
Sike-in noise

An intuitive way of examining the extent to which spike-in counts adhere to the the
simple multinomial model for sampling noise is by way of MA-like plots in S2 Fig A–C,
in which log fold-difference between observed and expected counts is plotted versus the
log of expected counts. These figures complement those in Fig 2 in the main body of
this paper. In S2 Fig A we compare observed, yi,j , to expected, ŷi,j , counts for all 9
libraries in the Ciona embryonic differentiation study. According to the multinomial
statistical model for all counts (RNA and spike-ins), the spike-in counts within a
spike-in library also follow a multinomial distribution. According to the multinomial
model, spike-in counts, the expected value of random counts for spike-in i in library j,
given the total spike-in library size LSI

j is given by the spike-in proportion pi multiplied
by the total spike-in library size; i.e.,

E[Yi,j | LSI
j ] = pi LSI

j , (1)

where pi is the population proportion of spike-in molecule i within a total spike-in
library. We substitute sample estimators fi for the true population proportions pi to
obtain the expected spike-in counts, ŷi,j , according to the multinomial model,

ŷi,j = fiLSI
j . (2)

Vertical bars (panel A) with lower and upper endpoints (L,U) demarcate the mid 0.99
quantile range of random difference between the logs. Because the marginal probability
mass function (pmf) for each spike-in is binomial, in the multinomial model, the (L,U)
interval for each molecule is computed from the 0.005 and 0.995 quantiles of the
appropriate binomial pmf, with the empirical proportions taken as the true population
proportions. S2 FigB is similar to A, but the spike-in counts are from the yeast dilution
study, and deviations from the multinomial predictions are somewhat more pronounced.
Finally, S2 Fig C corresponds to data from the yeast growth rate study, in which the
libraries were roughly 5 times smaller than those in the Ciona embryonic differentiation
study (panel A) and in the yeast dilution study (panel B). In the yeast growth rate
study, deviations of spike-in counts from those predicted by the multinomial model are
most pronounced, for reasons we do not understand. S2 Fig A and B show that for 2
data sets with similarly large library sizes, the vast majority of the more substantial log
fold differences, say those larger in magnitude than 0.15 (∼ 10% deviation), are
captured within the mid 0.99 quantile range. The conclusion is that spike-in noise is
accounted for to large extent by multinomial sampling noise. Nevertheless, S2 Fig A–C
clearly show that the multinomial model for spike-in counts, which takes into account
only sampling noise, does not capture all variation. This is no surprise because because
it does not take into account poorly understood non-Poisson noise, present even in
technical replicates, that was characterized by [36] and [17]. It is important to note that
deviations from the multinomial model in S2 Fig A–C cannot be a reflection of any
experimental errors that cause deviations from intended attomoles of spike-ins added to
the RNA from a population of cells of fixed size; e.g. imprecise measurement of the
volume of the aliquot from the stock spike-in mixture and dilution dilution error.
Deviations from the multinomial model also cannot be a reflection of imprecise
measurement of the number of cells (107 for yeast data and 800 for Ciona data) from
which the cellular RNA is extracted, Nor could the deviations stem from random loss of
total RNA between addition of spike-ins to cell population and final production of the
sample for sequencing. None of these potential errors would effect the proportions of
spike-ins within the spike-in library.

A highly discriminating way to evaluate a noise model for counts is that of [36], who
plotted CV2(mean) versus mean, on log-log axes for spike-ins (and for native RNA as
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well). S2 Fig D shows such a plot for the Ciona spike-in data (open symbols). For each
spike-in i the mean normalized is count plotted on the x-axis. For each library j, the
count for spike-in i, yi,j , is normalization is by the total spike-in count in library j, LSI

j ;

so the normalized count is simply yi,j/LSI
j , the proportion of total counts in spike-in

library j accounted for by spike-in i. The mean on the x-axis is over all libraries. The
corresponding squared CV is plotted on the y-axis. The CV would be unchanged if the
counts were normalized by νj instead of by LSI

j , and the mean values would simply be

shifted on the x-axis. The solid black line connects the theoretical population CV2

values according to the multinomial model, and it is drawn from

CV2(µi) =
1

nrep
mean
j

(
1

LSI
j

)[
1− µi
µi

]
, (3)

where µi = pi, the population proportion for spike-in i. This equation is
indistinguishable form the equation for Poisson noise for small values of µi ( or pi). The
majority of the empirical CV2 values lie above the line. Moreover, the empirical points
and the theoretical line diverge for large µ values. This behavior reflects over-dispersion
in the spike-in counts that was characterized by [17] and [36].

Jitter in the relative yield coefficients of the spike-ins gives jitter in their nominal
abundances. If this jitter is described by a gamma probability density function, the
negative binomial approximation for spike-in counts is analogous to that for native
RNA. However, we expect this approximation to be less good for the spike-ins with
higher proportions where the binomial marginal probability mass function, for given
abundances, is not well approximated as Poisson.

The solid red line in S2 Fig D is the population CV2 given by a negative binomial
model for random spike-in counts Yi,j , in which the mean is given by Eq (1) and the
shape parameter is a single value, a = 1000. The corresponding theoretical CV2

equation for the negative binomial model is

CV2(µ) =

[
1

nrep a

]
+

[
1

nrep
mean
j

(
1

LSI
j

)]
1

µ
. (4)

Eq (4) is a theoretically derived special case of the empirical equation of [36],
CV2 = α0 + α1/µ, also for spike-in noise. The dotted red lines (S2 FigD) demarcate the
mid 0.99 quantile range of CV2 values generated in 10,000 Monte Carlo simulations in
which the synthetic spike-in counts were drawn form the negative binomial distribution
above. The vast majority of the empirical CV2 are captured within the mid 0.99
quantile range of random CV2 values according to the negative binomial model.
Furthermore, points like the empirical CV2 values that fall outside the mid 0.99 quantile
range can be generated by choosing some of the spike-in a-values to be smaller than
1000. However, we do not understand why a sizable majority of empirical CV2 values lie
above the solid red line. Our Monte Carlo simulations indicated that bias in the
empirical CV2 values (judged based on the negative binomial model) is not sufficient to
account for the vertical (or horizontal) offset between the red line and the empirical
CV2 values. S2 Fig E is like the figure in panel D, but the spike-in count data are from
the yeast dilution study. Finally, S2 Fig F corresponds to the yeast growth rate study,
and the negative binomial spike-in model does not capture spike-in noise nearly as well
as in the 2 other studies above.
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