observer. Cell counts

were based on DAPI-stained nuclei.
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Rat muscle culture
Rats aged P0–P7 were sacrificed as described above, and their

proximal limb muscles were rapidly dissected in ice-cold HBSS,

gently teased apart, and transferred to culture dishes containing

DMEM/F12 (1:1), 1% N2 supplement, and 1% penicillin-

streptomycin. Collagenase type II (100 U/ml) with 3 mM calcium

was included to dissociate the muscle fibers into single cells. The

dishes were incubated at 37uC with 5% CO2 for 24 hours, after

which the cultures were triturated with a fire-polished Pasteur

pipette to completely dissociate the tissue and centrifuged for

5 minutes at 1000 rpm. The pellets were washed with PBS and

resuspended in medium containing DMEM/F12 (1:1), 1% N2

supplement, 1% penicillin-streptomycin, and 10% FBS. Cis-

hydroxyproline (100 mg/ml; Sigma) was added to suppress

fibroblast proliferation. The cells were plated at a density of

,106 cells/ml on coverslips coated with poly-L-lysine (0.01%;

Sigma) and laminin (20 mg/ml; Sigma).

In vitro differentiation
Non-specific differentiation. Single neurospheres were

visualized under a dissecting microscope, isolated, and plated on

glass coverslips coated with poly-L-lysine (0.01%) and laminin

(20 mg/ml) in individual wells of a 96-well culture dish that

contained DMEM/F12 (1:1) with 1% N2, 1% penicillin-strepto-

mycin, and 5–10% FBS. This media was not changed for the

remainder of the experiment. The coverslips were processed for

immunocytochemistry either 24 hours or 7–10 days later.

Incubation with tritiated thymidine. Thymidine labeling

experiments were conducted as previously described [56]. Briefly,

neurospheres were incubated with 3H thymidine (NEN, 5 mCi/ml;

89 Ci/mmol) in SCM for 8 hours. The individual neurospheres

were isolated, washed 3X in SCM, and differentiated in serum as

described above. After differentiation, the coverslips were

processed for immunocytochemistry. Prior to mounting the

coverslips onto slides, emulsifier oil was added. After 2 days in

the dark, the emulsifier oil was removed, and the coverslips were

washed with water and then incubated in a developer for

4 minutes. Next, the developer was aspirated and the coverslips

were fixed in 4% paraformaldehyde for 20 minutes. Finally, the

coverslips were washed with water, mounted on slides with

Vectashield mounting media (Vector Laboratories, Burlingame,

CA), and visualized with fluorescence (for immunocytochemistry)

or brightfield microscopy (for tritiated thymidine incorporation).

Directed Differentiation. Neurospheres were treated with

retinoic acid (RA, 2 mM; Sigma) and either sonic hedgehog

protein (Shh-N, 400–1000 nM; R&D Systems, Minneapolis, MN)

or a small molecule agonist of sonic hedgehog signaling (Hh-

Ag1.3, Curis, Lexington, MA) in SCM for 4–5 days using a

Figure 2. Identification of neural progenitor cell (NPC) markers in the rat FT. a) Dissection of a P9 FT fixed in 4% formaldehyde. The arrow
indicates the start of the FT. b) Immunohistochemical staining of a whole mount P3 FT for the NPC marker Nestin (red, i) with the distribution of cells
indicated with DAPI (blue, ii). A merged image of b(i) and (ii) is shown in b(iii). Scale bar: 1 mm. c) Expression of Nestin (green) and DAPI (blue) in a
longitudinal section of a P1 FT. Scale bar: 50 mm. d) Expression of Nestin (red) and DAPI (blue) in a transverse section of a P1 FT. Scale bar: 20 mm. The
arrow in b(ii) indicates the location along the FT from which this section was taken.
doi:10.1371/journal.pone.0065974.g002
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modification of the previously described methods in Soundarar-

ajan et al. (2006) and Wichterle et al. (2002). Individual neuro-

spheres were then isolated and plated for 7–10 days on glass

coverslips coated with poly-L-ornithine (0.01%; Sigma), collagen

type I (0.01%), and laminin (20 mg/ml) in individual wells of 96-

well culture dishes (Corning) containing DMEM/F12 medium

(1:1) with 1% N2, 1% penicillin-streptomycin, 5% horse serum

(Invitrogen), CNTF (25 ng/ml; Sigma), GDNF (25 ng/ml;

Sigma), and BDNF (50 ng/ml; Sigma). Four conditions were

used: (1) neurospheres treated as above; (2) as above but without

RA; (3) as above without Shh or RA; (4) serum alone (without Shh,

RA, or the 3 neurotrophins). The coverslips were subsequently

processed for immunocytochemistry.

Neuromuscular junction formation. Individual neuro-

spheres were treated with RA (2 mM) and Shh-N (400–

1000 nM) for 4–6 days and subsequently plated on muscle

cultures in the differentiation media for motor neuron growth and

survival described above. We used two types of control cultures: 1)

myocytes alone and 2) myocytes onto which untreated neuro-

spheres were plated. After 6–21 days, the cultures were incubated

with AlexaFluor594-conjugated-a-bungarotoxin (2 mg/ml; Invi-

trogen) for 2.5 hours, washed, fixed, and processed for immuno-

cytochemistry. Single neurospheres were labeled for 1 hour prior

to co-culture with either 1 mM Di-I, Di-D, or carboxyfluorescein

diacetate succinimidyl ester (CFSE).

In vivo transplantation of FT-derived NPCs
Isolation of eGFP+ neurospheres. Transgenic rats express-

ing enhanced GFP under the chicken b-actin promoter and

cytomegalovirus enhancer (‘‘green rat’’ CZ-004, SD-Tg(Act-

EGFP)CZ-004Osb; SLC, Shizuoka, Japan) were obtained from

Dr. Kocsis at Yale University. Primary cultures of neurospheres

were established using the same protocol described above for

wildtype rats.

Transplantation of FT-derived NPCs into chick

embryos. GFP-expressing neurospheres were grown as de-

scribed above. After 4 ml of albumin had been removed to

accommodate the transplanted tissue, either whole neurospheres

or dissociated NPCs were implanted into a stage 10–17 chick

embryo at the rostral end of the developing spinal cord using a

pulled class pipette and microinjector apparatus. A saline control

was used to mimic NPC injection, and in some cases, 0.1% Fast

Green was co-injected to add contrast. The embryos were then

placed horizontally in a 38uC incubator until the tissue was

harvested at 3–7 days post-transplantation, fixed with 4% PFA,

sectioned at 20–50 mm, and labeled with appropriate antibodies to

assess the differentiation potential of the implanted NPCs.

Results

Characterization of the FT in vivo
The FT was isolated from rats aged P1–P12 (n = 63) by excising

the tissue at the caudal end of the spinal cord that extends past the

conus medullaris (Figure 2a). To verify the presence of NPCs in

the FT, a whole mount FT underwent immunohistochemical

staining for the NPC marker Nestin (tiled confocal images are

shown in Figure 2b(i)). Co-staining with the nuclear marker DAPI

indicates the overall distribution of cells throughout the FT

(Figure 2b(ii)). This result suggests that Nestin-positive cells are

present through the entire length of the FT (n = 14). To examine

the distribution of these Nestin-positive cells more closely, sections

were cut from the first third of the FT closest to the conus

medullaris (indicated by the arrow in Figure 2b(ii)). The pattern of

Nestin staining in longitudinal sections (n = 5) suggests that the

Nestin-positive cells possess long processes that extend from the

central canal to the pial surface, while their cell bodies reside

within or close to the ependymal zone (Figure 2c). The distribution

of Nestin-positive cells in transverse sections at the same location

along the length of the FT (n = 9) confirmed their morphology and

distribution (Figure 2d). These results suggest that NPCs are

indeed present in the FT.

Isolation and characterization of self-renewing FT-
derived neurospheres

Isolation. Cells isolated from the FT were dissociated with

collagenase and cultured in standard stem cell medium (DMEM/

F12+1% N2 supplement) containing bFGF (20 ng/ml) and EGF

(20 ng/ml) along with B27 (2%) and N2 (1%) supplements.

Previous studies have identified these mitogenic factors as

successful stimulants of NPC proliferation [14,53,57]. Each culture

was derived from a single donor rat (ages P4–P10). After 3–4 days

in vitro, neurospheres were observed in 96 out of the 100 primary

cultures. These neurospheres were primarily free-floating and

were identified by their spherical structure, phase bright appear-

ance, and regular cell membranes (Figure 3a). The neurospheres

initially appeared as smaller clusters of 3–4 round cells and

eventually grew into larger neurospheres. The size of these larger

neurospheres ranged widely from ,50 mm to .1 mm. Cell

clusters of ,30 mm were not counted as neurospheres [58]. The

number of neurospheres per primary culture varied from 1 to

more than 40. For a subset of the cultures, we examined the effect

of donor age upon the ability to produce neurospheres and the

number of neurospheres obtained and found no correlation with

age (Table 1). To demonstrate their capacity for proliferation and

self-renewal, neurospheres were dissociated and passaged up to 19

times. These cultures have been maintained in vitro for up to 7

months. Twelve cultures have been frozen, and two have been

tested for viability and were successfully recovered upon thawing.

Characterization. Contrary to earlier thinking, neuro-

spheres are not homogenous populations of cells, but have instead

been shown to be a heterogeneous collection of NSCs and NPCs

that likely have varying differentiation potentials [53,59,60]. We

characterized the FT-derived neurospheres using immunocyto-

chemistry to determine the expression of various NSC, NPC,

neuronal, and glial markers. Specifically, neurospheres were

stained for the NSC/NPC markers Nestin (n = 9), Sox2 (n = 8),

Vimentin (n = 6), Olig-2 (n = 3), and Musashi (n = 4), the neuron-

specific marker b-tubulin III (Tuj-1, n = 12), and the astrocyte

marker glial fibrillary acidic protein (GFAP, n = 12).

In all cases, a varying proportion of cells were positive for Nestin

(Figure 3b). In 4/9 cases, 100% of the cells in the neurosphere

were Nestin+, and this did not appear to be correlated with the

amount of time in culture. Staining for other neural progenitor

markers was variable. In 3/3 experiments, 100% of cells within the

neurosphere stained positive for Olig-2 with some areas showing

more intense staining (Figure 3c). Although all neurospheres had

some proportion of cells that stained positive for Vimentin and

Sox2, (Figures 3d,e, respectively), this percentage varied from 33–

100% for Vimentin and 40–100% for Sox-2. Musashi staining was

weak, with occasional clusters of high intensity staining (Figure 3f).

Tuj-1+ and GFAP+ cells were present in all neurospheres

(Figure 3g; n = 12). Every neurosphere contained some cells that

were positive for both markers, and this fraction varied greatly

among individual neurospheres. As shown in Figure 3g, there was

spatial clustering of cells expressing the different markers. While

this clustering was apparent in most neurospheres, the patterns

were variable.
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Differentiation of FT-derived neurospheres into neurons
and glia

Some neurospheres adhered to the cultureware and spontane-

ously differentiated into cells having the morphological character-

istics of neurons and glia without the addition or removal of factors

from the medium. We sought to determine the conditions required

to differentiate FT-derived neurospheres into neurons and glia.

After withdrawing bFGF and EGF, single neurospheres were

plated onto coverslips that had been treated with 7 different

combinations of adhesive substrates 6 exposure to 5–10% fetal

bovine serum (Table 2). For each condition, 5 experiments were

performed. After 7 days, the cultures were stained for Tuj-1,

neurofilament, O1, GFAP, and Nestin. Although the use of either

an adhesive substrate alone or serum alone was sufficient to initiate

morphological differentiation, the addition of serum resulted in a

more rapid differentiation. For example, an individual neuro-

sphere plated on a poly-L-lysine- and laminin-coated coverslip

began to exhibit morphological properties of differentiation after

42 hours (data not shown). In contrast, a neurosphere plated on a

laminin-coated coverslip and cultured in 10% serum-containing

medium began to differentiate after only 18 hours (Figures 4a,b).

In all cases, we detected cells derived from the neurospheres that

expressed either neuronal or glial markers including Tuj-1,

neurofilament, O1, and GFAP (data not shown).

All subsequent differentiation experiments (n = 65) were con-

ducted by withdrawing the growth factors, supplementing the

media with 5–10% fetal bovine serum, and plating single

neurospheres onto coverslips coated with both poly-L-lysine and

laminin. The cells were cultured under these conditions for

24 hours (n = 30) or 7–10 days (n = 35), and the cultures were

subsequently fixed for immunocytochemistry. Given the wide

distribution of neurosphere sizes used in these experiments, the

number of differentiated cells obtained ranged from ,50 to

.5000 cells per neurosphere, which correlated with the size of the

neurosphere that had been plated. Larger neurospheres (usually

.100 mm) were capable of generating .5000 differentiated cells.

In all cases, the cells began to migrate away from the original

neurosphere and develop extensive processes within 18 hours of

exposure to the differentiation conditions (Figure 4).

We next examined whether the neurospheres were capable of

producing NPCs, neurons, oligodendrocytes, and astrocytes by

assessing their expression of the NPC marker Vimentin (Figure 5a),

the neuronal marker Tuj-1 (Figure 5b), the oligodendrocyte

marker O1 (Figure 5d), and the astrocyte marker GFAP

(Figure 5e). In most cases, we double stained the cells derived

from a single neurosphere for two of these markers (Figures 5a,b).

FT-derived neurospheres had varied differentiation potentials;

however, we consistently observed neurons, oligodendrocytes, and

astrocytes in each experiment (n = 12). In addition to their

immunocytochemical profiles, Figure 5 also illustrates that the

differentiated cells displayed morphologies characteristic of neu-

rons, oligodendrocytes, and astrocytes.

To confirm that the differentiated cells were derived from

proliferative cells, we labeled actively dividing cells with tritiated

thymidine [51]. Neurospheres were treated with 3H for 8 hours

(n = 5). They were then washed and differentiated over 7 days in

the standard conditions described above. Derived cells were

stained for Tuj-1 and GFAP. In all 5 cases, 27–90% of the cells

identified immunologically as neurons and glia had incorporated

tritiated thymidine into their nuclei (data not shown). This

Figure 3. Characterization of FT-derived, undifferentiated
neurospheres by the expression of NPC, neuronal, and glial
markers. a) Phase microscopy of a single neurosphere derived from a
P10 FT culture after 10 days in vitro (DIV) and 1 passage. b) An
individual neurosphere derived from a P5 FT culture (5 DIV) stained for
the NPC marker Nestin (i, red), DAPI (ii, blue), and merged (iii). The
images in (c–f) are co-stained with DAPI (blue). c) The NPC marker Olig2
(red) is expressed in a neurosphere derived from a P7 FT culture (34
DIV). d) Expression of Vimentin (green) in a proportion of cells of an
individual neurosphere derived from a P7 FT culture (60 DIV). e)
Immunostaining of Sox2 (red) in some cells from a single neurosphere
isolated from a P6 FT culture (30 DIV). f) Weak staining of Musashi (red),
with some hot-spots, in a neurosphere isolated from a P6 FT culture (30
DIV). g) (i) Sparse expression of b-Tubulin III (Tuj-1) in a proportion of
cells of a neurosphere derived from a P7 FT culture (34 DIV). The
expression of GFAP in the same neurosphere (g-ii) is restricted to the
peripheral cells in vitro. (iii) Merged images of g(i) and (ii). Scale bars:
100 mm.
doi:10.1371/journal.pone.0065974.g003

Table 1. Lack of correlation between donor age and culture success/number of FT-derived neurospheres.

Donor Age (days) Fraction of cultures producing neurospheres Average number and range of neurospheres

P4 23/23 7.6; (2–18)

P5 21/22 10.8; (0–42)

P6 18/18 8.7; (1–31)

P9 3/3 6.7; (6–8)

A potential effect of donor age upon the ability to produce neurospheres and the number of neurospheres obtained was systematically examined on a subset of
cultures. Donor rats of all ages had a similar culture success rate, and similar numbers of neurospheres were obtained for all ages.
doi:10.1371/journal.pone.0065974.t001

Multipotent Cells from the Rat filum terminale

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e65974



demonstrates that the derived cells were the progeny of actively

dividing cells.

Figure 6 illustrates the variable expression of Tuj-1 and GFAP

in 14 experiments comparing differentiation after 24 hours to

differentiation after 7–10 days. Neurospheres differentiated over

24 hours (n = 9) resulted in a high proportion of cells that double

stained for both neuronal and glial markers (Figure 6). In the case

of Tuj-1 and GFAP staining, 69614% (n = 5) of the cells were

double stained for the two markers. After 7–10 days, the

proportion of cells that double stained for both neuronal and glial

markers decreased significantly (Figure 6). In the case of Tuj-1 and

GFAP staining, only 13610% (n = 9) of the cells were double

stained for the two markers (Figures 5b, 6). On rare occasions,

after 7 days of differentiation, .85% of cells derived from a single

neurosphere expressed either a neuronal or glial marker (n = 2).

However, in most cases, no obvious predominance was observed,

and varying proportions of both neuronal and glial cells were

noted from the differentiation of a single neurosphere (Figures 5,6).

These varying proportions of Tuj-1+ and GFAP+ may reflect the

heterogeneous differentiation potential of each neurosphere. This

variation persisted in neurospheres either from the same source or

different sources regardless of the age of the rat.

FT-derived neurospheres can be directed to generate
motor neurons (MNs)

We next determined whether FT-derived neurospheres were

capable of generating spinal cord MNs that could be used in cell

replacement strategies in cases of spinal cord trauma or MN

degeneration. To produce MN progenitors, single neurospheres

were treated for 4–5 days with 2 mM retinoic acid and either 0.5–

1 mM sonic hedgehog protein (Shh-N) or 1.5 mM of the hedgehog

agonist Hh-Ag1.3. The neurospheres were subsequently plated on

an adhesive substrate in the presence of 5% horse serum and 3

Figure 4. Inducing differentiation of FT-derived neurospheres. a) An individual neurosphere from a P5 FT (42 DIV) was plated at T = 0 on a
laminin-coated coverslip and cultured in media that contained 10% serum. b) Morphological properties of differentiation were evident after 18 hours
of exposure to these differentiating conditions. Scale bar: 100 mm.
doi:10.1371/journal.pone.0065974.g004

Table 2. Conditions for FT-derived neurosphere
differentiation.

Immunocytochemical marker

Differentiating
Conditions O1 GFAP BTIII NeurofilamentNestin

Polylysine + + + + 2

Laminin + + + N.D 2

Serum + + + + 2

Polylysine+laminin + + + + 2

Polylysine+serum + + + + 2

Laminin+serum + + + + 2

Polylysine+laminin+serum + + + + 2

Seven different conditions involving various combinations of an adhesive
substrate with serum-containing medium were used to differentiate FT-derived
neurospheres. After 7 days, the differentiated cells were subsequently
immunostained for markers to identify neurons (bTIII, neurofilament), astrocytes
(GFAP), and oligodendrocytes (O1). Although all seven conditions generated
these cell types, exposing neurospheres to serum resulted in a more rapid
differentiation process. N.D.: not done.
doi:10.1371/journal.pone.0065974.t002

Figure 5. Differentiation of FT-derived neurospheres into
neurons, astrocytes, and oligodendrocytes. a) Differentiated cells
derived from a single neurosphere double stained for the NPC marker
Vimentin (red, a(i)), the astrocyte marker GFAP (green, a(ii)), and merged
and co-stained with DAPI (a(iii)). These cells were derived from a single
neurosphere that was plated on a poly-L-lysine- and laminin-coated
coverslip and grown in 10% serum-containing medium without EGF,
bFGF, and LIF for 7 days prior to immunocytochemistry. Donor: P4 FT
(15 DIV) after 1 passage. b) Differentiated neurons and glia from an
individual neurosphere double stained for the astrocyte marker GFAP
(green, b-i) and the neuronal marker Tuj-1 (red, b-ii). The merged image
co-stained with DAPI is shown in b-iii. Same conditions as (a). Donor:
P7 FT, 30 DIV. c) Phase image of differentiated cells from a FT-derived
neurosphere. d) Cells differentiated from a single neurosphere, stained
for the oligodendrocyte marker O1 (green) and DAPI (blue). Same
conditions as (a). Donor: P6 FT, 36 DIV. e) Cells derived from a single
neurosphere and cultured in the same differentiating conditions as (a)
were stained for the astrocyte marker GFAP (red) and DAPI (blue).
Donor: P7 FT, 30 DIV. Scale bars: a&c, 100 mm; b&d, 50 mm.
doi:10.1371/journal.pone.0065974.g005
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neurotrophic factors known to promote MN growth and survival

(ciliary-derived neurotrophic factor (CNTF), brain-derived neuro-

trophic factor (BDNF), and glia-derived neurotrophic factor

(GDNF); Soundararajan et al., 2006 and Wichterle et al., 2002).

In all experiments (n = 25), various proportions of the differenti-

ated cells expressed either MN progenitor or mature MN markers

(Figure 7). At first, various proportions of differentiated cells

expressed motor neuron progenitor markers including Olig2 and

Pax6 (Figure 7a). After 7–10 days, the fraction of MNs produced

by each neurosphere was determined using immunocytochemistry

for the MN marker Motor Neuron Restricted-2 (MNR-2;

Figure 7b). Motor neurons were further characterized by their

expression of the neuronal marker Tuj-1 as well as choline acetyl

transferase (ChAT), which is the enzyme necessary for the

synthesis of acetylcholine, the neurotransmitter used by motor

neurons (Figure 7c).

While neurospheres treated with Shh-N gave rise to differen-

tiated neurons, only 20–40% of these neurons expressed MN

markers such as MNR2, Isl1, Lim3 and ChAT (n = 14). Increasing

the Shh-N concentration from 400 to 1000 nM did not appear to

alter the outcome. When we instead used the hedgehog agonist

Hh-Ag1.3 (n = 9, 1.5 mM), 95–100% of the differentiated neurons

expressed MN markers (Figure 8). This suggests that at these

concentrations, the agonist may be more effective than the actual

peptide in generating MNs from FT-derived neurospheres.

We also varied the differentiation conditions to determine which

factors were essential for generating MNs from the FT. The

following conditions were used: (1) neurospheres were treated as

described above (with RA and Shh) and then differentiated in

media containing serum along with BDNF, CNTF, and GDNF

(n = 25); (2) neurospheres were treated with Shh-N but without RA

(n = 8) followed by the addition of serum and the three

neurotrophins; (3) untreated neurospheres were cultured in media

containing serum and the three neurotrophins (n = 8); and (4)

untreated neurospheres were differentiated in media containing

serum without the addition of neurotrophic factors (n = 3). Under

conditions (2) and (3), neurospheres consistently generated a

variable proportion of MNR2+ cells (5–67%). In condition (4), the

generation of MNs was inconsistent (Figure 8). In 1/3 of the cases,

40% of cells derived from the neurosphere expressed MNR2, and

in 2/3 cases no cells were MNR2+. The use of RA and Shh-N for

directed and consistent generation of MNs did not prove superior

to simply differentiating the neurospheres in the presence of

BDNF, CNTF, and GDNF. However, Hh-Ag1.3 seems to be

beneficial in increasing the MN yield (Figure 8). Given that FT is

the vestigial remnant of the spinal cord, these results may indicate

an innate potential of some FT NPCs to differentiate into MNs

without either the caudalizing action of RA or exogenous

ventralizing Shh signaling.

Figure 6. Heterogeneous differentiation potential of FT-derived neurospheres. This scatter graph illustrates the variability in the
expression of Tuj-1 (neuronal marker) and GFAP (astrocytic marker) in 14 neurosphere differentiation experiments. Individual neurospheres were
differentiated by both attachment to an adhesive substrate (poly-L-lysine- and laminin-coated coverslips) and exposure to 5% serum. Differentiated
cells were evaluated by immunocytochemistry after either 24 hours or 7–10 days. In both cases, a variable proportion of neurons and astrocytes was
observed. The approximate proportion of differentiated cells from a neurosphere that co-stained for both markers decreased after 7–10 days of
exposure to the differentiating conditions relative to the proportion of overlap noted after 24 hours.
doi:10.1371/journal.pone.0065974.g006
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Muscle co-culture and neuromuscular junction (NMJ)
formation

To assess the potential of FT-derived MNs to innervate muscle,

we used the same motor neuron/muscle co-culture system that we

had previously developed for human FT-derived NPCs [51].

Single neurospheres were treated with RA & Shh and co-cultured

with postnatal rat striated muscle fibers under differentiating

conditions in the presence of BDNF, CNTF, and GDNF (n = 24).

To confirm that the neurons observed in the co-culture were

derived from plated neurospheres, 14 neurospheres were pre-

incubated with either a lipophilic carbocyanine dye (Di-I or DI-D;

Figure 9a,b) or carboxyfluorescein diacetate succinimidyl ester

(CFSE; Figure 9c). Treated neurospheres were co-cultured with

muscle for 6–21 days and then incubated with fluorescent a-

bungarotoxin to mark the nicotinic acetylcholine receptors and

identify the presence of neuromuscular junctions. After 6–21 days,

clustered a-bungarotoxin staining on muscle fibers was detected in

all of the co-cultures (Figure 9c). In contrast, control cultures

containing muscle fibers only do not contain neuromuscular

junctions as defined by acetylcholine receptor clustering [51].

These findings are highly suggestive that FT-derived neurospheres

have the potential to form neuromuscular junctions.

FT-derived neurospheres can differentiate into neurons
and glia in vivo

Because FT-derived neurospheres could differentiate into both

neurons (including motor neurons) and glia in vitro, we wanted to

examine the behavior of these cells when they were reintroduced

to the spinal cord in vivo. To accomplish this, the FT was isolated

from transgenic rats aged P0–P2 in which all cells express GFP

under the control of the chicken b-actin promoter and cytomeg-

alovirus enhancer (SD-Tg(Act-EGFP)CZ-004Osb; SLC Japan).

Neurospheres were isolated and cultured from this tissue as

previously described (Figure 10a). These FT-derived, GFP+

neurospheres were implanted into the neural tube of stage 10–

15 chick embryos at the rostral end of the developing spinal cord

(Figure 10b; n = 31). In some cases, the neurospheres were

dissociated before being implanted. The embryos were then

permitted to develop for an additional 3–7 days post-transplan-

tation before their ability to survive, migrate into the host tissue,

and differentiate was assessed.

An analysis of the spinal cord from these operated chick

embryos 3 days post-implantation revealed the presence of a

number of GFP+ cells that had not only survived but had migrated

away from the injection site into the developing chick spinal cord

(n = 27). These cells clearly had the morphology of neurons and

glia (Figure 10c). After 7 days, immunohistochemical analysis

revealed that a subset of these transplanted GFP+ cells could be

identified as neurons (Figure 10f; n = 12), astrocytes (Figure 10g;

n = 9), and oligodendrocytes (Figure 10 h; n = 9) by their

expression of the immunohistochemical markers Tuj-1, GFAP,

and myelin basic protein (MBP), respectively. In addition, we also

implanted FT-derived cells from human donors aged 3 months to

2 years into the developing chick spinal cord (n = 8; see [51] for

details on how human FT-derived NPCs were obtained). These

human NPCs were also able survive, migrate away from the

injection site, and differentiate into both neurons and glia over the

course of 3–5 days (n = 5; Figure 10d,e). This preliminary result

suggests that rat and human FT-derived NPCs have the ability to

differentiate into both neurons and glia in vivo. We have not yet

been able to follow the chicks’ development for a sufficient period

of time to determine whether these cells have the ability to

integrate into the host nervous system.

Discussion

The results of this study demonstrate that multipotent stem/

progenitor cells are present in the postnatal FT. These cells exhibit

two cardinal properties of NPCs: they are capable of both self-

renewal/expansion and of differentiation into multiple cell types,

including neurons, astrocytes, and oligodendrocytes [61]. The

results described here are consistent with the findings of three

previous studies including one from our own lab, which have all

demonstrated that neural stem/progenitor cells can be derived

from the postnatal human FT [49–51]. One of these reports had

suggested that the rat FT was also capable of producing NPCs;

however, the observed efficiency in that study was only 39% [50].

Here, we have optimized the rat neurosphere assay to achieve a

96% culture success rate at a range of donor ages. Presumably, the

improved efficiency is due to this being an extended study

involving large numbers of rats. In addition, we have demonstrat-

ed that FT-derived NPC cells can be differentiated into MNs. The

ability of the FT to generate MNs may be of particular therapeutic

significance for neurodegenerative diseases such as amyotrophic

lateral sclerosis (ALS). The cells were not assessed for clonality

because this is not immediately applicable therapeutically [2,3].

We reasoned that so long as FT-derived NPCs can be produced in

large enough numbers to permit cell replacement strategies,

clonality is not essential to the therapeutic strategy.

The neurosphere assay
We employed the neurosphere assay for isolating and expanding

NPCs. As observed in this study, individual neurospheres

demonstrate the two classic NPC properties: self-renewal and

multipotency, which suggests that the FT-derived cells are in fact

neural progenitors. For the past 20 years, the most widely used

technique for culturing NPCs has been to utilize non-adherent

conditions under which these cells aggregate and form spheres of

Figure 7. Generation of motor neurons (MNs) from FT-derived
neurospheres. Individual neurospheres were treated with RA and
either Shh-N or Hh-Ag1.3 for 4–5 days, plated onto an adhesive
substrate, and cultured in serum-containing medium with appropriate
growth factors for 7–10 days. Differentiated cells were subsequently
evaluated for the expression of MN and MN progenitor markers. a)
Differentiated cells from a P7 FT (30 DIV) stained positive for Olig2 (i,
red) Pax6 (ii, green). The merged images co-stained for DAPI (blue) are
shown in (iii). b) The MN-specific marker MNR2 is expressed by FT-
derived neurospheres (green). Donor: P7 FT, 30 DIV. c) Expression of
Tuj-1 (i, green) and ChAT (ii, red). The merged image co-stained for DAPI
is shown in (iii). Donor: P6 FT, 36 DIV. Scale bars: 100 mm.
doi:10.1371/journal.pone.0065974.g007
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proliferating cells called neurospheres [9,62]. However, recent

studies have raised some issues regarding the limitations of the

neurosphere assay. One concern has been that a single neuro-

sphere may contain a heterogeneous population of cells, and

culture conditions may favor the growth and survival of one type

of cell over another. In fact, each neurosphere may contain only a

small number of NPCs that would then become diluted with each

passage [62]. One non-neuronal cell type likely to be present

initially in the neurospheres is ependymal cells, which line the

central canal of the FT. However, these cells are postmitotic [63]

and are diluted out with each passage; therefore, they are unlikely

to contribute to the population of dividing cells observed in this

study. Additionally, the neurosphere assay may not take into

account quiescent cells that are residing in G0 at the time of

neurosphere formation [64]. Cell density is another concern

because as the neurosphere grows, it becomes difficult for nutrients

to reach the innermost cells, and a necrotic center may begin to

form [65].

Thus, some groups instead prefer to utilize a monolayer assay

where NPCs are grown under adherent conditions to form a single

Figure 8. Variable expression of MNR2 in FT-derived neurospheres undergoing MN differentiation. Scatter graph illustrating the
variability in MNR2 expression in differentiated neurospheres under four sets of differentiation conditions. The X axis is the experiment number, and
the Y axis is the average proportion of cells derived from each neurosphere expressing MNR2, Tuj-1 and/or GFAP. MNR2, which was used to identify
MN generation, was expressed by cells in roughly the same proportion among conditions (1), (2), and (3) with more inconsistent results under
condition (4). In 3 of the 28 experiments where the small molecule agonist, Hh-Ag1.3, was used in place of Shh-N, 100% expression of MNR2 was
observed. See Results for more detail.
doi:10.1371/journal.pone.0065974.g008

Figure 9. Neuromuscular junction formation. a) A single neurosphere derived from a P6 FT was treated for 24 hours with Shh and RA and then
labeled with DiI. b) A cell derived from the DiI-labeled neurosphere that has been co-cultured with rat myocytes for 2 days. c) After 20 days of co-
culture, muscle cells were labeled with a-bungarotoxin-AF594 (red) to identify acetylcholine receptors clustered at neuromuscular junctions. Cells
derived from individual neurospheres were pre-labeled with CFSE (green) prior to being added to the co-culture.
doi:10.1371/journal.pone.0065974.g009
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layer of cells. This results in a more homogeneous population of

cells and reduces the level of spontaneous differentiation among

the NPCs [64]. Recently, we have started culturing FT-derived

NPCs under monolayer-forming conditions with encouraging

success, and we intend to employ this method going forward.

Cell identity manifests after 7–10 days in differentiating
conditions but may be determined prior to the
differentiation process

We compared neuronal and glial marker expression in single

neurospheres that had been differentiated for 24 hours versus 7–

10 days. After 24 hours, most cells expressed both sets of markers,

which may reflect an unresolved cell fate early on in the

differentiation process. In contrast, after 7–10 days, most cells

derived from a single neurosphere expressed either a neuronal or a

glial marker with very few cells double staining for both. This did

not vary with donor age and may be the result of cells expressing a

more committed cell fate over an extended period of time

compared with a relatively ambiguous cell identity after 24 hours.

Cell identity may also be determined prior to the differentiation

process. Before differentiation, neurospheres expressed different

patterns of Tuj-1 and GFAP staining despite identical treatment.

While some cells within a neurosphere indicated double staining

for both markers, most expressed only a single marker. Cells

positive for the same marker tended to cluster together spatially.

This is consistent with reports of heterogeneous neurospheres that

have been derived from other adult CNS and embryonic sources

[59,60,66]. Suslov et al. (2002) studied the cDNA libraries of 30

neurosphere clones and found that they all differentially expressed

transcripts. This group also demonstrated that neurospheres

contained NSCs as well as neuronal and glial progenitors in

different stages of differentiation with distinct neural developmen-

tal commitments [60].

It is possible that the neuronal or glial characteristics acquired

prior to neurosphere differentiation may predict the differentiation

potential of each neurosphere. Temporary double staining during

early stages of differentiation may represent a point along the

differentiation pathway where cell fate remains ambiguous. Early

staining patterns among neurosphere cells (GFAP+ or Tuj-1+)

before differentiation potentially implies that manipulating neuro-

spheres towards a more neuronal or glial fate may require

culturing them in different conditions from the outset.

Neural progenitor cell (NPC) markers persist at 7–10 days
NPC marker expression was high after 24 hours of differenti-

ation and even higher after 7–10 days. This was surprising because

most cells by this point begin to express markers representing a

more mature phenotype, i.e., a neuronal or glial cell marker. Cells

that persist in expressing NPC markers in addition to neuronal- or

glial-specific markers may be lineage-specific NPCs. Alternatively,

this persistence and/or increase in NPC marker staining may be a

tissue culture artifact.

FT-derived neurospheres have an innate potential to
generate MNs

FT-derived neurospheres generated MNs with and without

exposure to RA and Shh, which have both been previously used to

differentiate embryonic stem cells into MNs in vitro [67–69].

Rostral neural progenitors in embryoid bodies acquire a spinal

positional identity in response to RA (a caudalizing signal) and

subsequently attain a motor neuron progenitor identity in response

to the ventralizing signals of Shh [69–72]. BDNF, CNTF, and

GDNF are neurotrophins that are known to support MN growth

and survival [73–76]. FT-derived neurospheres that were treated

with RA and Shh-N prior to differentiation in media containing

serum, BDNF, CNTF, and GDNF generated 20–40% MNs.

Neurospheres plated in serum with BDNF, CNTF, and GDNF

without RA or Shh-N treatment generated between 5–67% MNs,

which suggests that treating FT-derived neurospheres with Shh-N

Figure 10. In vivo survival and differentiation of FT-derived
NPCs transplanted into the developing chick spinal cord. a)
Neurospheres were isolated from a P2 transgenic rat that expressed
eGFP in every cell. Scale bar: 100 mm. b) GFP+ NPCs from a P2 rat were
transplanted into a stage 10 (33 hrs) chick neural tube at the
prospective rostral end of the developing spinal cord. This image was
taken immediately after injection, and the rostral end is pointing
towards the bottom. Scale bar: 200 mm. c) After 3 DIO (,stage 22), GFP+

cells had survived and begun to take on the morphology of neurons
and glia. Scale bar: 50 mm. d–e) Neurospheres from a 6-month-old
human were transplanted into a stage 10 (33 hrs) chick spinal cord at
the rostral end. After 3 DIO, transplanted cells were labeled with the
human-specific antibody HSP27 (green) and can be seen migrating
away from the transplantation site. Two different embryos are shown in
(d) and (e). The image in (e)i is a magnified view of the migrating cells
from the highlighted area in (e). Scale bars: (d) and (e): 200 mm, (e)i:
50 mm. f–h) After 7 DIO, some FT-derived NPCs (green, f–h(i)) expressed
the neuronal marker Tuj-1 (red, f(ii)), the astrocyte marker GFAP (red,
g(ii)), or the oligodendrocyte marker MBP (red, h(ii)). In all cases (f–h), a
merged image of (i) and (ii) along with the nuclear marker DAPI is
shown in (iii). Scale bars: 50 mm.
doi:10.1371/journal.pone.0065974.g010
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and RA is not more effective in generating MNs than plating them

in the presence of BDNF, CNTF, and GDNF alone. While RA

and Shh are crucial in directing embryonic stem cell differenti-

ation into MNs, they may not be as critical to a subset of FT-

derived NPCs, which have possibly been caudalized and

ventralized during embryonic development. When FT derived

neurospheres were plated in serum alone, 1/3 generated 40%

MNs, indicating that occasional MN differentiation can occur

without addition of RA/Shh-N or growth factors. This may be

due to the critical factors being present in the serum at sufficient

concentrations to stimulate NPCs in the FT which possess an

innate potential to produce MNs. NPCs from the FT may possess

an intrinsic ability to generate cell types (such as MNs) that reside

in the spinal cord.

Hh-Ag 1.3 may be more effective than Shh-N at
increasing MN yield from FT-derived neurospheres

In addition to Shh-N, Shh signaling is also activated by the

small molecule agonist Hh-Ag 1.3. To generate MNs from ESCs,

previous studies have used either 300–500 nM Shh-N or 1–2 mM

Hh-Ag 1.3 [54,67–69,77]. Although Wichterle et al. (2002)

reported identical results with Shh-N and Hh-Ag 1.3 at these

concentrations, most studies have used 1 mM Hh-Ag 1.3 to

generate MNs from ESCs [67,68,77,78]. In FT-derived neuro-

spheres, Hh-Ag1.3 was particularly effective in increasing the yield

of generated MNs when compared to Shh-N. In the presence of

Hh-Ag1.3, nearly 100% of differentiated cells were MNs and this

number decreased to 20–40% when Shh-N was used instead.

Therefore, a discrepancy exists between the increased efficacy of

Hh-Ag 1.3 in FT-derived neurospheres versus ESC-derived

neurospheres.

GFAP+ cells derived from FT-derived neurospheres may
not be astrocytes

In this study, we used GFAP to identify astrocytes. However,

this protein is also a marker for astrocyte-like adult stem cells

[61,79]. In adult mammals, neurogenic astrocytes have been

identified in vivo in both the SVZ of the lateral ventricle and the

subgranular zone of the dentate gyrus in the hippocampus [61,80].

The characteristics and markers that distinguish neurogenic

astrocytes from the vast population of non-neurogenic astrocytes

remain unknown [61]. GFAP+ cells differentiated from FT-derived

NPCs may consist of neurogenic and/or non-neurogenic astro-

cytes. In our differentiation experiments, cells sometimes double

stained for both GFAP and a neuronal marker. For example, FT-

derived NPCs that have undergone directed MN differentiation

sometimes expressed both MNR2 and GFAP. The concurrent

expression of a MN marker with GFAP would be surprising if

GFAP were solely a non-neurogenic astrocyte marker. However,

because GFAP is also a marker for astrocyte-like adult NPCs,

double-stained cells may represent neurogenic astrocytes that are

committed to an MN cell fate.

In conclusion, we have demonstrated that FT-derived neuro-

spheres proliferate, can be passaged in vitro, and can differentiate

into a collection of NPCs, neurons, and glia. The discovery of

multipotent cells within the mammalian CNS has had tremendous

implications for therapeutic possibilities in many currently

incurable CNS diseases, including trauma, Alzheimer’s, Parkin-

son’s, ALS, and multiple sclerosis [1,81]. The establishment of the

FT as a source of multipotent cells opens up new possibilities in the

field of autologous transplantation therapy for these neurological

diseases. It is important to fully explore the potential of these cells

both in vivo and in vitro. The use of a rat model permits a systematic,

unlimited study of these cells in a controlled environment.

Although cells derived from each animal and even each neuro-

sphere are a heterogeneous population, they all have the ability to

divide and to differentiate into both neurons and glia either

spontaneously or in a directed manner. Even after these FT-

derived cells are frozen for extended periods of time and then

subsequently thawed, they still retain the same potential to

produce both neurons and glia. This suggests that cells can be

collected, frozen, and then later recovered and used for

therapeutic purposes. Additionally, because the rat and mouse

nervous systems are so closely related, it seems reasonable to

expect that the methods that we have developed here will be

directly applicable to the mouse. This will allow the use of the

large number of already established transgenic lines that have been

developed by various stem cell groups. The principles learned

from this model may be directly applied to postnatal human FT-

derived NPCs for potential therapeutic purposes.

Acknowledgments

We wish to acknowledge the invaluable assistance from the Cepko

laboratory in the Department of Genetics, especially Santiago Rompani for

his help with the in vivo chick protocols, and all of our colleagues in the

Department of Neurobiology at Harvard Medical School. We also wish to

thank Dr. Joseph Madsen and his colleagues in the Department of

Neurosurgery at the Children’s Hospital Boston for their excellent advice.

Author Contributions

Conceived and designed the experiments: RMJ RC LMM DLC.

Performed the experiments: RMJ RC LMM DLC. Analyzed the data:

RMJ RC LMM DLC. Wrote the paper: RMJ RC LMM DLC.

References

1. Gage FH, Ray J, Fisher LJ (1995) Isolation, characterization, and use of stem

cells from the CNS. Annu Rev Neurosci 18: 159–192.

2. Joyce GF, Keeler EB, Shang B, Goldman DP (2005) The lifetime burden of

chronic disease among the elderly. Health Aff (Millwood) 24 Suppl 2: W5R18–

29.

3. Goldman SA, Windrem MS (2006) Cell replacement therapy in neurological

disease. Philos Trans R Soc Lond B Biol Sci 361: 1463–1475.

4. Pagano SF, Impagnatiello F, Girelli M, Cova L, Grioni E, et al. (2000) Isolation

and characterization of neural stem cells from the adult human olfactory bulb.

Stem Cells 18: 295–300.

5. Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D (1999) Adult

mammalian forebrain ependymal and subependymal cells demonstrate prolif-

erative potential, but only subependymal cells have neural stem cell

characteristics. J Neurosci 19: 4462–4471.

6. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999)

Subventricular zone astrocytes are neural stem cells in the adult mammalian

brain. Cell 97: 703–716.

7. Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, et al. (1996) Multipotential

stem cells from the adult mouse brain proliferate and self-renew in response to

basic fibroblast growth factor. J Neurosci 16: 1091–1100.

8. Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, et al.

(1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent

subpopulation of subependymal cells. Neuron 13: 1071–1082.

9. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated

cells of the adult mammalian central nervous system. Science 255: 1707–1710.

10. Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains

primordial neural stem cells. Mol Cell Neurosci 8: 389–404.

11. Roy NS, Wang S, Jiang L, Kang J, Benraiss A, et al. (2000) In vitro neurogenesis

by progenitor cells isolated from the adult human hippocampus. Nat Med 6:

271–277.

12. Chipperfield H, Cool SM, Bedi K, Nurcombe V (2005) Adult CNS explants as a

source of neural progenitors. Brain Res Brain Res Protoc 14: 146–153.

13. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, et al. (2005) Isolation of

neural stem cells from the postnatal cerebellum. Nat Neurosci 8: 723–729.

Multipotent Cells from the Rat filum terminale

PLOS ONE | www.plosone.org 12 June 2013 | Volume 8 | Issue 6 | e65974



14. Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, et al. (1996) Multipotent

CNS stem cells are present in the adult mammalian spinal cord and ventricular

neuroaxis. J Neurosci 16: 7599–7609.

15. Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, et al. (2000)

Proliferation and differentiation of progenitor cells throughout the intact adult

rat spinal cord. J Neurosci 20: 2218–2228.

16. Coles BL, Angenieux B, Inoue T, Del Rio-Tsonis K, Spence JR, et al. (2004)

Facile isolation and the characterization of human retinal stem cells. Proc Natl

Acad Sci U S A 101: 15772–15777.

17. Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, et al. (2000) Retinal

stem cells in the adult mammalian eye. Science 287: 2032–2036.

18. Hirano M, Yamamoto A, Yoshimura N, Tokunaga T, Motohashi T, et al.

(2003) Generation of structures formed by lens and retinal cells differentiating

from embryonic stem cells. Dev Dyn 228: 664–671.

19. Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, et al. (2002)

Generation of dopaminergic neurons and pigmented epithelia from primate ES

cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A 99:

1580–1585.

20. Ooto S, Haruta M, Honda Y, Kawasaki H, Sasai Y, et al. (2003) Induction of

the differentiation of lentoids from primate embryonic stem cells. Invest

Ophthalmol Vis Sci 44: 2689–2693.

21. Vugler A, Lawrence J, Walsh J, Carr A, Gias C, et al. (2007) Embryonic stem

cells and retinal repair. Mech Dev 124: 807–829.

22. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient

generation of midbrain and hindbrain neurons from mouse embryonic stem

cells. Nat Biotechnol 18: 675–679.

23. Storch A, Paul G, Csete M, Boehm BO, Carvey PM, et al. (2001) Long-term

proliferation and dopaminergic differentiation of human mesencephalic neural

precursor cells. Exp Neurol 170: 317–325.

24. Yu Y, Gu S, Huang H, Wen T (2007) Combination of bFGF, heparin and

laminin induce the generation of dopaminergic neurons from rat neural stem

cells both in vitro and in vivo. J Neurol Sci 255: 81–86.

25. Zeng X, Cai J, Chen J, Luo Y, You ZB, et al. (2004) Dopaminergic

differentiation of human embryonic stem cells. Stem Cells 22: 925–940.

26. Jordan PM, Cain LD, Wu P (2008) Astrocytes enhance long-term survival of

cholinergic neurons differentiated from human fetal neural stem cells. J Neurosci

Res 86: 35–47.

27. Ren W, Guo Q, Yang Y, Chen F (2006) bFGF and heparin but not laminin are

necessary factors in the mediums that affect NSCs differentiation into cholinergic

neurons. Neurol Res 28: 87–90.

28. Wang TT, Jing AH, Luo XY, Li M, Kang Y, et al. (2006) Neural stem cells:

isolation and differentiation into cholinergic neurons. Neuroreport 17: 1433–

1436.

29. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, et al. (2006)

Retinal repair by transplantation of photoreceptor precursors. Nature 444: 203–

207.

30. Tang J, Xu HW, Fan XT, Li ZF, Li DB, et al. (2007) Targeted migration and

differentiation of engrafted neural precursor cells in amyloid beta-treated

hippocampus in rats. Neurosci Bull 23: 263–270.

31. Yamasaki TR, Blurton-Jones M, Morrissette DA, Kitazawa M, Oddo S, et al.

(2007) Neural stem cells improve memory in an inducible mouse model of

neuronal loss. J Neurosci 27: 11925–11933.

32. Yasuhara T, Matsukawa N, Hara K, Yu G, Xu L, et al. (2006) Transplantation

of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s

disease. J Neurosci 26: 12497–12511.

33. Streeter GL (1919) Factors involved in the formation of the filum terminale.

Am J Anat 22: 1–12.

34. Harmeier JW (1933) The normal histology of the intradural filum terminale.

Arch Neurol 29: 308–316.

35. Gagliardi FM, Cervoni L, Domenicucci M, Celli P, Salvati M (1993)

Ependymomas of the filum terminale in childhood: report of four cases and

review of the literature. Childs Nerv Syst 9: 3–6.

36. Kunitomo K (1918) The development and reduction of the tail and of the caudal

end of the spinal cord. 8: 161–204.

37. Lu FL, Wang PJ, Teng RJ, Yau KI (1998) The human tail. Pediatr Neurol 19:

230–233.

38. Tarlov IM (1938) Structure of the filum terminale. arch Neurol Psychiatry 40: 1–

17.

39. Lad SP, Patil CG, Ho C, Edwards MS, Boakye M (2007) Tethered cord

syndrome: nationwide inpatient complications and outcomes. Neurosurgical

focus 23: E3.

40. Bakker-Niezen SH, Walder HA, Merx JL (1984) The tethered spinal cord

syndrome. Z Kinderchir 39 Suppl 2: 100–103.

41. Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in

the adult vertebrate brain. Brain Res Bull 57: 751–758.

42. Choi BH, Kim RC, Suzuki M, Choe W (1992) The ventriculus terminalis and

filum terminale of the human spinal cord. Hum Pathol 23: 916–920.

43. Fontes RB, Saad F, Soares MS, de Oliveira F, Pinto FC, et al. (2006)

Ultrastructural study of the filum terminale and its elastic fibers. Neurosurgery

58: 978–984; discussion 978–984.

44. Miller C (1968) The ultrastructure of the conus medullaris and filum terminale.

J Comp Neurol 132: 547–566.

45. Rethelyi M, Lukacsi E, Boros C (2004) The caudal end of the rat spinal cord:

transformation to and ultrastructure of the filum terminale. Brain Res 1028:

133–139.

46. Ashkenazi E, Onesti ST, Kader A, Llena JF (1998) Paraganglioma of the filum

terminale: case report and literature review. J Spinal Disord 11: 540–542.

47. Kamalian N, Abbassioun K, Amirjamshidi A, Shams-Shahrabadi M (1987)

Paraganglioma of the filum terminale internum. Report of a case and review of

the literature. J Neurol 235: 56–59.

48. Koeller KK, Rosenblum RS, Morrison AL (2000) Neoplasms of the spinal cord

and filum terminale: radiologic-pathologic correlation. Radiographics 20: 1721–

1749.

49. Varghese M, Olstorn H, Berg-Johnsen J, Moe MC, Murrell W, et al. (2009)

Isolation of human multipotent neural progenitors from adult filum terminale.

Stem cells and development 18: 603–613.

50. Arvidsson L, Fagerlund M, Jaff N, Ossoinak A, Jansson K, et al. (2011)

Distribution and characterization of progenitor cells within the human filum

terminale. PloS one 6: e27393.

51. Jha RM, Liu X, Chrenek R, Madsen JR, Cardozo DL (2013) The postnatal

human filum terminale is a source of autologous multipotent neurospheres

capable of generating motor neurons. Neurosurgery 72: 118–129.

52. Carpenter MK, Cui X, Hu ZY, Jackson J, Sherman S, et al. (1999) In vitro

expansion of a multipotent population of human neural progenitor cells. Exp

Neurol 158: 265–278.

53. Kim HT, Kim IS, Lee IS, Lee JP, Snyder EY, et al. (2006) Human neurospheres

derived from the fetal central nervous system are regionally and temporally

specified but are not committed. Exp Neurol 199: 222–235.

54. Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, et al. (2005)

Specification of motoneurons from human embryonic stem cells. Nat Biotechnol

23: 215–221.

55. Ray J, Gage FH (2006) Differential properties of adult rat and mouse brain-

derived neural stem/progenitor cells. Mol Cell Neurosci 31: 560–573.

56. Dyer MA, Cepko CL (2000) Control of Muller glial cell proliferation and

activation following retinal injury. Nat Neurosci 3: 873–880.

57. Tarasenko YI, Yu Y, Jordan PM, Bottenstein J, Wu P (2004) Effect of growth

factors on proliferation and phenotypic differentiation of human fetal neural

stem cells. J Neurosci Res 78: 625–636.

58. Mori H, Ninomiya K, Kino-oka M, Shofuda T, Islam MO, et al. (2006) Effect of

neurosphere size on the growth rate of human neural stem/progenitor cells.

J Neurosci Res 84: 1682–1691.

59. Bez A, Corsini E, Curti D, Biggiogera M, Colombo A, et al. (2003) Neurosphere

and neurosphere-forming cells: morphological and ultrastructural characteriza-

tion. Brain Res 993: 18–29.

60. Suslov ON, Kukekov VG, Ignatova TN, Steindler DA (2002) Neural stem cell

heterogeneity demonstrated by molecular phenotyping of clonal neurospheres.

Proc Natl Acad Sci U S A 99: 14506–14511.

61. Merkle FT, Alvarez-Buylla A (2006) Neural stem cells in mammalian

development. Curr Opin Cell Biol 18: 704–709.

62. Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres–re-

evaluating the relationship. Nat Methods 2: 333–336.

63. Spassky N, Merkle FT, Flames N, Tramontin AD, Garcia-Verdugo JM, et al.

(2005) Adult ependymal cells are postmitotic and are derived from radial glial

cells during embryogenesis. J Neurosci 25: 10–18.

64. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review

of sphere-formation as an assay for stem cells. Cell Stem Cell 8: 486–498.

65. Ge D, Song K, Guan S, Dai M, Ma X, et al. (2012) Effect of the neurosphere

size on the viability and metabolism of neural stem/progenitor cells. African

Journal of Biotechnology 11: 3976–3985.

66. Lobo MV, Alonso FJ, Redondo C, Lopez-Toledano MA, Caso E, et al. (2003)

Cellular characterization of epidermal growth factor-expanded free-floating

neurospheres. J Histochem Cytochem 51: 89–103.

67. Miles GB, Yohn DC, Wichterle H, Jessell TM, Rafuse VF, et al. (2004)

Functional properties of motoneurons derived from mouse embryonic stem cells.

J Neurosci 24: 7848–7858.

68. Soundararajan P, Miles GB, Rubin LL, Brownstone RM, Rafuse VF (2006)

Motoneurons derived from embryonic stem cells express transcription factors

and develop phenotypes characteristic of medial motor column neurons.

J Neurosci 26: 3256–3268.

69. Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of

embryonic stem cells into motor neurons. Cell 110: 385–397.

70. Briscoe J, Chen Y, Jessell TM, Struhl G (2001) A hedgehog-insensitive form of

patched provides evidence for direct long-range morphogen activity of sonic

hedgehog in the neural tube. Mol Cell 7: 1279–1291.

71. Durston AJ, van der Wees J, Pijnappel WW, Godsave SF (1998) Retinoids and

related signals in early development of the vertebrate central nervous system.

Curr Top Dev Biol 40: 111–175.

72. Muhr J, Graziano E, Wilson S, Jessell TM, Edlund T (1999) Convergent

inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula

stage chick embryos. Neuron 23: 689–702.

73. Albrecht PJ, Dahl JP, Stoltzfus OK, Levenson R, Levison SW (2002) Ciliary

neurotrophic factor activates spinal cord astrocytes, stimulating their production

and release of fibroblast growth factor-2, to increase motor neuron survival. Exp

Neurol 173: 46–62.

Multipotent Cells from the Rat filum terminale

PLOS ONE | www.plosone.org 13 June 2013 | Volume 8 | Issue 6 | e65974



74. Kasahara K, Nakagawa T, Kubota T (2006) Neuronal loss and expression of

neurotrophic factors in a model of rat chronic compressive spinal cord injury.

Spine (Phila Pa 1976) 31: 2059–2066.

75. Rakowicz WP, Staples CS, Milbrandt J, Brunstrom JE, Johnson EM, Jr. (2002)

Glial cell line-derived neurotrophic factor promotes the survival of early

postnatal spinal motor neurons in the lateral and medial motor columns in slice

culture. J Neurosci 22: 3953–3962.

76. Suzuki M, McHugh J, Tork C, Shelley B, Klein SM, et al. (2007) GDNF

secreting human neural progenitor cells protect dying motor neurons, but not

their projection to muscle, in a rat model of familial ALS. PLoS One 2: e689.

77. Harper JM, Krishnan C, Darman JS, Deshpande DM, Peck S, et al. (2004)

Axonal growth of embryonic stem cell-derived motoneurons in vitro and in
motoneuron-injured adult rats. Proc Natl Acad Sci U S A 101: 7123–7128.

78. Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, et al. (2006) Recovery

from paralysis in adult rats using embryonic stem cells. Ann Neurol 60: 32–44.
79. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult

neural stem cells. Annual review of neuroscience 32: 149–184.
80. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6: 1127–

1134.

81. Shihabuddin LS, Palmer TD, Gage FH (1999) The search for neural progenitor
cells: prospects for the therapy of neurodegenerative disease. Mol Med Today 5:

474–480.

Multipotent Cells from the Rat filum terminale

PLOS ONE | www.plosone.org 14 June 2013 | Volume 8 | Issue 6 | e65974


