

Fig. S 4. $P(R_x)$, $F(R_x)$, and unzippering timescales. (a) and (b) are $P(R_x)$ and $F(R_x)$, respectively, for various value of ΔE , where E_m^s is kept fixed at $8.0k_BT$ and L=34b. (c) Multiple minima in the free energy can be seen at all values of $R_x=n2\pi r_c$ (see main text) even for a larger length of L=49b. Here the free energy is computed using the pavement method as in Text S2. (d) Unzippering timescale from state A to state B (τ_{AB}) and from state A to state C (τ_{AC}) for various value of ΔE ; here E_s^m is kept fixed at $8.0k_BT$ and L=34b.