
Text S1: Quantification and images analysis of microscopy and of ABM simulation 
data. 
 
Tracking cells and measuring motility parameters 

Instant cell displacements and speeds: The instant displacement of each cell between two 
consecutive frames was computed as:  

   (S.1) 

The instant cell speed was computed as 

  (S.2) 

where δt is the time interval between successive frames. 
 

Removal of temporarily immotile cells: Analysis of the cell trajectories revealed several 
instances in which the fluorescent cells stop moving for extended periods of time (> 5 
min).  These data were removed from the trajectories. This was accomplished by 
identifying those cells for which the instant cell speed was < 0.2 μm/min (less than 5% of 
the average speed) for continuous time intervals of 5 min or longer and excluding these 
intervals from the motility statistics.  
 
Detection of cell reversals: To calculate the statistics of the cell reversal periods we 
needed an algorithm that robustly detected cellular reversals, but ignored changes in cell 
velocity associated with random motion and/or turning. For our experimental approach 
the problem was simplified by the observation that cells are predominantly aligned and 
therefore travel in the same direction (see Figure S5A). This direction is generally not 
parallel to the image boundaries. Therefore the images were rotated to ensure that the 
majority of the cells move along their X-axis.  
 
To determine the direction in which the cells are predominantly aligned, we applied 
principal component analysis (PCA) to the cell trajectories obtained from the individual 
cell tracking data. PCA was used in multivariate analysis to determine the important 
elements within the data set. The largest variance is the first principal component. Here, 
we rotated the first principal component to make it parallel to the X-axis. As a result, 
most cell move parallel to the X-axis.  
 
After rotation, the reversal points in the cell trajectories can be identified based on the 
sign changing points in the time-derivative of the coordinates along the first principal 
component (  ( )ix n ). The sign of the X-axis projection of the cell velocity is: 
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  (S.3) 
When s=+1 a given cell travels along the principal axis in the positive direction, whereas 
when s =−1 it travels in the opposite direction. The points where the cell velocity changes 
its sign therefore can be calculated as the non-zero elements of a sign-changing vector sc: 

  (S.4) 
However, not all of the sign changing points are the real reversal points, as cellular 
motility noise and tracking errors can result in false-positives. Therefore, additional 
analysis is applied to the sign changing data sc to find the real reversal points. 

By examining sc, it became clear that sometimes there are several sign changing points 
that occur consecutively during a very short period of time. Cell behavior during these 
periods is termed “tumbling”. The algorithm below was used to address these tumbling 
events. For example, Figure S5C shows an application of the algorithm 

i. The range of indices with successive non-zero values in sc was determined. These 
are the tumbling events (Figure S5 C). The red dots indicate a tumbling event. 

ii. The number of sign changing points for each tumbling event was determined. For 
example, in Figure S5 C, there are two sign changing points in Case 1 and three in 
Case 2. 

iii. The tumbling events are separated into two cases. In Case 1, the cell continues in 
the same direction after the tumble as before the tumble. This is reflected in an 
even number of sign-changing points for the tumble (see Figure S5 C left panel). 
In Case 2, the cell changes direction after the tumbling event. This is reflected in 
an odd number of sign-changing points for the tumble (see Figure S5 C right 
panel). 

iv. For Case 1, the cells do not change directions before and after the tumble, 
therefore, all the sign-changing points are removed and it is concluded that no 
reversal occurred during that event (Figure S5 C left panel). 

v. For Case 2, the cells change their directions after the tumble; therefore all the sign 
changing points in the tumble are treated as one reversal. To assign one of the 
tumbling points as a reversal point, we identified a point with maximal X 
coordinates for reversals in which the cell was moving in a positive direction 
(s=+1) before the reversal. On the other hand, the point with minimal X 
coordinate was chosen if the cell was moving in a negative direction before the 
reversal (s=−1). For example, in Figure S5 C right panel, point 5 was assigned as 
the actual reversal point. 

 
In Figure S5 D, F and G three trajectories are highlighted and the reversal points were 
labeled with red dots. 
 

The reversal period is defined as the time interval between two adjacent reversal 
points. If a cell reverses at time i and its next reversal occurs at time j, then the reversal 
period τ for the cell is between time i and j. 
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  (S.5) 
Selection of rippling cells: Under these experimental conditions, even inside the prey 
region, not all M. xanthus cells exhibit rippling behavior. To accurately define this 
behavior non-rippling cells must be excluded. Therefore, the fraction of cells selected to 
be tracked as rippling cells was based on the following criteria:  
(a) We excluded cells that maintain a low motion state (i.e. cells with an instant speed 
less than 0.5 μm/min) for longer than 5 min.  
(b) We chose the cells for which most movement occurs along the first principal 
component after rotation of the cell trajectories: 

  (S.6) 

In Figure S5 D, F and G, three types of cell trajectories are shown: rippling cells on prey 
(Figure S5 D), non-rippling cells on prey (Figure S5 F) and cells off prey (Figure S5 G). 

 
Estimation of ABM simulation parameters: The parameters for the ABM simulations are 
summarized in Table S1. Whenever possible the parameters used were estimated directly 
or indirectly from the experimental data obtained under our conditions. For example, the 
analysis of individual cell movement described above provides both average cell 
characteristics (such as average velocity and reversal period) and their population 
distributions. The agent velocity v used in ABM simulation is the average velocity 
calculated in the above analysis. The diffusion coefficient D, which is used to 
characterize the random fluctuation in agent movement, was chosen such that the 
variance of the instant velocity distribution of the ABM simulation matches the results of 
the experimental data analysis. Note that the experimentally observed random 
fluctuations along the x direction and y direction are almost identical. As a result, only 
one value D is used to represent the noise level in cell movement. 

In our ABM simulations of rippling, varying the refractory period changes the average 
reversal period. Thus, the refractory period was chosen to fit the average reversal period 
in the ABM to that in the experimental observations of rippling cells. The average 
reversal period of non-rippling cells observed experimentally was chosen as the natural 
reversal period T in our ABM and the phase speed ω was calculated using Eq. (5). The 
diffusion coefficients in the reversal period Dφ were chosen by matching the distribution 
of reversal periods of the ABM simulations to the experimentally observed distribution. 

The phase variable φ0 in the ABM simulations was chosen so that would equal to 

the selected refractory period. There are also parameters that cannot be directly estimated 
experimentally, but can be defined based on the simulation results. For example, the 

( )j i tτ δ= −

 

 

max( ) min( )
3

max( ) min( )

i i

i i

x x

y y

−
>

−

0ϕ
ω



random noise level Dθ was assigned such that the initially aligned population of cells 
remains aligned. 

Analysis of gray scale images that represent cell densities 

As rippling is essentially a traveling cell density wave, a method to acquire cell density 
information from both the experiments and the ABM simulations was developed. For the 
experiments, we observed and recorded M. xanthus cells preying on E. coli cells using 
fluorescence microscopy at 10X / 20X magnification. The fluorescence intensity in the 
recorded images represents the local cell density information, so that the lightest areas 
represent high cell density and the darkest areas represent low cell density. In the ABM 
simulations, the simulation domain is a 1 µm by 1 µm grid, and the local cell densities 
are calculated based on the agents whose centers are in each 1 µm2 grid square. In this 
analysis, I(x,y), denotes the cell density computed from both our ABM simulation and 
experimental intensities at position (x,y). 
 
Creation of the cell density space-time images: The cell density space-time plot shown in 
Figure 2 E was generated from the gray scale DIC images of the experimental cell-
density images.  We started with a cell-density matrix I of the size X×Y. As most of the 
cell movements are on the first principal component, we rotated the image I so that the 
cells mainly move parallel to the X-axis. To rotate image I, we needed a large enough 
image I’, so that it contains all the pixels of image I after rotation. For each pixel I’(x,y) 
in image I’, we computed its corresponding coordinate in image I before rotation: 

  (S.7) 

We used the value of the nearest pixel to in image I as the pixel value of I’ . If 

was not inside image I, I’  was set to 0. To obtain the 1-D averaged density , 
we averaged over the columns of image I’: 

  (S.8) 

The brackets denote the average over pixel values that were part of the original image. 
Next, we detrended the  by subtracting the least-square fit from itself. As a result, we 

have the 1-D averaged and detrended cell density of . By putting the  of different 
time-steps together we obtained a 2-D space-time image of cell density. As the last step, 
we rotated the gray scale image, so that the dark color represents high cell density and 
bright color represents low cell density. As a result, in the space-time cell density image, 
the dark ridges represent wave crest (high cell density). We then superimposed the time 
and position of cell reversals on this plot and the resulting diagram is shown in Figure 2 E. 
The same procedure was used to produce the space-time plot of the ABM simulation 
results. The result is shown in Figure 2 F.  
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We hypothesized that most of the rippling cells reverse during ripple wave crest 
collisions. To test this hypothesis using the experimental data analysis, the time and 
positions of cell reversals and the space-time images of cell density were combined. To 
test this hypothesis using the ABM simulations, the time and positions of cell reversals in 
the ABM simulations were recorded. The space-time cell density images of both the 
experimental and ABM simulation data were then processed. As the space-time images 
are always detrended, the pixels with negative values are discarded (by setting to 0). As a 
result, the space-time images with only the dark ridges are presented. Next, the locations 
of the wave crest collisions in the space-time images were determined. Using either 
experimental or ABM simulation data, each collision area of two wave crests always 
contains at least one pixel that has the locally maximum cell density since the 
overlapping of wave crests leads to higher cell density. We identified these local maxima 
pixels in the space-time images. Subsequently, the rectangular region centered at each 
pixel with a height equal to double the wave crest width (~20 µm) and a width equal to 
the time the cells need to cover that width (~3 min) was defined. This represents the 
collision region of two opposing crests. Next, the time and position of each cell reversal 
was checked to determine if it falls into the wave collision region. Then, we used a 
bootstrapping method to calculate the mean and standard deviation of the percentage of 
reversals inside the wave collision area. The analysis reveals that 75.0% (±2.6%) of all 
tracked reversals in the prey area occur during wave crests collisions in our experimental 
observations. In our ABM simulations 82% (±2.1%) of the cells reverse during wave 
crest collisions. As a control, we added 10% non-rippling cells in the simulations (cells 
that are not sensitive to signaling), and determined that only 17% (±2.3%) of these cells 
reverse during wave crests collisions.  

Estimation of wavelength and wave crest width: 

 In both the experimental observations and ABM model simulations, the movement of the 
M. xanthus cells is predominantly the first principal component computed. As a result, the 
direction of ripple movement is also the first principal component. Thus, the 1-D 
continuous wavelet transform (CWT) was used to obtain the wavelength [1-4]. Given a 
function (or signal) f(x), a mother wavelet ψ(x), the CWT is defined as: 

  (S.9) 

where a is the scale parameter and a > 0; b is the position parameter; c(a,b) denotes the 
wavelet coefficient computed from Eq. (S.9) at scale a and position b; * denotes the 
complex conjugation. 
 
Above, the original experimental images were rotated, such that the first principal 
component of the images is parallel to the X-axis. In the ABM simulations, agents 
aligned along the X-axis initially and the alignment rule keeps the agents aligned during 
the simulation. As a result, for both types of images, the direction of ripples is along the 
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X-axis. If in image I with size  ripples travel along the X-axis, then the CWT is 
applied to each row of the image: , where i = 1, 2,…,Y. To apply the CWT to

, would assume that is the result of sampling of a continuous function. 
 
There are many mother wavelet functions, among which we chose the Morlet wavelet 
[5,6]: 

  (S.10) 

As a result, for each Ii(x) there is a corresponding  using equation (S.9). The next 
step is to average the wavelet coefficient along all i (along y-direction). 

  (S.11) 

In Figure S3 A and C, several peaks in the absolute value of wavelet coefficient are 
observed. Wavelengths are calculated fom the distances along the X-axis (horizontally) 
between every other peak in the absolute value of wavelet coefficients. In order to do that 
the average over the scale parameter a was determined: 

        (S.12) 

Where N0 is the largest scale used in the wavelet transform. If in , there are N peaks 
with position parameter b1,…,bN, the average wavelength λ of one image is calculated by: 

  (S.13) 

Eq. (S.13) is used for the ABM simulation images. For the experimental images, the 
equation is slightly changed to omit the peaks at the two ends b1 and bN. This is because 
the peaks at b1 and bN are deeply affected by the discontinuity at the edges of the DIC 
images. The periodic boundary condition for the ABM simulation was used, so there is no 
effect of discontinuity at the edges. Then the average wavelength λ from different frames 
was used to obtain the mean wavelength (solid line in Figure 2 A and B) and the standard 
deviation (error bar in Figure 2 A and B). Twenty experimental images and 20 ABM 
simulation images were used to calculate these data points. 

To determine the wave-crest width, we used a similar procedure, but assumed that the 
wave crest is well approximated by a Gaussian distribution 

  (S.14) 
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Therefore, the best-fit Gaussian distribution was obtained and its width σ was used as our 
estimate of the wave crest. Starting with 1-D densities Ii(x), the moving correlation 
coefficients of the Gaussian function and Ii(x) were calculated: 

  (S.15) 

Then, the average of the correlation coefficients was determined:  

  (S.16) 

and the wave crest width Δ was obtained by: 

  (S.17) 

 
Bifurcation diagram for the signaling probability 

Using the wavelet coefficients calculated in the previous step, an order parameter that 
describes the existence of the waves was derived. If the averaged 1-D wavelet 
coefficients calculated using equation (S.12) of an image with no wave is , and there 
are some wavelet coefficients  using the same equation, then the order parameter OP 
is defined as: 

  (S.18) 
For simulations with OP < 0.4, no visible ripple pattern was observed, but when OP > 
0.4, a ripple pattern was observed.  By gradually decreasing the signaling probability we 
discovered that waves disappeared when the signaling probability reached a critical 
value. It was concluded that the signaling probability serves as a bifurcation parameter in 
the ABM simulations for ripples. The OP was used for the quantification of the ripple 
pattern emergence and Figure S3 E illustrates the conclusion: the order parameter OP is 
ultrasensitive to increases in the signaling probability around the threshold value of 0.05 
above which ripples appear. 
 

Estimating colony expansion in experimental images 

ImageJ software was used to obtain M. xanthus colony edge information from analysis of 
the gray scale images from the DIC microscopic experimental observations. For each 
image, we manually picked points on the colony edge and recorded the positions. The 
number of points was chosen to be large enough so that the linear interpolation of these 
points can sufficiently represent the real colony edge. Then, we used linear interpolation 
to connect these points and as a result, we obtained a curve that represents the colony 
edge. To calculate the movement of the edge between images, the following procedure 
was applied: 
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(i) Two curves of the edges of the same colony from two different times; curve 1 and 
curve 2 were examined. For each line segment in curve 1, we computed the 
position of the mid-point of the line segment by averaging the coordinates of the 
two end points. 

(ii) The distance from the mid-point of each of the line segment in curve 1 to curve 2 
was then computed and recorded. 

(iii) The movement of the colony from one image to the other was defined as the 
average distance of the distances calculated in (ii) above. 
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