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Figure S10: Mixing coefficient c versus measured correlation. The figure shows the relationship of the
mixing coefficient c in equation (S12) with measured correlation. For this figure, the sample size of ξi (i = 0, 1, 2)
was 99999. Correlation was measured 250 times with different samples, and the mean value is shown. Standard
deviations were in the order of 10−15and thus are not visible. The mixing coefficient c underestimates the measured
correlations somewhat for positive values (e.g. c = 0.6 yields a measured correlation of about 0.8). Overestimation
occurs for c < 0.

S3 Noise Suppression

In this section the robustness against noise of the various models will be studied. Such a numerical
analysis may seem strange at first sight, because these models do not represent full image processing
approaches for ttc-estimation (e.g. [1, 2]). We have instead two different objectives in mind: First, we
want to know how our proposed models τmod and τcm, respectively, compare to τ and η. We think that
the new model(s) should have at least a comparable noise suppression performance as the previous one(s).
Second, we need to now how noise affects these functions during an object approach, and how the signal-
to-noise ratio depends on certain stimulus parameters. We will require these results for interpreting the
simulation-results of our psychophysical experiment, as noise plays an important role in these simulations.
We commence with adding Gaussian distributed noise ξi (both i = 1, 2 mean zero and standard deviation
one) with probability p = 0.0075 to angular variables:

Θ̃ ≡ (1− p) ·Θ+ pξ1

˙̃Θ ≡ (1− p) · Θ̇ + pξ2 (S11)

In order to examine the impact of correlations between ξ1 and ξ2 on model performance, let ξ0 be a
third standard normal distributed random variable (mean zero and standard deviation one), which is
uncorrelated with ξ1. We then define ξ2 as

ξ2 = cξ1 + (1− |c|) · ξ0 (S12)
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such that the two random variables ξ1 and ξ2 have the approximate correlation c, with −1 ≤ c(ξ1, ξ2) ≤ 1
(Figure S10).
Figures S12 and S14, respectively, display the relative error of several functions. Let f(t) ≥ 0 be any
function of optical variables (representing, for example τ or τmod), and f̃i(t) the same function with noise
at random trial i (equation S11). Then we define the relative error ei [f(t)] as

ei [f(t)] =
|f(t)− f̃i(t)|

f(t) + ε
(S13)

with a small constant ε = 10−3 to prevent numerical issues. In all figures of this section, the median
value mediani∈{1...999} ei [f(t)] across 999 random trials is depicted. In Figures S13 and S15, the median
value is integrated, in order to achieve a more compact graphical representation:

E(f) =
1

tc

∫ tc

0

median
i∈{1...999}

ei [f(t)] dt (S14)

S3.1 Modified Tau (m-Tau)
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Figure S11: m-Tau and η-function with uncorrelated noise (c = 0). Each curve shows one typical random
trial, and the noise was identical for all six curves. The time when both functions had their respective maximum
was chosen identically as well (tmax = 0.75tc = 0.86 s at default object diameter 5 cm). All theoretical maxima
are indicated by broken vertical lines, which have the same luminance as the corresponding curves. (a) Because
the values of angular variables increase nearly exponentially, whereas their associated noise level stays fixed (i.e.,
signal-independent, cf. equation S11), less noise fluctuations are seen with τmod(t) as ttc is approached. (b) Noise
fluctuations also decrease with time for the η-function. Notice that signal amplitudes of the η-function increase
with decreasing diameters, whereas signal amplitude is proportional to diameter for τmod.

The η-function and τmod are juxtaposed in Figure S11, where uncorrelated noise has been added
to both functions. Three curves corresponding to three diameters1 are shown. Amplitudes of τmod in-
crease with increasing diameter. The opposite is true for the η-function. For both functions, fluctuation
magnitudes (approximate areas swept by the jitter) decrease with increasing diameter, and fluctuations
decrease when approaching ttc.
Figure S12 suggests that in terms of (median) relative error e, τmod “wins”, and e [τmod(t)] ≤ e [τ(t)]. This
simulation thus supports our claim that the modification of the original τ function leads to an improved
noise suppression performance (especially in the initial phase of the approach) – compare also Figure S11a
with Figure 6a. The relative error of the η-function, e [η(t)], tends to increase as ttc is approached, and
is higher than e [τmod(t)], particularly for bigger object diameters. For the biggest considered diameter
(Figure S12c), it even exceeds e [τ(t)]. The “peculiar” behavior of e [η(t)] is due to the strong decrease
of η for t > tmax. It reaches small values very quickly, even before ttc is actually reached. On the other
hand, both τ and τmod have a minimum short before tc (section S6.2), and increase afterwards until
tc. Thus, normalization by the noise-free function (denominator of equation S13) causes amplification of
e [η(t)] as tc is approached, while it causes suppression for e [τ(t)] and e [τmod(t)], respectively.

1These results generalize readily to the l/v-ratio, assuming a constant speed.



s13

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time [s]

re
la

tiv
e 

er
ro

r

diameter=2.50cm  x
0
=1.30m  v=1.13m/s, c=0.000

 

 

τ
η−fun., α=13.00
τ

mod
,    β

1
=0.54

(a) diameter=25 cm

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

time [s]

re
la

tiv
e 

er
ro

r

diameter=5.00cm  x
0
=1.30m  v=1.13m/s, c=0.000

 

 

τ
η−fun., α=13.00
τ

mod
,    β

1
=0.54

(b) 50 cm

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time [s]

re
la

tiv
e 

er
ro

r

diameter=10.00cm  x
0
=1.30m  v=1.13m/s, c=0.000

 

 

τ
η−fun., α=13.00
τ

mod
,    β

1
=0.54

(c) 100 cm

Figure S12: Relative error for three object sizes (τmod and η-function). This figure shows the median
relative error (equation S13, 999 random trials) for τmod and the η-function, respectively (uncorrelated noise c = 0,
identical noise was added to all curves). As in the previous figure, tmax = 0.75tc = 0.86 s at object diameter 5 cm.
For comparison, the ordinary τ function is also shown. The first observation is that the relative error of τ and
τmod, respectively, decreases as ttc is approached, at which τmod has the edge over τ . Furthermore, relative errors
of τmod and τ decrease with diameter. The η-function, however, reveals a more complicated behavior, because
it decreases faster proximately before ttc than τ or τmod (both of which increase again upon approaching tc, see
section S6.2). In the initial phase of the approach, the relative error of η decreases with increasing diameter as
well. However, close to tc, the error does not decrease further for the smallest diameter, and even grows again for
diameters 50 cm and 100 cm. The increase in relative error is due to the fact that η approaches zero very quickly
after the maximum (faster for bigger diameters). As a consequence, the denominator of equation (S13) gets very
small, what blows up the relative error.

Figure S13 illustrates how the integrated relative error E depends on object diameter and noise correla-
tion. Both E(τcm) and E(η) decrease with increasing diameter. The smallest values for E are measured
if identical noise is added to both angular variables Θ and Θ̇ (correlated noise, c = 1). The biggest values
of E are measured for c = −1, and intermediate values of E are obtained for c = 0. Thus, the “less” the
correlation, the “bigger” the errors.
We also observed a dependence on the time tmax when both functions attain their maximum amplitude
(α and β1 were chosen such that η and τmod, respectively, had identical tmax). Changing tmax of τmod

translates into a moderate change in E(τmod), and the linear dependence of E(τmod) on object diameter
remains unaffected. For the η-function, the corresponding change in tmax is accompanied by a compara-
tively dramatic change in the nonlinear dependence of E(η) on object diameter. Again, this behavior is
a result of that the relative error of η is amplified after its maximum, where η quickly approaches zero.

S3.2 Corrected Modified Tau

In the main text it has been shown that the corrected m-Tau-model (τcm, equation 5) is constrained by
two “limit functions”, such that τ(t) < τcm(t) < τlp(t). These results also apply to the noisified version
of the corrected m-Tau-model:

τcm(t) ≡
Θ̃

˙̃Θ + β︸ ︷︷ ︸
τmod(t)

+
βϑ

ϑ̇(ϑ̇+ β) + ε︸ ︷︷ ︸
∆τcorr

(S15)

Thus, for the noisified angular size Θ̃ and angular velocity ˙̃Θ, we have τ = Θ̃/ ˙̃Θ. Likewise, τlp = ϑ/ϑ̇,

but with Θ̃ and ˙̃Θ replacing Θ and Θ̇, respectively, in equation (4).
Figure S14 shows the relative error e for three object diameters (footnote 1). It suggests that e [τ(t)] ≥
e [τcm(t)] ≥ e [τlp(t)]. Important, e [τcm(t)] clings to e [τlp(t)], albeit all βi = 1 (i.e. far away from the
limit case β � 1). In other words, no particularly big values of βi are necessary for achieving a high
noise suppression.
Figure S15 shows E(τcm) along with the integrated relative error of the limit functions. Less noise
correlations increase the E of all three functions, with E showing an approximately linear decrease
with object diameter. Increasing the diameter causes an increasing separation |E(τcm) − E(τlp)|. The
separation is most prominent for c = 1, where E(τcm) matches E(τlp) at the smallest diameter, but
E(τcm) ≈ E(τ) at the biggest diameter. For the sake of clarity, the lines in Figure S15 connect the (gray)
symbols of each respective function with c = 0.
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Figure S13: Noise suppression and noise correlations (τmod versus η-function). The integrated error
E (equation S14) of η and τmod is shown for different diameters of approaching objects, and for different noise
correlation coefficients c (equation S12). As in the two previous figures, tmax = 0.75tc = 0.86 s at object diameter
5 cm. In addition, the bold green curves identified by arrows and corresponding text boxes show E(τcm) and E(η),
respectively, for tmax = 0.25tc = 0.29 s at object diameter 5 cm for uncorrelated noise. The relative error of τmod

increases moderately for tmax = 0.29 s (β1 = 0.06) with respect to tmax = 0.86 s (β1 = 0.54), and curves remain at
an approximately linear decrease with increasing object diameter. The relative error of the η-function increases
with diameter for tmax = 0.86 (α = 13), but decreases if its maximum is located earlier at 0.29 s (α = 39). Adding
identical noise (i.e. ξ1 = ξ2) to the angular variables (c = 1, open symbols) give the smallest errors, because
fluctuations in the angular variables are in the same direction and can cancel each other: In the early phase of
the approach, E(τcm) > E(η), but in the late phase the opposite holds true. Negative noise correlations (c = −1,
black symbols) lead to the highest values of E for both functions, because fluctuations of optical variables go in
opposite directions and add to each other. A somewhat better noise suppression performance (that is, smaller
values of E(τcm) and E(η) at all diameters) is observed for uncorrelated noise (c = 0, grey symbols).
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Figure S14: Relative error for three object sizes (corrected m-Tau). This figure shows the median relative
error (equation S13, 999 random trials) for τcm and its two limit functions τ and τlp , respectively (uncorrelated
noise). For the comparatively small values of βi = 1 chosen here, the noise suppression performance of τcm is
more similar to that of τlp , rather than τ . This difference, however, gets smaller as ttc is approached, because the
values of angular variables increase nearly exponentially while the noise level stays constant. Noise suppression
performance also depends on object size: Doubling the diameter divides the relative error by two.
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Figure S15: Noise suppression and noise correlations (corrected m-Tau). The figure shows the inte-
grated error (equation S14) for different diameters of approaching objects, and also for different noise correlation
coefficients c (equation S12): E(τcm) (with all βi = 1) is juxtaposed with the integrated error of its two limit
functions E(τ) and E(τlp). The broken lines that are identified by arrows represent E(τ) and E(τlp), respectively,
for c = 0, while the continuous line denotes E(τcm) for c = 0. If identical noise is added to optical variables
(c = 1, open symbols), then the smallest errors E are obtained, because fluctuations will cancel each other, as
they occur in the same direction. Negative noise correlations (c = −1, black symbols) lead to the worst noise
suppression performance (= highest values of E). Uncorrelated noise (c = 0, grey symbols) causes a somewhat
better suppression. Notice that for the quite “moderate” values βi = 1 chosen here, τcm is only slightly worse
than τlp , which copes best with noise. The latter is true except for c = 1: For correlated noise, E(τcm) is close to
E(τlp) for small object diameters, but approaches E(τ) with increasing diameter.
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