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Abstract

In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components,
however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand
for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and
emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson
junction technology, we are again presented with the possibility of using oscillators as the basic components of computers,
and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we
demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with
modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator
models of both computation and memory.
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Introduction

In 2005, the US National Security Agency [1] concluded that

transistors were rapidly approaching the limits of functionality and

that new technologies needed to be developed in order to

overcome this.

Recent advances in novel computation suggest a variety of new

computing technologies which may be applicable and have far

reaching applications. Of particular note are: quantum computing

[2]–[6], all-optical computing [7]–[11], spin computing [12]–[15],

chaos computing [16]–[18], and DNA computing [19]–[23]. Each

of these suggests a technology which is in many respects

fundamentally different from current computing systems and in

order for their implementation to be successful, new programming

structures and techniques would be required, in addition to any

development of reliable working prototypes.

One technology which is considerably more advanced from an

implementation perspective is superconductive computing [24,25],

based on Rapid Single Flux Quantum (RSFQ) technology [26]–

[30] which effectively uses Josephson Junctions (JJs) to replace

transistors as the fundamental active element in any circuit. This

technology is more mature than the others mentioned above and

has already produced practical digital and mixed-signal circuits

with world record breaking processing speeds at exceptionally low

power [31]–[36]. The RSFQ-based digital receivers were dem-

onstrated in the field, converting high-frequency wide-band analog

communications signals to digital domain taking advantage of

extreme sampling speeds of RSFQ circuits [37]–[41]. The JJ

RSFQ circuits are fabricated using a relatively simple thin-film

process developed in several places [42]–[46]. Recently, a new

energy-efficient generation of RSFQ circuits has been introduced

[47] complemented with energy-efficient cryogenic memory [48]

leading to the implementation of energy-efficient computing.

Neurons can also be simulated using simple JJ circuits [49]–

[53]. These circuits could then be connected to form logic gates

similar to those appearing in this paper. The NSA report [1] also

concluded that the most likely successor to transistor technology

would be JJ circuitry. The authors are currently investigating

implementation of binary logic using neuronal JJ circuitry and the

results will be published at a later date.

One further technology which is somewhat less advanced from

an implementation perspective is neuronal computing (or wet-

ware), which uses artificially grown neurons as the processing

units. Again such technology would require a considerable shift in

how computers were designed and programmed and is unlikely to

prove to be a successor to Complementary Metal-Oxide-

Semiconductors (CMOS) at any time in the foreseeable future.

What neuronal computing does provide is a deeper understanding

of brain functionality and possible associated medical benefits that

would therefore follow. Recently, it has been reported that

scientists were able to grow brain nerve cells affected by

Parkinson’s disease using human skin cell samples [54]. These

neurons could be connected to form logic circuits similar to those

reported in this paper. Degradation of logical functionality could

then be used as an assay to determine the effect of drugs or

physical damage on neuronal circuitry.

Zanin et al. [55], show that computation can emerge from

collective dynamics of an ensemble of networking neurons.

Synchronization and desynchronization of neurons using a

dynamic weighted network is used to codify binary information.

Additionally, neural encoding using conjugate symmetries [56]

and the concept of ‘winnerless competition’ in coupled oscillator

networks [57] have also been demonstrated as viable methods of

oscillatory computation.

Threshold logic [58,59] and null convention logic [60] have also

been considered, particularly with respect to neural network
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computing. Beiu et al. [61] provide a review of commercial VLSI

hardware implementation of threshold logic up to 2003. With the

emergence of nanotechnologies; resonant tunneling, single elec-

tron and memristor implementation are also looking promising,

especially with respect to energy delay efficiency and reconfigur-

able circuits [62]–[67]. Additionally, Modified Variable Threshold

Logic (MVTL) using JJs has demonstrated high speed, low power

processing [68].

In this paper, we demonstrate a novel computational concept

using both inhibitory and excitatory connections between thresh-

old oscillators. The use of inhibitory connections in this way draws

on ideas from biological neural encoding and has not previously

considered as a tool in implementing binary computation. The use

of threshold logic in oscillator circuits presents numerous

opportunities for novel circuit design. The inherent richness of

oscillator dynamics allows for excitatory and inhibitory connec-

tions which may be in many respects different from standard

threshold weights used in traditional threshold logic: Neuronal

circuits are known to display phase and anti-phase synchronization

[69] which may have applications in clocking and error correction.

Bursting type behavior [70] could be utilized to prevent signal

degradation and improve noise resilience. Connections may

induce a variety of responses [71] - all or nothing, additive,

amplitude or frequency, which may have specific uses in circuit

design.

The method by which inhibition may be caused to occur would

be specific to the type of oscillator or oscillatory circuit in question.

Neural inhibition has been widely studied [72]. In biological

neural circuits, excitation and inhibition occur via diffusion of

neurotransmitters across a synaptic gap. For inhibition, this has a

temporal effect which permits suppression of post synaptic neural

activity for specific time intervals (known as the refractory period). In

this paper, we use a method of inhibition using negative

connection weights similar to that employed in standard threshold

logic design, however, this is to demonstrate proof of principle and

is not the only possible method by which logic gate connections

could be made. Electrical circuit oscillators can likewise demon-

strate inhibition [73]. Optical oscillator circuits offer the possibility

of interference based inhibition [74] and perhaps most impor-

tantly, given recent advances in JJ technology, JJ oscillator circuits

have also been designed with inhibitory characteristics very similar

to those in neural circuitry [52].

The underlying concept is not technology specific and, given

recent advances in JJ circuitry and neuronal computing, could be

readily implemented [75,76]. It is also considerably less disruptive

in that the underlying binary logic is identical to that employed in

CMOS and implementation in the JJ form would be compatible

with traditional computing architectures.

We present schematics for simple arithmetic and memory

operations and describe these operations as the solution set of a

system of linear inequalities. Simulations using a neural oscillator

model demonstrate how such a model may be implemented.

Methods

Computing using oscillators is not a new concept, indeed the

first modern computers were made using vacuum tube oscillators,

and oscillators in a variety of forms are integral components in

many devices. The use of neural oscillators has also been widely

studied, however, in all cases the method of computation is derived

from concepts of biological neural encoding. Current research into

encoding using neural oscillators is therefore spatio-temporal, rate,

or more usually synchronization based [77–79].

What has not previously been considered is using oscillators as

the fundamental components of computing devices (with all the

inherent dynamical richness that this provides) and designing them

in such a way as to perform binary logic in an equivalent manner

to standard transistor logic - that is the oscillator will provide a

binary output (1 equivalent to an oscillator firing or 0 where the

oscillator does not fire) and the output from a single oscillator can

be interpreted in exactly the same way as that of a transistor.

Threshold logic
Threshold logic has been studied as an alternative to Boolean

logic for some time. For many implementations this is advanta-

geous, allowing for reduced component counts and/or number of

logic levels, as the implementation of complex logical operations

may be achieved using a single gate [80].

Threshold logic gates [81] have a set of inputs fI1,I2, :::Ing,
weights fw1,w2, :::wng and a binary output y. The output y is

typically described by:

y~w
Xn

i~1

Iiwi

 !
,

where the function w is an activation function (eg Heaviside, tanh,

sigmoid, piecewise linear, low gain saturation [82]) and the binary

output 1 is defined at some threshold ywT , say.

Threshold logic implementation has not supplanted standard

logic implementation in CMOS due to sensitivity to parameter

changes and variable connection weights requiring very low

tolerance engineering. Recent advances in nanotechnology, in

particular, Resonant Tunneling Devices (RTD) [83] and memris-

tor devices [84] have the potential to overcome such concerns.

Generic threshold oscillator model
A threshold oscillator is an oscillatory device that will begin

oscillating when the input to the device is above a certain

threshold. Below this level the oscillator remains in a resting state

and gives no output. It is possible to use the output of one

threshold oscillator as the input of another oscillator to cause the

second oscillator to operate (excitation) and under certain

circumstances, it is also possible to cause the input of one oscillator

to suppress the output of another oscillator (inhibition).

There are numerous viable methods for implementing binary

computation using threshold oscillators. In order to perform the

logical operations it is necessary that either oscillators with

differing thresholds be used or the connections to the oscillators

be of differing weights. In our modeling we shall use the latter

method as this mimics more closely biological neural systems, from

where the idea originated.

Logical operations
Logical operations can be performed in a similar manner to

standard logic circuits, however, due to the threshold nature it is

possible to formulate logical operations as solutions of sets of linear

inequalities. For instance, the AND function can be replicated by a

threshold oscillator with two inputs, where the input strengths are

scaled such that the total input is only above threshold if both the

inputs are on. For a single input or for no input the total input

would be below threshold. Defining the inputs to the logical

circuits in vector form and scaling the input strength to a binary 1
or 0, we write

P
I~I1,1zI2,1 as the total input to the circuit. The

threshold equations may be thus written as:

Oscillatory Threshold Logic
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for I~
0

0

 !
,

1

0

 !
,

0

1

 ! X
IwvT

for I~
1

1

 ! X
IwwT ,

ð1Þ

where T is the oscillator threshold and w the coupling weight

between the inputs and the oscillator performing the AND

operation. Clearly the solution to the above system Eq. (1) is
T

2
vwvT . For the logical OR operation, the solution wwT

would suffice.

Using threshold oscillators in this manner it is straightforward to

implement the logical NOT operation using a negative coupling

strength, however, as the logical NOT is effectively redundant in

more complex logically complete circuit design where NAND and

XOR operations are used, we will present all models using the

latter formulations.

Binary half adder
One of the simplest computing circuits is the binary half adder.

The binary half adder gives the sum of two binary inputs as a two

bit binary output. The truth table for the binary half adder is given

in Fig. 1A.

Standard transistor implementation of a binary half adder uses

one XOR gate (to give the sum) and one AND gate (to give the

carry). Implementation of this circuit using threshold oscillators

can be achieved via a similar design, with two oscillators

replicating the logical functions. The AND operation is imple-

mented as described above and the XOR operation can be

achieved using an OR operation (as above) with an additional

connection from the AND oscillator, which in some way inhibits

the operation of the OR oscillator if the AND oscillator is active.

The method by which inhibition occurs would be dependent upon

the oscillators being used to form the circuitry.

Fig. 1B demonstrates a viable circuit schematic for half adder

implementation using two oscillators O1 and O2 and two inputs I1

and I2, which may themselves be the output from other oscillators in

a more complex circuit. Schematically, the circuit design is not

dissimilar to standard threshold logic half adders [58], however, due

to the nature of the connections between oscillators, implementation

may be markedly different. If we consider oscillators with identical

thresholds we will require that the coupling strength, w1, say, from

I1 and I2 to O1 be sufficient to cause O1 to oscillate for only one

input and for the coupling strength, w2, say, from I1 and I2 to O2 to

be sufficient for it to oscillate for two inputs. The additional

connection x1, say, from O2 to O1 is inhibitory such that if O2 is

oscillating it suppresses O1. Denoting the output from O2 as ÔO2, the

total input to O1 and O2 are thus given by:

O1~
X

Iw1{ÔO2x1

O2~
X

Iw2:
ð2Þ

We can consider such a system as a set of linear inequalities with

normalized input vectors I and threshold T requiring solutions of

the form:

for I~
0

0

 ! P
Iw1{ÔO2x1vTP

Iw2vT

(

for I~
1

0

 !
,

0

1

 ! P
Iw1{ÔO2x1wTP

Iw2vT

(

for I~
1

1

 ! P
Iw1{ÔO2x1vTP

Iw2wT :

(
ð3Þ

Thus, for instance, for a total input of
P

I~1, only O1 will be

above threshold causing oscillation giving a binary equivalent

output of 1. If both I1 and I2 are active, O2 will oscillate but O1 is

suppressed if ÔO2x1wT=2zw1, giving a binary output 1z1~10,

as required.

Two-oscillator full adder
In order to demonstrate how oscillatory threshold logic scales

for operations on larger numbers of bits we will consider the next

simplest arithmetic circuit - the binary adder (or full adder). The

binary adder has a truth table as in Fig. 2A.

Using traditional circuitry the binary adder requires five logic

gates to perform such an operation. It is possible to formulate the

adder circuit using oscillators as a solution set of two linear

inequalities and as such only two oscillators are required to

perform the operation. The oscillator equations are the same as

Eq. (??) and the threshold inequalities are given by:

Figure 1. Binary half adder. (A) Truth table for a binary half adder.
(B) Oscillator circuit diagram for a binary half adder comprising two
inputs I1 and I2 and two oscillators O1 and O2 . The sum oscillator O1

will oscillate if either I1 or I2 are active. The carry oscillator O2 will
oscillate if both I1 and I2 are active. An inhibitory connection from O2

to O1 suppresses oscillator O1 if O2 is active.
doi:10.1371/journal.pone.0048498.g001

Figure 2. Binary full adder. (A) Truth table for a binary full adder. (B)
Oscillator circuit diagram for a binary full adder comprising three inputs
I1,I2 and I3 and two oscillators O1 and O2 . Oscillator O1 will oscillate if
either I1,I2 or I3 are active. Oscillator O2 will oscillate if any two of I1,I2

and I3 are active. An inhibitory connection from O2 to O1 suppresses
oscillator O1 if O2 is active, however, the inhibition is only sufficient to
suppress O1 for

P
I~2. For inputs of

P
I~3 the total input to O1 is

still sufficient to induce oscillation.
doi:10.1371/journal.pone.0048498.g002
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for I~

0

0

0

0
BB@

1
CCA

P
Iw1{ÔO2x1vTP

Iw2vT

(

for I~

1

0

0

0
BB@

1
CCA,

0

1

0

0
BB@

1
CCA,

0

0

1

0
BB@

1
CCA

P
Iw1{ÔO2x1wTP

Iw2vT

(

for I~

1

1

0

0
BB@

1
CCA,

1

0

1

0
BB@

1
CCA,

0

1

1

0
BB@

1
CCA

P
Iw1{ÔO2x1vTP

Iw2wT

(

for I~

1

1

1

0
BB@

1
CCA

P
Iw1{ÔO2x1wTP

Iw2wT :

(

ð4Þ

In keeping with other full adder threshold logic designs [58,85],

the full adder schematic (Fig. 2B) is essentially identical to those of

the half adder except for the additional input I3.

It is possible to use additional oscillators to give the the binary

sum for 2n{1 inputs using only n oscillators. Each additional

oscillator acts as the next binary digit of the required output and

the respective input weights are adjusted thusly. Inhibitory

connections from the additional oscillator to all other oscillators

are required such that the inhibition strength from each new

oscillator is scaled accordingly. Thus an exponential increase in

computational power could (theoretically) be provided by a linear

increase in the number of fundamental components. For larger

circuits, the number of interconnections within the circuit would

increase considerably, as the computation is effectively encoded in

the connections rather than the switches themselves. Given

sufficient engineering capability to provide the necessary connec-

tivity, the number of components in any circuit and the time

required to perform calculations - as a function of the required

switching time of the oscillators - could be considerably reduced in

this way.

Results

The Fitzhugh-Nagumo model
The Fitzhugh-Nagumo system [86,87] is one of the more well

known oscillator models. It is essentially a reduction of the

Hodgkin-Huxley equations [88] which describe the action

potential of a spiking neuron. The model is fairly straightforward

to implement as an electrical circuit, as demonstrated by Binczak

et al. [73].

The describing equations are:

dv

dt
~Czv(v{a)(1{v){w

dw

dt
~E(v{cw),

ð5Þ

where v is a fast variable (in biological terms - the action potential)

and w represents a slow variable (biologically - the sodium gating

variable). The parameters a, c and E dictate the threshold,

oscillatory frequency and the location of the fixed points for v and

w. The model will begin to oscillate when the input current C is

above a critical threshold Cc. For all the following simulations, the

threshold T&0:5.

It is possible to couple the oscillators together via various

methods. For biological neural systems, where there is synaptic

coupling between neurons the coupling function is complex,

relying on diffusion of neurotransmitters across a synaptic gap.

The connections between neurons may either depolarize (excite)

or hyperpolarize (inhibit) the post synaptic neuron.

Crucially, the hyperpolarizing inhibitory effect has a temporal

component such that if inhibition occurs, the post synaptic neuron

remains inhibited for some period of time after the pre-synaptic

Figure 3. Phase portrait for Fitzhugh-Nagumo model with
a~0:1,E~0:1 and c~0:1 shown for two input strengths C~1 and
C~2. From an initial resting state at (0,0), the transient dynamics is of a
wide trajectory before settling onto a limit cycle.
doi:10.1371/journal.pone.0048498.g003

Figure 4. Associated time series of v and w for corresponding Fig. 3. Note that after transients, (A) v(t)[½{1,1� for C~1 and C~2, (B)
whereas w(t)&C.
doi:10.1371/journal.pone.0048498.g004
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neuron fires. It is not straightforward to simulate such a system

using the Fitzhugh-Nagumo model without either integration of

the signal pulse or introducing arbitrary conditions on oscillators

receiving an inhibitory pulse - which would not be viable from an

implementation perspective. As such we will employ a method

which is phenomenologically similar to neural hyperpolarization

but is not necessarily consistent with any biological process.

Implementation by coupling through either the fast v variable or

the slow w variable are equally viable. As can be seen from Fig. 3

and Fig. 4 for varying inputs C, the fast voltage oscillates with a

fairly constant maximum and minimum whilst the slow variable w

oscillates around a fixed point at approximately C. Any coupling

function to be used must take into account the specific dynamics of

whichever variable is used.

As is common in such biologically inspired models we will use a

sigmoidal transfer function between oscillators of the form:

S(x)~
1

1zem {xzcð Þ , ð6Þ

where c is the threshold at which the output begins to rise and m

denotes the steepness of the curve of the function S(x). In

biological systems, neural connections can exhibit plastic responses

and become ‘tuned’ (via some Hebbian learning rule [89])

allowing for more reliable excitation and inhibition. Choosing

suitable values of m and c would in many respects replicate such a

process.

Figure 5. Time series for Fitzhugh-Nagumo binary half adder. The parameter values taken for the transfer function S(x), see Eq. (5), are
m~100 and c~0:6. All binary combinations of oscillatory inputs I1 and I2 give the required binary outputs O1 and O2 (see Fig. 1A). Here O1

represents the sum and O2 the carry in terms of standard logical circuitry. The observed pulse like behavior after switching is due to the wide
trajectories taken by the input oscillators after being perturbed from the resting state.
doi:10.1371/journal.pone.0048498.g005

Figure 6. Time series for a Fitzhugh-Nagumo two oscillator full adder. All binary combinations of oscillatory inputs I1 , I2 and I3 give the
required binary outputs for O1 and O2 (see Fig. 2A). The weights used in this example were again w1~0:8, w2~0:4 and x1~1:5 (see Eq. (4)).
doi:10.1371/journal.pone.0048498.g006
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Fitzhugh Nagumo half adder and full adders
Numerical simulations for systems of Fitzhugh Nagumo

oscillators coupled as in Figs. 1B and 2B will now be discussed.

It is also shown that by adding one more oscillator to the two-

oscillator full adder it is possible to construct a three-oscillator

seven-input full adder.

The inputs to the logical circuits are oscillatory, being provided

by Fitzhugh-Nagumo oscillators with similar coupling and

parameter values to the computational oscillators. Oscillatory

inputs of this form have been chosen over continuous inputs, as

this demonstrates the necessary robustness of signal integrity which

would be required for larger computational circuits. Continuous

inputs to the computational oscillators would be equally viable and

present no difficulties in implementation. As such the matrix form

for the input weights for each oscillator is 4|4 rather than 2|2 as

two additional oscillators are used as inputs.

One solution, in matrix form, to the inequalities Eq. (2) and Eq.

(3) for the binary half adder, would be:

W~

0 0 0:8 0:45

0 0 0:8 0:45

0 0 0 0

0 0 {1:5 0

0
BBB@

1
CCCA, ð7Þ

where C~0:5 in Eq. (5) for the inputs I1 and I2. This would give

the parameter values in Fig. 1B as w1~0:8,w2~0:45 and

x1~1:5. The time series for such is shown in Fig. 5.

A two-oscillator binary full adder can be constructed by simply

introducing another input, I3, say, as in Fig. 2B. Fig. 6 shows the

time series for the Fitzhugh-Nagumo two-oscillator full adder.

To conclude this section, we consider a three-oscillator seven

input full adder (see Fig. 7). Fig. 7A shows a schematic of the three-

oscillator seven input adder comprising twenty one excitatory

Figure 7. Seven input, three oscillator full adder. (A) Block diagram for seven input, three oscillator full adder. (B) Time series for a Fitzhugh-
Nagumo three-oscillator full adder. The total input strength

P
I is shown in the first row. All binary combinations of oscillatory inputs I1 to I7 give

the required binary outputs for O1, O2 and O3 . The weights used in this example were w1~0:8, w2~0:385, w3~0:175, x1~1:5, x2~1:5 and x3~3:3,
where x1 is the inhibitory connection from O2 to O1 , x2 is from O3 to O2 and x3 is from O3 to O1 . Note that the amplitude of oscillation increases
when the sum of the input to any oscillator is greatly above threshold, however, the binary on/off response is as required.
doi:10.1371/journal.pone.0048498.g007

Figure 8. A 2|2 bit multiplier. (A) Truth table for 2|2 bit binary multiplier. (B) Schematic of the binary oscillator 2|2 bit multiplier using
oscillators based on standard circuitry.
doi:10.1371/journal.pone.0048498.g008
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connectors and three inhibitory connectors. Fig. 7B shows the time

series of the seven input three-oscillator full adder.

Fitzhugh Nagumo 2|2 bit binary multiplier
In order to more fully demonstrate the applicability of such a

model we have also simulated a more complex circuit, namely a

2|2 bit binary multiplier. Such a circuit outputs the binary

multiple of two, 2 bit binary inputs. Although it is possible to

perform such a calculation using only four oscillators we have used

a standard circuit implementation of a binary multiplier to

demonstrate how oscillators could be used to replace transistors as

the fundamental units of computing devices without the need for

architectural redesign.

Fig. 8A shows the logic table for a 2|2 bit binary multiplier

and Fig. 8B shows the corresponding schematic of the oscillator

circuit. The time series of the 2|2 bit binary multiplier is

displayed in Fig. 9.

Fitzhugh Nagumo set reset flip-flop
Fig. 10 shows a schematic of a Set-Reset (SR) flip-flop circuit,

the input I1 is commonly referred to as the Set and input I2 is

referred to as the Reset. Output ÔO2 is the complement of output

ÔO1. Note that both oscillators require a constant input IC , say, for

the circuit to function properly. This circuit acts as a memory,

storing a bit and presenting it on its output ÔO1, as can be seen in

Fig. 11.

The SR flip-flop described here is an application of the

‘winnerless competition’ principle [57]. In the absence of coupling

between the oscillators, both will remain active. However, a

symmetric inhibitory coupling between them ensures that from an

initial state, where only one oscillator is active, the other will

remain suppressed in the absence of any external perturbation.

When an input is given to the inactive oscillator this is switched on,

simultaneously suppressing the previously active oscillator. When

the external input is turned off, the system remains in the switched

state. Note that for a switch to occur, an input pulse of only one

period is required (see Fig. 11). Switching using a single pulse in

this way can open an opportunity to use ballistic propagation of

signals between gates and memory cells, which could significantly

reduce the energy required to operate memory circuits, where

currently power intensive line charging is required to initiate

memory switches.

One important consideration, particularly with respect to flip-

flop circuits is the ability to switch accurately in the presence of

noise [90]. A detailed examination of error rates arising from such

noise would be specific to the oscillator and the underlying circuit

implementation. For the general case considered here (a Fitzhugh-

Nagumo implementation) repeated simulations have demonstrated

that the system is particularly resistant to such noise (see Fig. 12) as

Figure 9. Time series of a 2|2 bit multiplier using oscillators based on standard circuitry. All possible binary combinations for inputs
I1,I2,I3 and I4 are shown. The oscillators O1,O5,O7 and O8 represent binary digit representation of the powers of 2. Oscillators O2,O3,O4 and O6 are
used in the internal circuitry only and their time traces have been made fainter to emphasize the binary output oscillators. For example, at time
t[½3500,4000� the inputs I1~0,I2~1 representing the decimal 2 and I3~1,I4~1, representing the decimal 3, giving an output where O5 and O7 are
oscillating, being the binary equivalent (10z100~110) of the decimal 6. Note O1 and O8 are not oscillating. This is equivalent to column eight above
and row eight in the truth table Fig. 8A.
doi:10.1371/journal.pone.0048498.g009

Figure 10. Schematic of an SR flip flop using oscillators. Both
oscillators O1 and O2 receive an external input current Ic and there are
inhibitory connections x1 between the oscillators. From an initial state
where one oscillator is active the other will remain suppressed. External
inputs I1 or I2 to the inactive oscillator will induce a switch. The
oscillators are effectively performing NOR logical operations as in a
conventional SR NOR latch.
doi:10.1371/journal.pone.0048498.g010

Oscillatory Threshold Logic

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e48498



is often the case with coupled oscillator dynamics [91,92]. As the

oscillators in the flip-flop circuit will only ‘switch’ if provided with a

pulse above threshold, for a noise induced switch to occur (an

error) it would be required that the noise amplitude itself be above

this threshold. Although such an error is conceivable, no such

error has been observed for Gaussian white noise with a standard

deviation below 5% of the oscillator threshold. It should also be

noted that in any JJ implementation of an oscillatory SR flip-flop,

noise is effectively reduced to zero due to the required

supercooling.

Discussion

Here we have demonstrated how coupled threshold oscillators

may be used as the principle components of the next generation of

computers. Such implementation using binary logic is not

disruptive, in that, from a programming and architectural

perspective no significant changes are required.

There are clearly considerations concerning the accurate

functioning of any such highly connected circuits, particularly

with respect to multiple inputs to a single gate [93,94], however, it

should not be overly problematic to reduce the component

numbers significantly given modern engineering capabilities.

The Fitzhugh-Nagumo simulations of the half adder, two-

oscillator full adder, three-oscillator full adder, and 262 bit

multiplier demonstrate threshold oscillators performing all the

necessary components of arithmetic logic, while the SR flip-flop

demonstrates the potential for very low power memory, particu-

larly when ballistic propagation is considered.

Although the Fitzhugh-Nagumo models demonstrated here are

in many ways phenomenologically similar to neural dynamics, we

are not attempting to make any inference as to neural dynamics

Figure 11. Time series of an SR flip-flop using oscillations to switch. (A) Simulation with w1~0:5 and x1~{1. The simulation is initialized
using a single external current to O2 for t[½0,500�. At t~500, oscillator O1 also receives an external input current, however, it is suppressed by the
output from O2. The initial state has O2 active and O1 inactive. A continuous switching pulse is provided by I1 at t~1000. At t~1500, this switching
pulse is turned off, but O1 and O2 remain in the switched state (as required). A further switch is performed at t~2000 using a continuous pulse to O2 .
(B) Time series of an SR flip-flop using single input pulses to switch, with w1~0:5 and x1~{1. The switching is performed as for case A, however,
only one pulse cycle (ballistic propagation) is used. Note the switching occurs as required and the system remains switched once the pulse has been
received.
doi:10.1371/journal.pone.0048498.g011

Figure 12. Controlled switching in the presence of noise. (A) and (B) Time series of SR flip-flop as in Fig. 11 with additional Gaussian noise,
mean = 0, standard deviation = 0:05, added to all oscillators. In both cases the switching occurs as required.
doi:10.1371/journal.pone.0048498.g012
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themselves. Moreover, we use the Fitzhugh-Nagumo system as an

exemplification of the idea. In practice, implementation via

Fitzhugh-Nagumo circuitry would be unlikely as this would offer

very little in terms of speed or power consumption, however, any

implementation via JJs or optical oscillators could be achieved in a

very similar manner to that described for the Fitzhugh-Nagumo

model whilst providing exceptional processing speed for minimal

power usage.

There is currently a drive to low power exascale super-

computing (a computer which performs more than 1018 floating

point operations per second (FLOPS)). The previous world’s fastest

supercomputer, the K computer, operates at a maximum

performance of 10:51|1015 FLOPS and requires approximately

12MW of power (excluding the power for the cooling system

which is typically in excess of 25% of power). This has recently

been overtaken by the Sequoia IBM BlueGene/Q operating at

16:32|1015 FLOPS and using 7:89MW [95]. Even with such

continued improvements in power consumption it is clear that

without a significant technological breakthrough beyond that

offered using standard CMOS transistor technology the prospect

of an exascale computer is currently unviable. The use of

oscillatory threshold logic presents a plausible avenue for

implementation for which the engineering capability currently

exists and which could be readily implemented.
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