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Abstract

Thermodynamics dictates the structure and function of metabolism. Redox reactions drive

cellular energy and material flow. Hence, accurately quantifying the thermodynamics of

redox reactions should reveal design principles that shape cellular metabolism. However,

only few redox potentials have been measured, and mostly with inconsistent experimental

setups. Here, we develop a quantum chemistry approach to calculate redox potentials of

biochemical reactions and demonstrate our method predicts experimentally measured

potentials with unparalleled accuracy. We then calculate the potentials of all redox pairs that

can be generated from biochemically relevant compounds and highlight fundamental trends

in redox biochemistry. We further address the question of why NAD/NADP are used as pri-

mary electron carriers, demonstrating how their physiological potential range fits the reac-

tions of central metabolism and minimizes the concentration of reactive carbonyls. The use

of quantum chemistry can revolutionize our understanding of biochemical phenomena by

enabling fast and accurate calculation of thermodynamic values.

Author summary

Redox reactions define the energetic constraints within which life can exist. However, mea-

surements of reduction potentials are scarce and unstandardized, and current prediction

methods fall short of desired accuracy and coverage. Here, we harness quantum chemistry

tools to enable the high-throughput prediction of reduction potentials with unparalleled

accuracy. We calculate the reduction potentials of all redox pairs that can be generated using

known biochemical compounds. This high-resolution dataset enables us to uncover global
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trends in metabolism, including the differences between and within oxidoreductase groups.

We further demonstrate that the redox potential of NAD(P) optimally satisfies two con-

straints: reversibly reducing and oxidizing the vast majority of redox reactions in central

metabolism while keeping the concentration of reactive carbonyl intermediates in check.

Introduction

In order to understand life we need to understand the forces that support and constrain it. Ther-

modynamics provides the fundamental constraints that shape metabolism [1–5]. Redox reac-

tions constitute the primary metabolic pillars that support life. Life itself can be viewed as an

electron transport process that conserves and dissipates energy in order to generate and main-

tain a heritable local order [6]. Indeed, almost 40% of all known metabolic reactions are redox

reactions [7,8]. Redox biochemistry has shaped the study of diverse fields in biology, including

origin-of-life [9], circadian clocks [10], carbon-fixation [11], cellular aging [12], and host-patho-

gen interactions [13]. Previous work has demonstrated that a quantitative understanding of the

thermodynamic parameters governing redox reactions reveals design principles of metabolic

pathways. For example, the unfavorable nature of carboxyl reduction and carboxylation

explains to a large degree the ATP investment required to support carbon fixation [1].

Developing a deep understanding of redox biochemistry requires a comprehensive and

accurate set of reduction potential values covering a broad range of reaction types. However,

only ~100 reduction potentials can be inferred from experimental data, and these suffer from

inconsistencies in experimental setup and conditions. Alternatively, group contribution meth-

ods (GCM) can be used to predict a large set of Gibbs energies of formation and reduction

potentials [14]. However, the accuracy of this approach is limited, as GCM do not account for

interactions between functional groups within a single molecule and GCM predictions are lim-

ited to metabolites with functional groups spanned by the model and experimental data.

Quantum chemistry is an alternative modeling approach that has been used to predict

redox potentials in the context of numerous applications, such as redox flow batteries, opto-

electronics, and design of redox agents [15–27]. Unlike GCM, whose smallest distinct unit is a

functional group, quantum chemistry directly relates to the atomic and electronic configura-

tion of a molecule, enabling ab initio prediction of molecular energetics. Here, we adopt a

quantum chemistry modeling approach from the field of redox flow battery design [25,26,28]

to predict the reduction potentials of biochemical redox pairs. Our approach combines ab ini-
tio quantum chemistry estimates with (minimal) calibration against available experimental

data. We show that the quantum chemical method can predict experimentally derived reduc-

tion potentials with considerably higher accuracy than GCM when calibrated with only two

parameters. We use this method to estimate the reduction potentials of all possible redox pairs

that can be generated from the KEGG database of biochemical compounds [7,8]. This enables

us to decipher general trends between and within groups of oxidoreductase reactions, which

highlight design principles encoded in cellular metabolism. We specifically focus on explaining

the central role of NAD(P) as electron carrier from the perspective of the redox reactions it

supports and the role it plays in lowering the concentration of reactive carbonyls.

Results

Quantum chemical predictions of biochemical redox potentials

To facilitate our analysis we divided redox reactions into several generalized oxidoreductase

groups which together cover the vast majority of redox transformations within cellular
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metabolism (Fig 1A): (G1) reduction of an unmodified carboxylic acid (-COO) or an activated

carboxylic acid–i.e., phosphoanhydride (-COOPO3) or thioester (-COS-CoA)–to a carbonyl

(-C = O); (G2) reduction of a carbonyl to a hydroxycarbon (-COH, i.e., alcohol); (G3) reduc-

tion of a carbonyl to an amine (-CNH3); and (G4) reduction of a hydroxycarbon to a hydrocar-

bon (-C-C-), which usually occurs via an ethylene intermediate (-C = C-). We note that this

categorization corresponds to the treatment of carbon oxidation levels in standard organic

chemistry textbooks [29].

We developed a quantum chemistry method for predicting the standard transformed redox

potential of biochemical redox reactions. We explored a range of different model chemistries,

including combinations of DFT (density functional theory) functionals or wave-function elec-

tronic structure methods, basis sets, choice of implicit solvent, and choice of dispersion correc-

tion. We found that a DFT approach that uses the double-hybrid functional B2PLYP [32,33]

gave the highest prediction accuracy (see Methods for detailed model chemistry description;

Fig 1. Our study is based on predicting biochemical standard redox potentials using a calibrated quantum chemistry strategy. (A) The four

different redox reaction categories considered here are reduction of a carboxylic acid to a carbonyl—G1, reduction of a carbonyl to a hydroxycarbon—

G2, or an amine—G3, and reduction of a hydroxycarbon to a hydrocarbon—G4. (B) For each redox reaction of interest, such as reduction of pyruvate

to lactate, we select the most abundant protonation state at acidic pH (pH = 0) for quantum chemical simulation. (C) We estimate the chemical redox

potential as the difference between Boltzmann-averaged electronic energies of geometric conformers of products and substrates. (D) In order to

convert chemical redox potentials to biochemical potentials at pH = 7, we use cheminformatic pKa estimates and the Alberty-Legendre Transform

(Supplementary Information). (E) Finally, we use a set of 105 experimental values obtained from the NIST Thermodynamics of Enzyme-Catalyzed

Reactions database (TECRDB) [30] and a set of Gibbs formation energies compiled by Robert Alberty [31] (Supplementary Information) to calibrate

redox potentials using linear regression.

https://doi.org/10.1371/journal.pcbi.1006471.g001
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other model chemistries also gave high accuracy as discussed in the Supplementary Informa-

tion and S1 Fig). As each biochemical compound represents an ensemble of different chemical

species–each at a different protonation state [31] –we applied the following pipeline to predict

E’m (Fig 1, see also Methods): (i) a quantum chemical simulation was used to obtain the elec-

tronic energies of the most abundant chemical species at pH 0; (ii) we then calculated the dif-

ference in electronic energies ΔEElectronic between the product and substrate of a redox pair at

pH 0, thus obtaining estimates of the standard redox potential, Eo; (iii) next, we employed

empirical pKa estimates to calculate the energetics of the deprotonated chemical species and

used the extended Debye-Huckel equation and the Alberty-Legendre transform [31] to con-

vert Eo to the standard transformed redox potential E’m at pH = 7 and ionic strength I = 0.25

M (as recommended [34]), where reactant concentrations are standardized to 1 mM to better

approximate the physiological concentrations of metabolites [1,35]. Finally, (iv) to correct for

systematic errors, the predicted E’m values, of each oxidoreductase group, were calibrated by

linear regression (two-parameter calibration) against a set of 105 experimentally measured

potentials obtained from the NIST Thermodynamics of Enzyme-Catalyzed Reactions database

(TECRDB) [30] and the Gibbs formation energy dataset of Robert Alberty [31] (Supplemen-

tary Information). We note that we observe empirically that the difference in electronic ener-

gies ΔEElectronic is strongly correlated with the Gibbs reaction energy ΔGr for these redox

systems (S5 Fig) and so we estimate redox potentials using the former in order to reduce

computational cost (see SI for details). We also note that the two-parameter calibration is

needed mainly since we ignore vibrational enthalpies and entropies of the compounds (Sup-

plementary Information).

As exemplified in Fig 2A and 2B and S2 Fig, the calibration by linear regression significantly

improves the accuracy of our quantum chemistry predictions. As shown in Table 1, the predic-

tions of quantum chemistry have a lower mean absolute error (MAE) than those of GCM for

all reaction categories. (GCM has a higher Pearson correlation coefficient for category G1, but

this is an artifact introduced by a single outlier value, S3 Fig). The improved accuracy is espe-

cially noteworthy as our quantum chemical approach derives reduction potentials from first

Fig 2. Quantum chemistry model predicts experimentally measured reduction potential with high accuracy. Data shown

corresponds to reactions where carbonyls are reduced to hydroxycarbons (group G2). (A) Quantum chemical predictions after

calibration (linear regression with 2-parameters); S2 Fig shows how the calibration improves accuracy. (B) Prediction using group

contribution method as implemented in eQuilibrator [36,37] (see Methods) (10 parameters for the G2 category) (C) Scatter plot of

normalized prediction errors (z-scores) of G2 reactions for molecular fingerprints and quantum chemistry. The indolelactate

dehydrogenase (EC 1.1.1.110) and the succinate semialdehyde reductase (EC 1.1.1.61) reactions (red points) have potentially

erroneous experimental values.

https://doi.org/10.1371/journal.pcbi.1006471.g002
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principles and requires only two calibration parameters per oxidoreductase group (α and β in

Fig 1E), as compared to GCM which uses 5–13 parameters while achieving lower prediction

accuracy (Table 1). Therefore, our quantum chemistry approach can be extended to predict

reduction potentials for a wide domain of redox reactions since it does not depend as heavily

on empirical measurements. While the quantum chemistry method is computationally more

expensive than GCM–with a cost that scales with the number of electrons per molecule (Sup-

plementary Information)–it can still predict the potentials for several hundreds of reactions

when run on a typical high-performance computing cluster.

Systematic detection of potentially erroneous experimental values

Inconsistencies between our predictions and experimental measurements can be used to iden-

tify potentially erroneous experimental values. However, as such discrepancies might stem

from false predictions, we used an independent method to estimate redox potentials. We rea-

soned that consistent deviation from two very different prediction approaches should be

regarded as indicative of potential experimental error. The second prediction approach we

used is based on reaction fingerprints [38], where the structure of the reactants involved is

encoded as a binary vector (166 parameters without regularization, Supplementary Informa-

tion). These binary vectors are then used as variables in a regularized regression to correlate

structure against a physicochemical property of interest, such as redox potential [38,39]. This

approach is similar to the group contribution method (GCM) in that it is based on a structural

decomposition of compounds; however, unlike GCM, fingerprints encode a more detailed

structural representation of the compounds.

To detect potentially erroneous experimental measurements, we focused on redox poten-

tials of category G2 (carbonyl to hydroxycarbon reduction) as we have abundant experimental

information for this oxidoreductase group (see S4 Fig for results with the other categories). As

shown in Fig 2C, we normalized the prediction errors by computing their associated z-scores

(indicating how many standard deviations a prediction error is from the mean error across all

reactions). Two redox reactions stand out as having significantly different experimental and

predicted values for both methods (Z>2): indolepyruvate reduction to indolelactate (indole-

lactate dehydrogenase, EC 1.1.1.110) and succinate semialdehyde reduction to 4-hydroxybu-

tanoate (succinate semialdehyde reductase, 1.1.1.61).

Table 1. Prediction accuracy of the quantum chemistry and group contribution method modeling approaches.

G1 (n = 8)

Carboxylic Acid to Carbonyl

G2 (n = 59)

Carbonyl to Hydroxycarbon

G3 (n = 23)

Carbonyl to Amine

G4 (n = 15)

Hydroxycarbon to Hydrocarbon

Quantum Chemistry MAE = 45 mV

Pearson r = 0.43

R2 = 0.19

No. params. = 2

MAE = 31 mV

Pearson r = 0.59

R2 = 0.35

No. params. = 2

MAE = 17 mV

Pearson r = 0.70

R2 = 0.49

No. params. = 2

MAE = 34 mV

Pearson r = 0.45

R2 = 0.21

No. params. = 2

Group Contribution Method MAE = 52 mV

Pearson r = 0.54

R2 = 0.17

No. params. = 6

MAE = 34 mV

Pearson r = 0.48

R2 = 0.21

No. params. = 13

MAE = 31 mV

Pearson r = 0.22

R2 = -0.23

No. params. = 5

MAE = 66 mV

Pearson r = 0.16

R2 = -3.39

No. params. = 6

The number of available experimental values for each reaction category is indicated in parentheses. MAE = Mean Absolute Error; R2 = coefficient of determination.

Note that for the G1 category, quantum chemistry has a lower MAE, but GCM has higher values of Pearson r. While the Pearson r can range from -1 to 1, R2 can take on

any negative value. A prediction method with the same accuracy as the mean predictor (a constant model that always predicts the mean value of the experimental data)

has a value of R2 = 0; negative values of R2 indicate prediction accuracies that are worse than the mean predictor. GCM estimates of standard redox potentials were

obtained from the implementation by Noor et al. [36,37] used by eQuilibrator (see Methods).

https://doi.org/10.1371/journal.pcbi.1006471.t001
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We suggest an explanation for the observed deviation of the first reaction: in the experi-

mental study, the K’eq of indolelactate dehydrogenase was measured using absorbance at 340

nm as an indicator of the concentration of NADH [40]. However, since indolic compounds

also have strong absorption at 340 nm [41], this method probably resulted in an overestima-

tion of the concentration of NADH, and thus an underestimation of K’eq. Indeed, the experi-

mentally derived E’m is considerably lower (-400 mV) than the predicted one (-190 mV, via

quantum chemistry). With regards to the second reaction, succinate semialdehyde reductase,

we note that re-measuring its redox potential is of considerable significance as it plays a central

role both in carbon fixation–e.g., the 3-hydroxypropionate-4-hydroxybutyrate cycle and the

dicarboxylate-4-hydroxybutyrate cycle [11] –as well as in production of key commodities–e.g.,

biosynthesis of 1,4-butanediol [42].

Comprehensive prediction and analysis of reduction potentials

We used the calibrated quantum chemistry model to predict redox potentials for a database of natu-

ral and non-natural redox reactions. We generated this dataset by identifying pairs of metabolites

from KEGG [7,8] that fit the chemical transformations associated with each of the four different oxi-

doreductase groups (Methods). We considered only compounds with fewer than 7 carbon atoms,

thus generating a dataset consisting of 652 reactions: 83 reductions of category G1; 205 reductions

of category G2; 104 reductions of category G3; and 260 reductions of category G4 (Supplementary

Dataset 1). Some of these redox pairs are known to participate in enzyme-catalyzed reactions while

others are hypothetical transformations that could potentially be performed by engineered enzymes.

We note that our approach to generate reactions is similar to that of the comprehensive Atlas of Bio-

chemistry [43], but we focus solely on the four redox transformations of interest.

Fig 3A shows the distribution of all predicted redox potentials at pH = 7, I = 0.25 M and

reactant concentrations of 1 mM, i.e., E’m [14,36]. Fig 3 demonstrates that the value of E’m is

directly related to the oxidation state of the functional group being reduced. The general trend

is that “the rich get richer” [1,44,45]: more reduced functional groups have a greater tendency

to accept electrons, i.e., have higher reduction potentials. Specifically, the reduction potential

of hydroxycarbons (G4, <E0m> = −15 mV) is higher than that of carbonyls (<E0m> = −225

mV for both G2 and G3) and the reduction potential of carbonyls is higher than that of un-

activated carboxylic acids (G1,<E0m> = −550 mV). Categories G2 and G3 (reduction of car-

bonyls to hydroxycarbons or amines, respectively) have very similar potentials because the

oxidation state of the functional groups involved is identical (note that this holds for the physi-

ological E0m but not for E0o because reactions in the G3 category are balanced with an ammonia

molecule as a substrate, thus introducing a factor of RTln(10−3) when converting to the mM

standard state). For category G1, activation of carboxylic acids significantly increases their

reduction potential (orange line in Fig 3) as the energy released by the hydrolysis of the phos-

phoanhydride or thioester (~50kJ/mol) activates the reduction: DE ¼ 50

nF ffi 250 mV (n being

the number of electrons, F the Faraday constant).

The quantum chemical predictions further enable us to explore detailed structure-energy

relationships within each of the general oxidoreductase groups. To exemplify this we focus on

the G2 category, as shown in Fig 4. While we find no significant difference between the average

E’m of aldehydes and ketones, we can clearly see that the identity of functional groups adjacent

to the carbonyl has a significant effect on E’m, as expected. Alpha ketoacids and dicarbonyls

have a significantly higher E’m than alpha hydroxy-carbonyls (Δ<E0m>ffi 20 mV,p< 0.005)

and carbonyls adjacent to hydrocarbons (Δ<E0m>ffi 35 mV,p< 0.0005). Carbonyls next to

double bonds or aromatic rings have a significantly lower E’m values than alpha hydroxy-car-

bonyls and carbonyls that are next to hydrocarbons (Δ<E0m>ffi −50 mV, and Δ<E0m>ffi

Thermodynamic principles of redox biochemistry
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−40 mV respectively, p< 0.0001). Lactones (cyclic esters), have redox potentials that are signif-

icantly lower than any other subgroup within the G2 category. As another validation of the

predicted potentials, we found that the reduction potentials of open-chain sugars are signifi-

cantly higher than those of closed-ring sugars that undergo ring opening upon reduction,

where Δ<E0m>ffi 60 mV (p< 10−5). This is consistent with the known thermodynamics of

closed-ring sugar conformations, e.g., the Keq of arabinose ring opening is ~350[46], which

translates to DE ¼ RTlnð350Þ

nF ffi 75 mV, close to the observed average potential difference between

the subgroups (R is the gas constant, and T the temperature).

On the biochemical logic of the universal reliance on NAD(P)

While myriad natural electron carriers are known to support cellular redox reactions, NAD(P)

has the prime role in almost all organisms, participating in most (>50%) known redox

Fig 3. Distributions of predicted standard transformed redox potentials at pH = 7 and I = 0.25 for a dataset of 650 natural and non-natural

reactions. The average reduction potentials for each reaction category are (values rounded to nearest multiple of 5): un-activated carboxylic acid

to carbonyl (G1:<E0m> = −550 mV), activated carboxylic acid to carbonyl (activated G1:<E0m> = −300 mV), carbonyl to hydroxycarbon (G2:

<E0m> = −225 mV), carbonyl to amine (G3:<E0m> = −225 mV), and hydroxycarbon to hydrocarbon (G4:<E0m> = −15 mV) Both histograms

and cumulative distributions (bold lines, right y-axis) are shown. The distributions for unactivated and activated carboxylic acid to carbonyl

reductions (red and purple) are the same, but shifted by +250 mV. Dashed colored lines show the median redox potential for each reaction

category. Grey shaded regions corresponds to the range of NAD(P) redox potential, while light grey wavy lines delimit the region of reversible

oxidation/reduction by NAD(P)/NAD(P)H. Ranges of reduction potentials for different alternative cofactors are shown as grey rectangles

underneath graph (S1 Table).

https://doi.org/10.1371/journal.pcbi.1006471.g003
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reactions [7,8]. The standard redox potential of NAD(P) is ~ -330 mV (pH = 7, I = 0.25), but

as [NADPH]/[NADP] can be higher than 50 and [NADH]/[NAD] can be lower than 1/500,

the physiological range of the NAD(P) reduction potential is between -380 mV and -250 mV

[35,47–51]. Most cellular redox reactions are therefore constrained to a limited reduction

potential range determined by the physicochemical properties and physiological concentra-

tions of NAD(P). By examining the fundamental trends of redox potentials of the different oxi-

doreductase groups we will show that NAD(P) is well-matched to the redox transformations

most commonly found in cellular metabolism.

Fig 3 demonstrates that the reduction potentials of activated acids (activated G1) and car-

bonyls (G2 and G3) are very similar, such that NAD(P) can support both the oxidation and

reduction of nearly all redox couples in these classes. Although the distributions associated

with these redox reactions are not entirely contained in the NAD(P) reduction potential range

(marked in grey), the reduction potential of a redox pair can be altered by modulating the con-

centrations of the oxidized and reduced species. As the concentrations of metabolites usually

lie between 1 μM and 10 mM [1,4,35,52], the reduction potential of a redox pair can be offset

from its standard value by up to�
RTlnð104Þ

nF ffi �120 mV (assuming two electrons are trans-

ferred). Therefore, NAD(P) can support reversible redox reactions of compound pairs with

E’m as low as −380 − 120 = −500 mV and as high as −250 + 120 = −130 mV (indicated by the

light grey regions in Fig 3), a range that encompasses almost all activated acids (activated G1)

and carbonyls (G2 and G3 reactions). Outside this range, however, NAD(P)(H) can only be

used in one direction of the redox transformation–either oxidation or reduction, but not both.

Fig 3 shows that NAD(P)H can support irreversible reductions of hydroxycarbons to hydro-

carbons and NAD(P) supports irreversible oxidation of carbonyls to carboxylic acids.

Next, we focus on a small set of redox reactions found in the extended central metabolic

network that is shared by almost all organisms: (i) The TCA cycle, operating in the oxidative

or reductive direction [53], as a cycle or as a fork [54], being complete or incomplete [54], or

with some local bypasses (e.g., [55]); (ii) glycolysis and gluconeogenesis, whether via the EMP

Fig 4. Comparison between the redox potentials of sub-groups for reactions in the G2 category (carbonyl to hydroxycarbon

reductions). (A) Aldehydes vs. ketones (non-statistically significant Δ<E0m>); (B) nearest-neighbor functional group (all subgroups

have statistically significant Δ<E0m>, p<0.005, except hydroxyl/amine and hydrocarbon) (C) closed-ring sugar reduction to open-

chain vs. open-chain sugar reduction to open-chain (statistically significant Δ<E0m>, p<10–5), (D) natural reactions appearing in

KEGG vs. non-natural reactions (statistically significant Δ<E0m>, p<0.005) (E) natural reactions that only use NAD(P) as redox

cofactor vs. those that use alternative cofactors (cytochromes, FAD, O2, or quinones) (non-statistically significant Δ<E0m>,

p = 0.03).

https://doi.org/10.1371/journal.pcbi.1006471.g004
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or ED pathway [56], having fully, semi or non-phosphorylated intermediates [57]; (iii) the

pentose phosphate cycle, working in the oxidative, reductive or neutral direction; and (iv) bio-

synthesis of amino-acids, nucleobases and fatty acids. As schematically shown in Fig 5, and

listed in Supplementary Dataset S2, the� 60 redox reactions that participate in the extended

central metabolism almost exclusively belong to one of the following groups: (i) reduction of

an activated carboxylic acid to a carbonyl or the reverse reaction oxidizing the carbonyl (9

reactions, G1); (ii) reduction of a carbonyl to a hydroxycarbon or its reverse oxidation (20

reactions, G2); (iii) reduction of a carbonyl to an amine or its reverse oxidation (18 reactions,

G3); (iv) irreversible oxidation of carbonyls to un-activated carboxylic acids (5 reactions, G1 in

the direction of oxidation); and (v) irreversible reduction of hydroxycarbon to hydrocarbons

(4 reactions, G4). Only two central metabolic reactions (marked in magenta background in

Fig 5) oxidize hydrocarbons to hydroxycarbons (G4, in the direction of oxidation) and require

a reduction potential higher than that of NAD(P): oxidation of succinate to fumarate and oxi-

dation of dihydroorotate to orotate (While formally being oxidation of hydrocarbon to hydro-

xycarbon, the oxidations of prephenate to 4-hydroxyphenylpyruvate and of arogenate to

Fig 5. A schematic showing the location of different types of oxidoreductase reactions (oxidoreductase groups 1

to 4) within the extended central metabolic network. We highlight reactions (purple) where a hydrocarbon is

oxidized to a hydroxycarbon (G4 reactions, in the direction of oxidation) which generally cannot be sustained by NAD

(P) as redox cofactor. See Supplementary Dataset 2 for full set of redox reactions in extended central metabolic

network. G6P, Glucose-6-phosphate; F6P, Fructose-6-phosphate; DHAP, Dihydroxyacetone phosphate; GAP,

Glyceraldehyde 3-phosphate; Gly1P; Glycerol 1-phosphate; 6PG, 6-Phosphogluconolactone; R5P, Ribulose

5-phosphate; E4P, Erythrose 4-phosphate; 3PG, 3-Phosphoglycerate; PEP, Phosphoenolpyruvate; PYR, Pyruvate;

AcCoA, Acetyl coenzyme A; 2KG, 2-Ketoglutaric acid; OA, Oxaloacetate.

https://doi.org/10.1371/journal.pcbi.1006471.g005
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tyrosine present a special case since they create a highly stable aromatic ring and hence have

enough energy to donate their electrons directly to NAD(P)). Similarly, the extended central

metabolic network does not demand the low reduction potential required for the reduction of

un-activated carboxylic acids (G1).

The reduction potential range associated with NAD(P) therefore perfectly matches the vast

majority of reversible redox reactions in extended central metabolism–i.e., reduction of acti-

vated carboxylic acids and reduction of carbonyls (orange, purple and blue distributions in Fig

3)–and can also support the common irreversible redox transformations of extended central

metabolism–i.e., reduction of hydroxycarbons and oxidation of carbonyls to un-activated car-

boxylic acids (green and red distributions in Fig 3). Cells typically rely on secondary redox car-

riers like quinones and ferredoxins (Fig 3, S1 Table), to support less common reactions, i.e.,

oxidation of hydrocarbons and reduction of un-activated carboxylic acids.

Why is the reduction potential of NAD(P) lower than the E’m of most carbonyls (Fig 3)? As

biosynthesis of an NAD(P) derivative with higher reduction potential presents no major chal-

lenge [58], why does this lower potential persist? We suggest that this redox offset plays an impor-

tant role in reducing the concentrations of cellular carbonyls by making their reduction to

hydroxycarbons favorable. It is well known that carbonyls are reactive towards macromolecules,

as they spontaneously cross-link proteins, inactivate enzymes and mutagenize DNA [59,60]. As

the reduction potential of NAD(P) is lower than most carbonyls, the redox reactions in category

G2 (or G3) prefer the direction of reduction, thus ensuring that carbonyls are kept at lower con-

centrations than their corresponding hydroxycarbons (or amines). Assuming a value of E0 = −330

mV for NAD(P) and taking the average E’m of the G2 reactions (<E0m>ffi −225 mV) results in

an estimated equilibrium concentration ratio
½hydroxycarbon�
½carbonyl� ¼ exp � ðE½NADðPÞ�� <Em>ÞnF

RT

� �
ffi 3500, thus

ensuring very low levels of the carbonyl species. While we do not have many measurements to

confirm this prediction, we note one central example: in E. coli, the concentration of oxaloace-

tate is 1–4 μM [61], while the concentration of its conjugated hydroxyacid, malate, is 2–3 mM

[52].

For ketoacids and open-ring sugars (which are especially reactive due to the free carbonyl)

this effect is even more pronounced as both have especially high reduction potentials (Fig 4).

Indeed, the reduction potential of ketoacids is so high that the reverse, oxidative reaction is

usually supported by electron donors with a higher potential than NAD(P), for example, qui-

nones, flavins, and even O2 (e.g., lactate oxidase, glycolate oxidase). Interestingly, the reactions

of category G2 that are supported by known enzymes in the KEGG database (75% of reactions

in this category) have significantly lower E’m than the remaining reactions, which are not

known to be catalyzed by natural enzymes (Δ<E0m>ffi 20 mV,p< 0.005). As such, we suggest

that the G2 transformations that are known to be enzyme-catalyzed are mainly those that are

amenable to redox coupling with NAD(P) (Fig 4D). Within the subset of G2 transformations

found in KEGG, those that use redox cofactors other than NAD(P) (such as cytochromes,

FAD, O2, or quinones) have higher E’m values (Δ<E0m>ffi 20 mV, not significant p = 0.03)

than those that use NAD(P) (Fig 4).

Finally, we note that the reduction potential of NADP and activated carboxylic acids (acti-

vated G1) overlap almost completely, such that we would not expect NAD(P) to have a strong

effect on the ratio between the concentrations of carbonyls and activated acids. This is to be

expected as both carbonyls and activated carboxylic acids are reactive–e.g., acetylphosphate

and glycerate bisphosphate acetylates proteins spontaneously [62] and acyl-CoA’s S-acetylates

cellular peptides non-enzymatically [63]. As such, there is no sense in driving the accumula-

tion of carbonyls at the expense of activated carboxylic acids or vice-versa–neither approach

would ameliorate non-specific toxicity.
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Discussion

In this work, we present a novel approach for predicting the thermodynamics of biochemical

redox reactions. Our approach differs radically from group contribution methods, which rely

on a large set of arbitrarily-defined functional groups, assume no energetic interactions

between groups, and are restricted to metabolites that are decomposable into the groups

spanned by the model. In contrast, quantum chemistry directly takes into account the elec-

tronic structure of metabolites in solution.

Focusing on specific examples highlights the strengths of our quantum chemical approach

as well as various weaknesses of GCM. For example, we find several reactions where the GCM

predictions are obviously inaccurate as they are too high to be reasonable: 2-Hydroxy-

5-methylquinone, 2,4,5-Trihydroxytoluene (GCM: E0m = 543 mV, QC: E0o = −158 mV);

2-Pyrone-4,6-dicarboxylate, 2-Hydroxy-2-hydropyrone-4,6-dicarboxylate (GCM: E0m =

1406 mV, QC: E0o = −375 mV); and Mevaldate, (R)-Mevalonate (GCM: E0m = 132 mV, QC:

E0o = −190 mV). Close inspection of the group matrix underlying these estimates reveals errors

in the decomposition of the compounds. Failures in the GCM decomposition are likely due to

the complexity of molecular representations in the standard INCHI format [64] and usually

occur with aromatic and delocalized electrons. This reflects challenges inherent in group

decomposition, which are avoided when using the quantum chemistry approach.

A more illuminating example is that of 3-dehydroshikimate, shikimate (shikimate dehy-

drogenase), the sole redox reaction in the shikimate pathway, converting erythrose 4-phos-

phate and PEP into chorismate. (Chorismate is required for the biosynthesis of aromatic

amino-acids, folates, quinones, and important secondary metabolites [65]). GCM predicts a

value of E0m = −85 mV, which, if correct, indicates that the reduction of 3-dehydroshikimate

with NAD(P)H is irreversible. On the other hand, quantum chemistry methods predict E0m =

−268 mV, which corresponds to a 6 order-of-magnitude equilibrium concentration difference

with respect to the GCM value. The quantum chemistry prediction thus implies reversibility of

the oxidoreductase reaction with NAD(P)H. As oxidation of shikimate by NAD(P) has been

shown to occur in-vivo in gram positive bacteria [66], it is clear that the GCM prediction is

wrong and that the quantum chemistry approach provides a more accurate assessment of the

thermodynamic potential of this important biochemical reaction.

Unlike previous efforts [67,68], our quantum chemistry approach relies on a two-parameter

calibration for each oxidoreductase reaction category, which reduces computational cost by

avoiding the need to calculate vibrational enthalpies and entropies (Supplementary Informa-

tion). In future studies, improvements in accuracy could be achieved by exploring a larger

space of quantum model chemistries, or—if more experimental data becomes available—cali-

brating using more sophisticated regression techniques, such as Gaussian Process regression

[69]. Yet, as we have shown, the current procedure is sufficient to yield high coverage and

accuracy at a reasonable computational cost.

In contrast with GCM methods, our calibration parameters can be at least partially inter-

preted. One important contribution to the systematic bias in the raw quantum calculations

(i.e. the y-intercept in the linear regression) comes from neglecting the vibrational component

of the molecular enthalpy. Interpreting the slope parameter is more complex, yet examples in

the literature show that it can be traced back to the choice of solvation [70] or—in the context

of modeling quinone derivatives–to the basis set incompleteness and the shortcomings of the

DFT exchange correlation functionals [71]. We note, however, that faster computational

resources will eventually enable full ab initio prediction of hundreds of standard transformed

redox potentials, rendering the two-parameter calibration and the use of empirical pKa values

obsolete [15,72].

Thermodynamic principles of redox biochemistry

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006471 October 24, 2018 11 / 22

https://doi.org/10.1371/journal.pcbi.1006471


Importantly, the quantum chemical strategy is not subject to the inconsistencies that

plague experimental databases. Experimental values are measured in a wide range of differ-

ent conditions, including temperature, pH, ionic strength, buffers, and electrolytes. In

many cases, the exact measurement conditions are not reported, making it practically

impossible to account for these factors. Thus, even if we were to gain access to more experi-

mental data, the lack of systematically applied conditions makes such resources problem-

atic. In contrast, quantum chemical simulations can be performed in consistent, well-

defined conditions.

Why does the primary biological reduction potential range lie between -370 mV and -250

mV? One possibility is a frozen evolutionary accident. In this view, NAD(P) was available

early in evolution and was found useful in supporting multiple redox reactions; as such, it was

fixed as the central redox carrier before the Last Universal Common Ancestor (LUCA). While

we cannot rule out this explanation, we suggest an alternative: that the primary reduction

potential range represents a near optimal adaptation given biochemical constraints and selec-

tion pressures imposed throughout evolution. This idea is supported by the fact that most

extant electron carriers already existed in LUCA [6], and yet none have as extensive a role in

metabolism as NAD(P). Furthermore, derivatives of NAD(P) are simple to synthesize bio-

chemically–e.g. deamino-NAD is a precursor of NAD–and can have considerably shifted

reduction potentials [58]. Despite this, no organism has been found to rely on such derivatives.

Finally, the deaza-flavin coenzyme F420 is a prominent electron carrier in the central metabo-

lism of methanogens and other prokaryotes [73,74], and has a reduction potential around -340

mV [75], almost identical to that of NAD(P). Hence, even organisms that partially replace

NAD(P) use a carrier with a similar reduction potential.

The enhanced resolution provided by quantum chemistry uncovers important patterns not

accessible using traditional analyses. Exemplifying this, we found that the main cellular elec-

tron carrier, NAD(P), is ‘tuned’ to reduce the concentration of reactive carbonyls, thereby

keeping the cellular environment more chemically stable. Yet, this protection comes at a price:

the oxidation of hydroxycarbons is thermodynamically challenging and often requires the use

of electron carriers with higher reduction potential. A recent study demonstrates the physio-

logical relevance of this thermodynamic barrier: the NAD-dependent 3-phosphoglycerate

dehydrogenase–the first enzyme in the serine biosynthesis route–can sustain high flux in spite

of its unfavorable thermodynamics only through coupling with the favorable reduction of

2-ketoglutarate [76].

Our analysis further supports the previous assertion that the TCA cycle has evolved in the

reductive direction [53,77]. While all the other electron transfer reactions in the extended cen-

tral metabolism belongs to oxidoreductase groups that can be supported by NAD(P)(H), oxi-

dation of succinate–a key TCA cycle reaction–cannot be carried by this electron carrier. As the

reverse reaction, i.e., fumarate reduction, can be support by NADH [78,79], it is reasonable to

speculate that the reaction first evolved in the reductive direction, and only later was adapted

to work in the oxidative direction using an alternative cofactor.

So long as sufficient experimental data is available to allow for calibration, our approach

can be extended to other types of biochemical reactions. For example, understanding the ther-

modynamics of carboxylating and decarboxylating enzymes–the “biochemical gateways” con-

necting the inorganic and the organic world– could pave the way for the identification of

highly efficient, thermodynamically favorable carbon fixation pathways based on non-stan-

dard but promising reaction chemistries [80,81]. In this way, high-resolution thermodynamic

analyses may provide much needed insight for the engineering of microbes to address global

challenges.
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Methods

We performed quantum chemical simulations—geometry optimizations followed by electronic

single point energy (SPE) calculations—on the major species (MS) of each metabolite of interest

at pH = 0, which corresponds to the most positively charged species (see below and SI for details

on the model chemistries used). Running calculations on these reference protonation states yields

estimates for the standard redox potential, Eo(major species at pH = 0). Using pKa values from the

ChemAxon calculator plugin (Marvin 17.7.0, 2017, ChemAxon)—a cheminformatics software

widely used in the field of biochemical thermodynamics [4,14,36,67,82–85] - the extended Debye-

Huckel equation and the Alberty-Legendre transform, we converted Eo(MS at pH = 0) to the stan-

dard (standardized to 1 mM) transformed redox potential of interest, E0m(pH = 7,I = 0.25)

[31,34]. To correct for systematic errors in both the quantum chemical predictions and the pKa

estimates, we calibrate the resulting E0m(pH = 7,I = 0.25) values against experimental data using

linear regression, performing a separate calibration for each of the four different redox reaction

categories. We further detail each of these steps below (see also Supplementary Information).

Quantum chemical geometry optimizations

For each metabolite, we generated ten initial geometric conformations using ChemAxon’s cal-

culator plugin (Marvin 17.7.0, 2017, ChemAxon). Quantum chemistry calculations were per-

formed using the Orca software package (version 3.0.3) [86]. Geometry optimizations were

carried out using DFT, with the B3LYP functional and Orca’s predefined DefBas-2 basis set

(see S3 Table for detailed basis set description). The COSMO implicit solvent model [87] was

used, with the default parameter values of epsilon = 80.4 and refrac = 1.33. DFT-D3 dispersion

correction [88] using Becke-Johnson damping [89] was also included.

Quantum chemical electronic single point energies (SPE) and calibration

against experimental values

Single point energy (SPE) calculations yield the value of the electronic energy EElectronic for

each conformer at their optimized geometry. We used the optimized geometries obtained

using DFT as inputs for SPE calculations (see below and SI for details on the SPE model chem-

istry selected). Substrate and product conformers were sampled according to a Boltzmann dis-

tribution. By taking the difference of products’ and substrates’ EElectronic values, we obtain

ΔEElectronic, which we treat as directly proportional to the standard reduction potential of the

major species at pH 0:

Eo MS at pH ¼ 0ð Þ � �
DEElectronic

nF

The use of ΔEElectronic to approximate the reduction potential as opposed to DGo
r (which

includes rotational and vibrational enthalpies and entropies) reduces computational cost and is

motivated by the empirical observation that there is a strong correlation between ΔEElectronic and

DGo
r for these redox systems (S5 Fig, see SI for details). We note that we subtracted the energy of

molecular hydrogen (obtained with the same SPE model chemistry) from ΔEElectronic in order to

get redox the potentials relative to the standard hydrogen electrode. A similar approach has

been used to model redox reactions in the context of organic redox flow batteries [28].

We use cheminformatic pKa estimates (Marvin 17.7.0, 2017, ChemAxon), the extended

Debye-Huckel equation and the Alberty-Legendre transform (16, 17) to convert both the

experimental standard redox potentials and the quantum chemical predictions of Eo(MS at
pH = 0) to the transformed redox potentials standardized to 1 mM, E0m(pH = 7,I = 0.25). Then,
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independently for each redox category, we performed linear regressions between the

E0m(pH = 7,I = 0.25) values and the available experimental redox potentials. The calibration via

linear regression was implemented using the SciKit learn Python library.

In order to optimize prediction accuracy, we ran geometry optimization and SPE calcula-

tions using a large diversity of model chemistries, generated by selecting one of ten possible

DFT functionals, two wave function electronic structure methods, three possible basis sets, the

option of adding implicit solvation, as well as a correction to account for dispersion interac-

tions (S1 Fig, and see SI for details). Optimizing for Pearson correlation coefficients r, we

selected the following model chemistry to predict reactions without experimentally measured

potentials: a DFT approach with the double-hybrid functional B2PLYP [32,33], the DefBas-5

Orca basis set (see S3 Table for detailed basis set description), COSMO implicit solvent [87],

and D3 dispersion correction [88]. To avoid overfitting, we trained the model chemistry opti-

mization procedure on the experimental data for the G3 reaction category (carbonyl to amine

reduction), and validate its accuracy on the rest of the oxidoreductase reaction categories

(Table 1 and S3 Fig). Hybrid and double-hybrid DFT functionals have been shown to accu-

rately capture the thermochemistry and noncovalent interactions of molecules when com-

pared with coupled cluster results [90,91]. Therefore, we select this double-hybrid DFT

approach covers the relevant physics of our problem while minimizing computational cost

and maximizing predictive power. Although we explored a large set of DFT functionals, wave

function methods, and basis sets, further improvements could be achieved by exploring a

larger space of model chemistries, including the geometry optimization procedure, conformer

generation method, as well as explicit solvation models [15]. For example, adapting a recent

highly accurate method (tested on four molecules) based on the Linear Response Approxima-

tion (LRA) to the large scale prediction of E’m values would be an interesting direction [72].

Predicting redox potentials with molecular fingerprints and group

contribution method

We used the RDKit software tool (http://www.rdkit.org), to obtain binary molecular finger-

prints of each compound of interest. Because of the relatively small size of our training sets

and in order to minimize overfitting, we used MACCS Key 166 fingerprints instead of other

popular Morgan circular fingerprints [92]. We concatenated each redox half-reaction sub-

strate/product fingerprint pair into a single reaction fingerprint [38] and used these as input

training data for regularized linear regression. We then performed an independent regularized

regression for each of the four different redox reaction categories.

To obtain group contribution estimates of redox potentials, we use the group matrix and

the group energies of Noor et al. [36] used in eQuilibrator [37], an online thermodynamics cal-

culator. We note that eQuilibrator uses the component contribution method (CCM) which

combines group contribution energies with experimental reaction or formation Gibbs energies

(“reactant contributions”) whenever these are available. That is, for reactions with available

experimental data, eQuilibrator will return the experimental energies. Thus, for fair compari-

son against quantum chemistry we used the GCM code underneath eQuilibrator to obtain the

group contribution estimates for all reactions in our test set. Just like the quantum chemical

predictions, the GCM estimates were standardized to the E’m(pH = 7, I = 0.25) state.

Systematic detection of reactions with potentially erroneous experimental

values

We design a strategy to detect reactions with potentially erroneous experimental values as

listed in the NIST Thermodynamics of Enzyme-Catalyzed Reactions Database (TECRDB)
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[30]. We identify reactions whose predicted potential deviates from experiment by a similar

amount for both the calibrated quantum chemistry and fingerprint-based modeling

approaches. In order to make the errors associated to the two different modeling methods

comparable, we normalize the prediction errors by computing their associated z-scores:

ZErr ¼
ðErr� mÞ

s
. We set a threshold value for the z-score of Z = 2, such that reactions with

ZErr(QC)> 2 and ZErr(fingerprints)> 2 are assigned a high likelihood of having an erroneously

tabulated experimental value in NIST-TECRDB.

Generation of comprehensive database of natural and non-natural redox

reactions

To generate a database of all possible redox reactions involving natural compounds, we use a

decomposition of all metabolites into functional groups as per the group contribution method

[36]. We find pairs of metabolites in the KEGG database with functional group vectors whose

difference matches the reaction signature of any of the redox reaction categories of interest.

For example, pairs of metabolites in the G1 category will have a group difference vector with a

+1/-1 in the element corresponding to a carbonyl/carboxylic acid functional group respectively

(see SI for details). We note that every reaction generated by this strategy can be uniquely

assigned to one of the four redox categories considered.

Using this method we succeeded in generating a rough database of redox reactions. How-

ever, additional manual and semi-automated data cleansing was required to get the final ver-

sion of the database (see SI for further details). For example, use of the group difference

vectors failed to account for the chirality of the metabolites, and in some instances stereochem-

istry was not maintained throughout the reaction. In order to solve this, we applied an addi-

tional filter, which used the conventions for assigning chirality (R/S, L/D) present in molecule

names to match chirality between the substrate and product. Sugars proved to be especially

problematic as those reactions did not maintain stereochemistry throughout; for these reac-

tions, the above filtering method did not suffice, often keeping incorrect reactions such as

L-Xylonate! L-Arabinose. For this, we used molecular naming conventions to eliminate the

wrong reactions (see SI for further details).

Statistically significant differences between average E’m values for distinct

structural groups

We performed Welch’s unequal variance t-test to obtain the p-value for the null hypothesis

that pairs of different reaction subcategories within group G2 have identical average E’m values

(Fig 4). Welch’s t-test is an adaptation of Student’s t-test which does not assume equal

variances.

Supporting information

S1 Table. The range of range of potentials for the most important redox cofactors in bio-

chemistry. S1 Table shows the physiological range of reduction potentials for the major classes

of biological electron carriers, as determined by their physicochemical properties and charac-

teristic intracellular concentrations.

(DOCX)

S2 Table. Linear regression coefficients obtained from calibrating the raw redox potential

estimates obtained from the quantum single point energy (SPE) model chemistry. The

model chemistry used consists of density functional theory with the B2PLYP double-hybrid

functional, the DefBas-5 Orca basis set (see S3 Table for detailed basis set description), the
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COSMO implicit solvent, and the D3 dispersion correction.

(DOCX)

S3 Table. A detailed description of the Default Basis (DefBas) sets in Orca version 3.0.3.

The notation SV(xxx/yyy) refers to the SV basis set with polarization functions xxx and diffuse

functions yyy.

(DOCX)

S4 Table. Prediction accuracy of the quantum chemistry, molecular fingerprints, and

group contribution method modeling approaches. The number of available experimental

values for each reaction category is indicated in parentheses. MAE = Mean Absolute Error; R2

= coefficient of determination. The quantum model chemistry uses the double hybrid func-

tional B2PLYP with the DefBas-5 default Orca basis set (see S3 Table for detailed basis set

description), the COSMO implicit solvent, and the D3 dispersion correction. While the Pear-

son r can range from -1 to 1, R2 can take on any negative value. A prediction method with the

same accuracy as the mean predictor (a constant model that always predicts the mean value of

the experimental data) has a value of R2 = 0; negative values of R2 indicate prediction accura-

cies that are worse than the mean predictor.

(DOCX)

S1 Fig. Prediction accuracy, as measured using Pearson r coefficient, and average runtimes

per molecular conformer for different quantum single point energy (SPE) model chemis-

tries. The accuracy measures is obtained from comparing the predicted E0m(pH = 7,I = 0.25)

values against available experimental data. Data corresponds to prediction accuracy on the G3

reaction category, which consists of reductions of carbonyls to amines. Mean runtime is calcu-

lated over all molecular conformers involved in the simulation of the G3 reaction set with

available experimental data. As detailed in section 2.7 “Systematic model chemistry explora-

tion to optimize prediction accuracy”, the SPE model chemistries were obtained from search-

ing over a subspace of possible model chemistries generated from selecting a DFT (or wave

function method), a basis set, an implicit solvent model, and a dispersion correction from a

total set of: 10 different DFT functionals and 2 wave-function methods, 3 possible basis sets,

the option of adding the Conductor-like Screening Model (COSMO) for implicit solvation, as

well as the D3 dispersion correction. See Supplementary Dataset 5 for detailed model chemis-

try descriptions. The option of including or excluding DFT-D3 dispersion correction in the

geometry optimization procedure was also considered.

(TIF)

S2 Fig. Predicting biochemical redox potentials of carbonyl to hydroxycarbon reactions

(category G2) with different approaches. (A-C) Calibrating quantum chemical estimates

through linear regression (2-parameters per reaction category) significantly improves predic-

tion accuracy. Quantum chemical predictions were performed using the double-hybrid DFT

functional B2PLYP, the DefBas-2 Orca basis set, COSMO implicit solvent, and D3 dispersion

correction (S1 Text). Points in red correspond to reactions which consistently appear as outli-

ers across modeling approaches: the indolepyruvate reduction to indolelactate and succinate

semialdehyde reduction to 4-hydroxybutanoate (D-E) Prediction accuracy of group contribu-

tion method (10 parameters for the G2 category) and molecular fingerprints (166 parameters

calibrated with regularized Lasso regression). (F) Scatter plot of normalized prediction errors

(z-scores) of G2 reactions for molecular fingerprints and quantum chemistry. The indolelac-

tate dehydrogenase (EC 1.1.1.110) and the succinate semialdehyde reductase (EC 1.1.1.61)

reactions have potentially erroneous experimental values.

(TIF)
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S3 Fig. Scatter plots of experimental redox potentials and predicted potentials with the

selected calibrated quantum chemistry approach (upper four panels) and group contribu-

tion method (GCM) (lower four panels) for all four redox categories. Quantum chemical

predictions were performed using the double-hybrid DFT functional B2PLYP, the DefBas-2

Orca default basis set, the COSMO implicit solvent, and D3 dispersion correction (S1 Text).

Data corresponds to experimental values and predictions at the pH = 7 and I = 0.25 biochemi-

cal state. G1: reduction of an unmodified carboxylic acid (-COO) to a carbonyl (-C = O); G2:

reduction of a carbonyl to a hydroxycarbon (-COH, i.e., alcohol); G3: reduction of a carbonyl

to an amine (-CNH3); and G4: reduction of a hydroxycarbon to a hydrocarbon (-C-C-).

(DOCX)

S4 Fig. Detection of experimental outliers using a calibrated quantum chemistry approach

and MACCS fingerprint predictions for all four reaction categories.

(TIF)

S5 Fig. Correlation between quantum chemical estimates of ΔEElectronic and ΔGr
0o. Each

redox reaction category is shown in a different color. G1—reduction of carboxyl to aldehyde;

G2—reduction of carbonyl (ketone or aldehyde) to hydroxyl; G3—reduction of carbonyl to

amine; G4—reduction of hydroxyl to hydrocarbon. ΔEElectronic was obtained from single point

energy (SPE) calculations, while ΔGr
0o is obtained by additionally including rovibrational con-

tributions to Gibbs formation energy.

(TIF)

S6 Fig. Correlation between standard transformed redox potential predictions (pH = 7,

I = 0.25) using calibrated quantum chemistry with our top-two model chemistries. As dis-

cussed in the S1 Text, the prediction accuracy of the calibrated model chemistries was evalu-

ated using the experimental data for the G3 reaction category only (to avoid overfitting). The

labels refer to the quantum model chemistry used to perform a single point energy (SPE) cal-

culation on geometry-optimized conformers. For both SPE model chemistries, geometry opti-

mizations were performed using B3LYP functional, Orca’s predefined DefBas-2 basis set (S3

Table), COSMO implicit solvent model and DFT-D3 dispersion correction.

(TIF)

S7 Fig. Cumulative distribution functions of runtimes for geometry optimization and sin-

gle point energy (SPE) estimates using our quantum chemistry method. Distributions are

over the entire set of molecular conformers used in our study. Geometry optimizations were

performed out using DFT, with the B3LYP functional and Orca’s predefined DefBas-2 basis

set, as well as the COSMO implicit solvent model (see SI section 2.3). The cumulative distribu-

tions of SPE runtimes are shown for the two best-performing model chemistries: the linear-

scaling coupled cluster method DLPNO-CCSD(T), with the DefBas-4 Orca basis set (S3

Table), COSMO, implicit solvent, and D3 dispersion correction; and the double-hybrid func-

tional B2PLYP, the DefBas-5 Orca basis set (S3 Table for detailed description), COSMO

implicit solvent, and D3 dispersion correction (see SI section 2.7 for further details).

(TIF)

S1 Text. Supplementary material for “quantum chemistry reveals thermodynamic princi-

ples of redox biochemistry”.

(DOCX)

S1 Dataset. Contains predicted standard redox potentials (group contribution method and

calibrated quantum chemistry) an experimental potentials for all redox pairs considered
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in this work.

(XLSX)

S2 Dataset. Contains the full set of redox reactions in the extended central metabolic net-

work.

(XLSX)

S3 Dataset. Contains the full set of compound names, KEGG compound identifiers, smiles

strings (for the major species at pH = 0), and charge (for the major species at pH = 0) used

in this work.

(XLSX)

S4 Dataset. Contains the structural categorization of compounds in the G2 category used

to obtain the structure-energy relationships in Fig 4.

(XLSX)

S5 Dataset. Contains the details of all the model chemistries tested during the optimiza-

tion procedure.

(XLSX)

S6 Dataset. Contains the raw quantum chemical electronic energies–using a variety of

model chemistries—Calculated for up to 10 geometrical conformers of each compound

considered in this work.

(XLSX)
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