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1. IMAGE ANALYSIS OF MUTANTS

We analyzed movies of cells lacking zipper proteins (SpoIIQ or SpoIIIAH) treated with lysozyme (see Fig. S1).
Volume and surface area of mother and forespore cells over time were extracted using image analysis software JFilament
(for details see Materials and Methods of the main text) [1]. Time point 0 minutes corresponds to mother-forespore
cell separation (see Fig. 1B of the main text). 3D volume and surface area were calculated assuming rotational
symmetry around the axis connecting center of masses of forespore and mother cells. Analysis was performed on
previously published movies from [2]. We observed an increase in volume after cell-wall removal for both strains
lacking one of the zipper proteins (see Fig. S1B) in contrast to WT cells shown in Fig. 2A cells for which a volume
loss is observed. However, the surface area is unchanged (see Fig. S1C and D) similar to WT cells (see Fig. 2B).

2. DETAILS OF SIMULATIONS

In the main text we used a Langevin equation to simulate dynamics of the mother cell in 3D assuming rotational
symmetry around the axis connecting the centers of masses of the mother cell and forespore. We explored two models
that only differ in the applied constraints on the mother-cell membrane. In the first model, the surface tension and
pressure difference between inner and outer medium realistically balance each other (see Results of the main text).
In the second model, effective constraints are artificially introduced on the mother-cell volume and surface area (see
Discussion in the main text). These two models are explained in the two following sections.

2.1. Model with energy balancing

Here we explain the main model from the main text in which surface tension (σ1 and σ2) and turgor pressure (∆p)
balance each other. The turgor pressure is the osmotic pressure difference between inner and outer medium across



2

the mother-cell membrane [3, 4]. Parameters σ1 and ∆p are treated as independent, while σ2 is adjusted to stabilize
the initially round mother cell. Langevin equation is:

ζi
dRi

dt
= Fbend

i + Fstoch
i + FQAH

i + Fσi + F∆p
i . (1)

On the left-hand side, ζi is the drag coefficient of the ith bead representing a ribbon of length Li = 2πxi and width
l0 (see Fig. 3 of the main text). We used ζi ≈ 4πηmedLi [5], where ηmed is the effective medium viscosity. On the
right-hand side of Eq. 1 we have contributions of membrane bending, stochastic fluctuations, zipper binding of mother
cell and forespore membranes, surface tension, and difference in osmotic pressure across the membrane, respectively.
The forces are defined as follows.

Membrane bending: The bending energy corresponding to the unit area of the ith ribbon is:

Ebend
i =

1
2
κb(cm,i + cp,i)2 ∆Ai, (2)

where ∆Ai = 2πxil0 is the surface area of the ribbon, cm,i ≡ dθi/ds is the meridian principle curvature, cp,i ≡ sin θi/xi
is the principle curvature along the parallels (see Fig. 3 of the main text) [4], l0 is the distance between two neighboring
beads, κb is the membrane bending rigidity, and θi is the angle between unit normal vector n̂i of the contour and
z-axis. A Gaussian curvature contribution is neglected as the topology of the mother-cell membrane does not change
during engulfment [6]. Summing Eq. 2 over the whole surface area we obtain the total bending energy:

Ebend
tot = πκbl0

N∑
j=1

xj(cm,j + cp,j)2, (3)

where N is the total number of beads. The force due to bending is determined by the negative energy gradient:

Fbend
i = −∂E

bend
tot

∂Ri
. (4)

Therefore, the x and z components of the bending force are:

F bend
i,x = −πκbl0

[
(cm,i + cp,i)2 + 2

N∑
j=1

xj(cm,j + cp,j)
(
∂cm,j
∂xi

+
∂cp,j
∂xi

)]
, (5)

F bend
i,z = −2πκbl0

N∑
j=1

xj(cm,j + cp,j)
(
∂cm,j
∂zi

+
∂cp,j
∂zi

)
. (6)

Using the definitions of the principle curvatures introduced above, we have:

cm,i ≡
dθi
ds

=
|dt̂i|
ds

=
|t̂i+1 − t̂i|
|Ri+1 −Ri|

=

√
2(1− t̂i+1t̂i)

|Ri+1 −Ri|
, (7)

cp,i ≡
sin θi
xi

=
ẑ t̂i
xi
, (8)

where t̂i ≡ (Ri+1 −Ri)/|Ri+1 −Ri| is the unit tangent vector. Using Eqs. 7, 8, and the following identity [7]:

∂t̂i
∂Rj

=
1
l0

(δi+1,j − δi,j)(Î− t̂it̂
T

i ), (9)

where δi,j is the Kroneker symbol, Î is the unit matrix, and

t̂it̂
T

i ≡
(

t2i,x ti,xti,z
ti,xti,z t2i,z

)
, (10)
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the expressions for the bending force become:

F bend
i,x = −2πκbl0

[
1
2

(cm,i + cp,i)2 −
√

2
2l20

xi−2(cm,i−2 + cp,i−2)√
1− t̂i−2t̂i−1

(ti−2,x − ti−1,xt̂i−2t̂i−1)+

√
2

2l20

xi−1(cm,i−1 + cp,i−1)√
1− t̂i−1t̂i

(ti−1,x − ti,xt̂i−1t̂i)−

√
2

2l20

xi−1(cm,i−1 + cp,i−1)√
1− t̂i−1t̂i

(ti,x − ti−1,x(3t̂i−1t̂i − 2))+

√
2

2l20

xi(cm,i + cp,i)√
1− t̂i+1t̂i

(ti+1,x − ti,x(3t̂i+1t̂i − 2))−

(cm,i + cp,i)
xi

ti,z −
(cm,i−1 + cp,i−1)

l0
ti−1,xti−1,z +

(cm,i + cp,i)
l0

ti,xti,z

]
,

(11)

F bend
i,z = 2πκbl0

[√
2

2l20

xi−2(cm,i−2 + cp,i−2)√
1− t̂i−2t̂i−1

(ti−2,z − ti−1,z t̂i−2t̂i−1)−

√
2

2l20

xi−1(cm,i−1 + cp,i−1)√
1− t̂i−1t̂i

(ti−1,z − ti,z t̂i−1t̂i)+

√
2

2l20

xi−1(cm,i−1 + cp,i−1)√
1− t̂i−1t̂i

(ti,z − ti−1,z(3t̂i−1t̂i − 2))−

√
2

2l20

xi(cm,i + cp,i)√
1− t̂i+1t̂i

(ti+1,z − ti,z(3t̂i+1t̂i − 2))−

(cm,i−1 + cp,i−1)
l0

(1 − t2i−1,z) +
(cm,i + cp,i)

l0
(1 − t2i,z)

]
.

(12)

Stochastic force: The stochastic force due to thermal noise is defined as [7]:

〈Fstoch
i Fstoch T

i 〉 =
2kBTζ0(Li

l0
)2

∆t
Î, (13)

with kBT the thermal energy, ∆t the simulation time step, and ζ0 is the frictional coefficient of segment with length
l0, and Î is the unit matrix. We introduced the (Li/l0)2 correction to the thermal force to make displacements due
to the thermal noise independent of position xi and zi. Hence all beads fluctuate with average zero displacement and
force variance given by Eq. 13.

Binding of mother-cell and forespore membranes: Forespore protein SpoIIQ and mother-cell protein SpoIIIAH
proteins bind with high binding energy (see Table S1) [8]. We modeled the protein-protein interaction as a simple
elastic spring:

FQAH
i = −kQAH · (|Ri −Rfspore| − lQAH) ·H(lQAH − |Ri −Rfspore|) (14)

Vector Rfspore points toward the position of the forespore contour closest to the mother’s ith bead, lQAH is the
interaction distance between SpoIIQ-SpoIIIAH, kQAH = 2EQAH/l

2
QAH is the spring constant of SpoIIQ-SpoIIIAH

interaction, and H( ) is the Heaviside step function preventing connections with distances larger than lQAH.

The last two terms of Eq. 1 are derived from energy

Ẽ ≡ Eσ + E∆p = σ1S(1 + σ2S)−∆pV, (15)

where the positive surface-tension term tries to deflate the mother cell while the negative pressure term tries to inflate
the mother cell. The non-linear term σ1σ2S

2 is introduced to stabilize the mother cell [9]. In particular, for given σ1
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and ∆p, parameter σ2 is calculated to equilibrate the initial round mother cell (with experimentally observed volume
V0) allowing the exploration of parameter values (σ1 and ∆p) independently of each other. The initial mother-cell is

represented by a sphere of volume V0 = S
3
2
0 /(6

√
π) prior to engulfment (Table S1). Parameter σ2 is found by imposing

stability:

∂Ẽ

∂S

∣∣∣∣∣
S=S0

=
∂Ẽ

∂V

∣∣∣∣∣
V=V0

= 0. (16)

Solving Eq. 16 for σ2 we obtain:

σ2 =
∆p

8σ1

√
πS0

− 1
2S0

. (17)

The stable equilibrium is obtained from the condition ∂2Ẽ
∂S2

∣∣∣
S=S0

> 0:

∆p >
8
√
π√
S0

σ1 =
4σ1

R0
, (18)

where the R0 is the initial mother-cell radius and the right-hand side is Laplace law.

Surface-tension force: From the Eq. 15 we derive surface tension force for the ith bead as follows:

Fσi = −∂E
σ

∂Ri
= − ∂

∂Ri

[
σ1S(1 + σ2S)

]
= −σ1(1 + 2σ2S)

∂S

∂Ri
. (19)

Here, S =
∑N
i=1 2πxi l0,i and l0,i =

√
(xi+1 − xi)2 + (zi+1 − zi)2. Therefore, the x and z components of the surface

tension force are:

Fσi,x = −2πσ1(1 + 2σ2S)(l0 + xi−1ti−1,x − xiti,z); (20)

Fσi,z = −2πσ1(1 + 2σ2S)(xi−1ti−1,z − xiti,z). (21)

Turgor-pressure force: From the Eq. 15 we derive turgor pressure force for the ith bead as follows:

F∆p
i = −∂E

∆p

∂Ri
= − ∂

∂Ri
(−∆pV ), (22)

with V =
∑N
i=1 πx

2
i l0,it̂iẑ. Therefore, the x and z components of the turgor pressure force are:

F∆p
i,x = 2π∆p l0 xi ti,z, (23)

F∆p
i,z = π∆p (x2

i−1 − x2
i ). (24)

This model accounts for realistic balancing of surface tension (contraction) and osmotic pressure (expansion).

2.2. Model with effective constraints

Similar to the model with energy balancing given by Eq. 1, the Langevin equation of the overdamped dynamics of
the ith bead at the position Ri is given by:

ζi
dRi

dt
= Fbend

i + Fstoch
i + FQAH

i + FSi + FVi , (25)

In this equation the first three terms on the right-hand side are the same as in Eq. 1. However, the last two terms
are given as follows.



5

Surface-area constraint: An effective surface-area constraint is introduced to keep the surface area of the mother
cell close to a preferred initial surface area S0 [10]:

FSi = − ∂

∂Ri

[
kS
2

(S − S0)2

]
, (26)

Therefore, the x and z components of the surface force are:

FSi,x = −2πkS(S − S0)(l0 + xi−1ti−1,x − xiti,z), (27)

FSi,z = −2πkS(S − S0)(xi−1ti−1,z − xiti,z). (28)

Volume constraint: An effective volume constraint is introduced using a harmonic potential to keep the mother-cell
volume close to a preferred initial volume V0 [10, 11] :

FVi = − ∂

∂Ri

[
kV
2

(V − V0)2

]
. (29)

Therefore, the x and z components of the volume force are:

FVi,x = −2πl0xikV (V − V0)ti,z, (30)

FVi,z = −πkV (V − V0)(x2
i−1 − x2

i ). (31)

This model with the artificial volume and surface-area constraints allows the independent exploration of their effects
on engulfment (see Discussion in the the main text).
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2.3. Simulation parameters

Parameters used in simulations can be found in Table S1. The effective temperature was determined in Fig. S2B.
Parameters (σ1 and ∆p) of the first model are given after the main simulation parameters, followed by parameters of
the second model (kS and kV ).

TABLE I: Model parameters

Symbol Physical quantity Values used in simulation Sources / References Notes

V0 = Vm Initial mother volume 2 µm3 Analyzed data from [2]

S0 = Sm Initial mother-surface area 7.6 µm2 Calculated from V0

R0 Initial mother-cell radius 0.782 µm Calculated from V0

Vf Initial forespore volume 0.2 µm3 Analyzed data from [2]

Sf Initial forespore surface area 2 µm2 Calculated from Vf

T0 Room temperature 300 K

κb Membrane bending rigidity 10 kBT0, (1-30)kBT0 [6]

c0 Intrinsic curvature (-120 - 20) µm −1 Our simulations (Fig. S7)

σ Surface tension (1-100) pN/µm [9, 12, 13]

ηwat Water viscosity 0.001 Pa s [6]

ηmed Medium viscosity 1.3 Pa s [14]

EQAH SpoIIQ-SpoIIIAH binding energy -64 kBT0 [8]

lQAH SpoIIQ-SpoIIIAH interaction distance 0.01 µm [15, 16]

l0 Mesh size 0.01 µm Our simulations

dt Time step 0.5 µs Our simulations

σ1 Surface tension (1-100) pN/µm See above Model 1

∆p Osmotic pressure (1-1000) Pa Model 1

kS Explicit surface-area constraint (0-1) nN/µm3 Model 2

kV Explicit volume constraint (0-10) nN/µm5 Model 2
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3. SUPPLEMENTARY FIGURES
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FIG. 1: Image analysis of ∆spoIIQ and ∆spoIIIAG-H cells treated with cell-wall removal enzyme. (A-D) Volume
and surface area over time for mother and forespore cells as determined by active contours (for details see Materials and
Methods of the main text). Time 0 minutes corresponds to mother-forespore cell separation (see Fig. 1B of the main text). 3D
volume and surface area were calculated assuming rotational symmetry around the axis connecting center of masses of mother
cell and forespore. All analysis were performed on previously published movies from [2]. (A) Volume vs time for ∆spoIIQ (left)
and ∆spoIIIAG-H (right) cells. (B) Box-and-whisker plot of volume after (Vafter) divided by volume before (Vbefore) cell-wall
removal. Different strains are indicated. Mother-cell volume loss occurred only in WT cells (without cell wall). (C and D)
Similar as in A and B. Minor mother-cell surface area loss (∼ 5-15 %) occurred only in WT cells. Parameter n indicates number
of cells analyzed.
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FIG. 2: Determination of effective temperature. (A-B) Effective temperature was chosen so that typical amplitudes of
membrane fluctuations due to thermal noise are ∼ 15 nm as experimentally observed in other systems [17, 18]. Parameters used
in simulations: σ1 = 50 pN/µm, ∆p = 850 Pa, κb = 10 kBT0. (A) Histogram of radii collected for all bead positions (initial
total number of beads N = 490) every 2.5 ms, for first 10 s of simulations. Different colors represent different simulations with
corresponding effective temperatures (see Eq. 13). (B) Full width at half maximum (FWHM) versus effective temperature.
We chose T/T0 = 0.2 for all other simulations in main and supplementary text causing typical ripple size in radial direction of
∼ 15 nm for this set of σ1 and ∆p parameters. Simulations of Fig. 5 of the main text have typical ripple size of ∼ 15 nm.
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FIG. 3: Model validation and simulation results of fluctuating round mother cell with thermal noise. (A-D) Space
Fourier coefficients of membrane contours were collected (cn ≡ |c̃n|). Parameters used in simulation: σ1 = 50 pN/µm, ∆p =
850 Pa, κb = 20 kBT0, 〈R〉 = 0.782 µm. (B, Inset) Three examples of Fourier coefficients versus time. (B) Three examples of

autocorrelation function versus time for data shown in the inset. Since Ccn ∼ e−t/τn [19], relaxation times (τn) are obtained as
fitted parameters. (C) Relaxation times versus Fourier modes. Theoretical expressions are given in Materials and Methods of
the main text [20, 21]. Parameter σ̃ = 50. (D) For collection of 6000 contours obtained during first 1.5 s of thermal equilibrium
simulations, dimensionless fluctuation spectrum (Spl(n) ≡ 〈c2n〉−〈cn〉2) was plotted along with theoretical expression for planer
membranes from [12]. For analytical results for τn and Spl(n), see Materials and Methods of the main text.
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FIG. 6: Neck-region forces. (A) Snapshot of engulfed forespore (σ1 = 50 pN/µm, ∆p = 200 Pa, κb = 10 kBT0). Once
forespore is engulfed the stochastic thermal force was turned off in Eq. 1. (B) Subsequent total forces and bending forces on
beads in neck region during equilibration with scale bars as indicated.
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were observed for (-120 6 c0 6 20) µm−1. Extreme high negative curvatures produce high outward force in the neck region
preventing further engulfment; extreme high positive curvatures stall engulfment by preventing leading-edge fluctuations (not
shown).
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FIG. 8: Simulation results of engulfment, volume, and surface area changes for a model with effective constraints.
(A) Simulation snapshots at 5 s for fixed SpoIIQ-SpoIIIAH surface density ρ = 104µm−2 as in Fig. 4 of the main text for
different combinations of surface constraint parameter (kS) and volume constraint parameter (kV ). Simulations that reached
full engulfment earlier than 5 s were terminated and last snapshots are displayed only. (B) Percentage of forespore-surface
area enclosed by mother membrane. In dark red region full engulfment occurs when either volume or surface area is not
conserved. (C and D) Volume and surface area of mother cell at late stage of engulfment. The region of parameter space with
experimentally observed volume and surface area changes occur is around: kS = (0.10 ± 0.05) nN/µm3 and kV = (1.0 ± 0.5)
nN/µm5.
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FIG. 9: Cell loosing cytosol at onset of volume loss. A montage of single WT cell treated with cell-wall removal enzyme,
bursts (arrow) and cytosolic leakage coincide with the onset of volume loss (set to 0 min). Scale bar: 2 µm. Adopted from [2].
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FIG. 10: Test of fluorescence ratio with single and double membranes. (A) FM 4-64 fluorescence intensities of
membrane is measured along single (Isingle) and double Idouble membranes. For this purpose we used ∆spoIIQ cells at late
times after lysozyme addition when engulfing cups are flattened. (B) Histogram of intensities of all single and double membranes
from panel (A). Idouble/Isingle = 2.3 ± 0.6. Dashed vertical lines represent corresponding averages.
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