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Abstract

The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function
with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach,
and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological
constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted
state and to configurations where either the N or C terminus is not yet folded into the knot. The fastest folding pathways
from denatured states exhibit early formation of the N terminus portion of the knot and a rate-determining step where the
C terminus is incorporated. The low-lying minima with the N terminus knotted and the C terminus free therefore constitute
an off-pathway intermediate for this model. The insertion of both the N and C termini into the knot occurs late in the folding
process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other
protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.
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Introduction

The wide range of kinetics that characterizes protein folding

has attracted interest from both experimentalists and theoreticians

for decades [1]. Proteins fold on time scales that vary from

microseconds to minutes [2], even though the corresponding

energy landscape directs folding towards its native state. This wide

range of rates can be explained by the diverse size and shapes of the

free energy barriers between the unfolded and folded ensembles,

which are largely determined by the pattern of contacts, often

called the protein topology. Some of the slowest folding proteins,

such as the green fluorescent protein, are both long and have

complicated contact patterns [3]. In the past 15 years, a set of

proteins has been discovered that fold slowly and have knotted

topologies [4]. Topological constraints can lead to large energy

barriers that are difficult to characterize, so we employ a reduced

description of the protein and explore the landscape using geometry

optimization techniques. Topological problems have been investi-

gated previously using G�oo models [5], and have shown that local

unfolding may be required in some cases to organize the sequence

of the folding of structural units. This type of potential energy

landscape analysis with transition state theory has been used for

describing kinetic phenomena in systems as diverse as molecular

clusters, glasses, and proteins [6]. An advantage of this approach is

that the topological constraint limits the utility of a simple energy

based reaction coordinates (like Q, see Methods section), which

ordinarily work well to describe folding.

We studied a tRNA methyltransferase (PDB code 1UAM),

which contains a deep trefoil knot in the C terminus domain [7].

The goal of this study was to estimate the fastest speed possible for

folding a small knotted protein, and we therefore truncated the

system to residues 78–135 to limit the number of atoms not

included in the knot. Mathematically knots are defined in closed

loops. In proteins links are used to connect the termini, and the

structure is topologically classified by the determination of its

Alexander polynomial [8,9]. Recently knotted proteins have been

identified [10] and their kinetics explored. Knotted systems with a

larger number of residues beyond the knot will exhibit slower

kinetics, because of the need to break a larger number of contacts

to fold properly. Protein models based on random contacts

produce knotted proteins with greater frequency than is seen in

protein structure databases [11,12]. Knotted proteins are likely

avoided during evolution, while some have remained and are an

evolutionary curiosity. Knotting can also occur in other biopoly-

mers such as DNA, and these systems exhibit significantly slower

kinetics [13].

Results

A connected path of minima and transition states between an

unfolded structure and the native state was created with the

discrete path sampling method (DPS) combined with the

associative memory Hamiltonian [14,15]. After obtaining an

initial connection, this database of structures was expanded using
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schemes to systematically reduce the length and barriers associated

with the largest contribution to the kSS rate coefficient [16–19].

Here, the SS superscript refers to an approximate formulation

where the steady-state condition is applied to minima outside the

product and reactant sets. This formulation provides a convenient

framework for analysis because kSS can be written as a sum over

discrete paths [16,20]. Once this pathway appeared to have

converged, the database was further refined by connecting

undersampled minima with a large ratio of the free energy barrier

to free energy difference from the global minimum [21,22]. This

choice is motivated by the idea of optimizing folding kinetics

for topologically constrained system in a similar way to the

minimization of energetic frustration obtained by comparing the

folding temperature to the glass transition temperature [23,24].

The resulting database contained 212054 minima and 206923

transition states, and the corresponding disconnectivity graph

[25,26] is shown in Figure 1, as rendered by VMD [27]. Here we

remind the reader that every vertical line in the graph terminates

at the energy of a local minimum, and that the minima are

progressively connected together as the threshold energy, E,

increases, according to the lowest barrier between them. The

graph exhibits three distinct color coded features corresponding to

potential energy basins, with properly knotted minima occupying

the lowest-lying states in the center of the figure. Branches

corresponding to minima with the knotted topology are colored

blue, while those with the C and N termini still free are colored

green and red, respectively. The kinetic coefficients for intercon-

verting minima within these basins are relatively fast, so that local

equilibrium is achieved on the time scale of the slow kinetics

determined by the barriers between the different basins. This

figure represents an unusual folding energy landscape, where large

energy barriers occur despite the lack of favorable non-native

interactions in the Hamiltonian. The two higher energy sets of

structures correspond to local minima where either the C or N

terminus has the native topology, but the other terminus is still

unknotted, and we will refer to these as N-free and C-free

geometries, respectively (Figures 2 and 3).

A useful descriptor of these ensembles is their structural overlap.

The Q value (a measure of structural similarity, see Methods

section) between the N-free and native minima is 0:90, between

the C-free and native minima is 0:87, and between N-free and C-

free minima is 0:78. The small variation in Q shows that only a

few contacts are different, where a contact is restricted to be less

than 9 Å in order to distinguish structures that have a high degree

of similarity. Most of the contacts in each basin are identical,

except for a few important differences near the termini. In the N-

free minima these interactions are between residues 7–8 and 45–

46 as shown in Figure 4, while in the C-free minima they are

between 48–52 and 30–34 as shown in Figure 5, and define the

interactions that prevent unphysical chain crossings. These non-

native contacts are energetically neutral with respect to the

interaction Hamiltonian Eint (see Methods section) due to the

native-only form of the Hamiltonian, but they affect the calculated

pathways through an excluded volume repulsion due to the

backbone interaction Eback.

A kinetic analysis of the DPS database using transition state

theory requires choices for the value of � and the mass associated

with each site in the AMH potential. For simplicity a value of 12

atomic mass units (amu) was assigned to each site. To assign a

value for �, we compared the normal mode frequencies for the

AMH potential with typical values associated with heavy atom

motion in all-atom representations of proteins. This comparison

suggests that e should be around one kcal/mol. The discrete path

that makes the largest contribution to the phenomenological two-

state rate coefficient, which we use to define the overall reaction

mechanism, exhibits the same qualitative features over a wide

range of values for �. The estimated rate coefficients themselves

are more sensitive, as discussed below. If we take �~1kcal/mol

and the values of length and mass in the AMH potential as 1 Å

and 12 amu then the reduced value of kBT at room temperature is

approximately 0.59. The pre-exponential factor for each mini-

mum-to-minimum rate coefficient scales as
ffiffi
�
p

, while the reduced

value for room temperature decreases linearly, lowering the

corresponding Boltzmann factors exponentially.

The choice of the reactant and product states can have a

significant effect on the calculated rates. One way of selecting the

states is to calculate an order parameter for all the local minima,

and simply assign reactant and product states on this basis.

However, an alternative method is possible using the known

characteristics of the kinetic transition network and a self-

consistency condition. Here we take the two endpoints that were

used to calculate an initial path, and assign these minima to

reactant and product sets. We then regroup the database using a

recursive scheme [21], combining free energy minima that can

interconvert without encountering a barrier higher than a chosen

threshold value, DFbarrier. This approach is attractive, because

we require a separation of time scales for equilibration in the

product and reactant regions, compared to the folding transition

time, in order to recover a two-state description of the kinetics

[20,28,29]. In this case, we expect to see a range of values for

DFbarrier that give a similar value for the calculated rate

coefficient.

Rate coefficients were calculated for three different choices of

the reactants, namely a fully unfolded minimum and low-lying

minima from the C-free and N-free regions of the landscape. In

each case a low-lying minimum from the set of knotted

configurations was chosen as the product, and rate coefficients

were calculated for a range of � and DFbarrier values. Following the

recursive regrouping of states according to the value of DFbarrier,

mean first-passage times were calculated from each minimum in

the reactant set using a graph transformation procedure [17,30]. A

phenomenological two-state rate coefficient is then obtained using

appropriate occupation probabilities for the starting minimum

[16,17,20,30]. These values of � tested (1.0, 0.9 and 0.7 kcal/mol)

are close to the magnitude suggested by examining the normal

mode frequencies. For �~1kcal/mol the rate coefficient varies

from 0.04 to 0.4 s{1 for 0ƒDFbarrierƒ7kcal/mol using a fully

Author Summary

Proteins are chains, which must fold into a compact
structure for the molecule to perform its biological
function. There are a large number of ways the molecule
can move into this final shape. Proteins have evolved
sequences that perform this difficult task by having strong
biases toward the final shape, while not getting stuck in
different structures along the way. One way proteins can
be trapped is by forming a knot in the chain. For the most
part, proteins are remarkable in avoiding knotting.
However, in order to function a few proteins form knots.
We show how a model protein is able to knot itself, and
estimate how fast this process occurs. Our goal is to treat a
small and uncomplicated protein to estimate the fastest
rate possible for the folding of a knotted protein. This rate
is interesting when compared to the speed of folding of
other proteins. We have visualized how the molecule
changes shape to its functional position, and examined
other paths the molecule may take.

Folding Kinetics of a Knotted Protein
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Figure 1. Disconnectivity graph for the truncated knotted protein with energy in e. This graph includes 10430 minima with three or more
connections and 34519 transition states that link them. Branches corresponding to minima with the knotted topology are coloured blue, while those
with the C and N termini still free are coloured green and red, respectively. The graph reveals a clear separation into three distinct features
corresponding to the different topologies. The protein structures were rendered by VMD, shading the protein from blue to red between the N and C
termini.
doi:10.1371/journal.pcbi.1000835.g001

Folding Kinetics of a Knotted Protein
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unfolded or C-free minimum as the reactant. Therefore the

folding time is between 25 seconds and 2.5 seconds.

A movie of the C-free minimum to the folded state is shown in

Video S1. With a low-lying N-free minimum as the reactant, the

calculated rate coefficient is 0.02 s{1 for 0ƒDFbarrierƒ4kcal/

mol, jumping to about 50 s{1 for 5ƒDFbarrierƒ8kcal/mol. So

the folding time becomes 50 seconds to 0.02 seconds. A movie of

the N-free minimum to the folded state is shown in Video S2. The

values obtained rise by about two orders of magnitude starting

from N-free as reactant if we set �~0:7kcal/mol.

For each choice of reactant, the discrete path making the largest

contribution to the kSS rate coefficient [16] was extracted, and

snapshots of the intervening structures are superimposed upon the

energy as a function of integrated path length in Figures 6, 7, and 8.

Here the path length is defined from the Euclidean distance

between successive configurations in the folding reaction. These

pathways are based on the rate coefficients and associated free

energy barriers calculated at 298 0K, and the entropy terms that

derive from alternative discrete paths through the stationary point

database are all included in the estimates of the overall rate

coefficients. This kinetic analysis suggests that the local maxima in

the energy profiles shown in Figures 6, 7, and 8 generally

correspond to kinetic bottlenecks. Starting from an unfolded state,

we see that the N terminus first forms a loop that threads through

the middle of the protein, and then opens (Figure 6). The structures

involved in this process appear very similar to the corresponding

event in the pathway starting from an N-free minimum in Figure 8,

aside from the state of the C terminus. The final folding events

illustrated in Figure 6 are very similar to those shown in Figure 7,

with a bend forming at the C terminus, threading through the

center of the structure, and straightening. The calculated rate

coefficients are also very similar when the reactant is chosen as

either the fully unfolded state or a C-free minimum, indicating that

knotting of the C terminus is the rate-determining step for this

model system. The region of configuration space corresponding to

low-lying N-free minima is then interpreted as a kinetic trap, which

would probably result in a distinct relaxation time scale.

Discussion

In this study a truncated sequence from a tRNA methyltrans-

ferase was considered with a G�oo model containing only the

favorable interactions that are present in the global minimum. In

contrast to previous minimally frustrated models, which exhibit

only a single potential energy funnel [31–33], the landscape for the

knotted protein is divided into three distinct regions, correspond-

ing to the correctly folded native state and to structures where

either the C or N terminus are not knotted. The potential energy

barriers between the lowest minima in these regions are relatively

large, with values of order 15 to 20 � in units of the associated

memory Hamiltonian [34,35] parameter �, for which we estimate

a value of around one kcal/mol. The calculated rates for folding

are therefore rather slow, in agreement with previous simulations

of knotted proteins [36,37].

The folding reaction is hindered by the complex topology of this

protein. Modeling these interactions and mechanisms in a realistic

way requires new tools that prevent unphysical chain crossing

events from occurring during the interpolation between structures

that have an intervening chain. Details of the procedure are given

in the Methods section, and an overview is provided here. Our

initial aim was to avoid chain crossings by changing parameters of

the potential. However, tightening the bond length constraints for

Figure 2. Structural overlap between the global minimum and a low-lying C-free structure. The native structure has the red C-free termini
pointed towards the reader.
doi:10.1371/journal.pcbi.1000835.g002

Folding Kinetics of a Knotted Protein
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covalent bonds does not solve the problem, because the

interpolated images simply avoid the chain-crossing region. In

the doubly-nudged [38] elastic band [39–41] (DNEB) method for

identifying useful starting geometries for transition state refine-

ment, a set of images are connected by harmonic springs, and the

images can be equally spaced by increasing the corresponding

force constant. However, this increase forces the chains into high

energy structures that bracket an unphysical crossing. To avoid

this situation it is necessary to construct a non-linear interpolation

between the end points, and two strategies were implemented. To

accelerate the energy evaluation, an elastic network potential was

defined based on the two end points, with harmonic restraining

potentials for atoms whose separation does not change. This

geometrical analysis was also used to diagnose chain crossings for a

linear interpolation between the end points, and to distinguish the

chain that is moving from one that constitutes a barrier. When

crossings were identified the potential was modified to shrink the

end of the moving chain and add repulsive interactions to keep it

away from the other chain. The DNEB images were then refined

following standard procedures and the modified potential was

morphed back into the AMH potential slowly enough for sites on

one chain to move around the other chain, rather than through it.

Overall, this procedure allows paths to be obtained that

circumvent chain crossing, while retaining flexibility and providing

a solution that is free of constraints.

Both the C and N termini must effectively cross over a chain

belonging to the central region of the protein in order to achieve

the knotted topology. In the present model it is the C terminus

crossing that appears to be the rate-determining step. The rate

coefficients reported here are order of magnitude estimates, and

correspond to a slow folding process, as expected from previous

simulations [36,37] and experiments [42,43]. The precise

energetics of this truncated model may differ from those of the

full protein, but we expect the key steps in the folding and knotting

pathways to be retained. Making a meaningful estimate of the

scaling behavior with respect to chain length will be addressed in

future work. For both the C and N termini the chain cross-over are

achieved by formation of a loop, which then inserts through the

center of the protein and straightens. While the chain is in the loop

conformation the folding process could notionally be reversed by

pulling the end of the chain, which is one definition of a slipknot

topology, consistent with previous simulations [37]. The region of

configuration space corresponding to N-free local minima, where

the C terminus crossing occurs first, is therefore likely to give rise

to a separate relaxation time scale. The folding pathways exhibit

some interesting mechanistic features, which might be transferable

to related systems of knotted proteins and polymers. In particular,

both the C and N termini crossings are achieved by formation of a

loop that threads through the main body of the protein. The order

of the knotting of the chain and the folding of the protein may

change as the length of the system changes and as the energy

function becomes more realistic. Adding non-native interactions

would likely lower the free energy barrier of folding [44], but could

also stabilize non-native structures and slow local refolding of

the loops involved in chain crossings. Introducing non-additive

cooperative contacts would increase the energy barriers and likely

slow the kinetics [45]. Protein engineering studies of YibK suggest

that knotting and formation of native structure are independent

events that occur in sequence [46]. These experiments also suggest

an early knotting event and slow development of native structure

Figure 3. Structural overlap between the global minima and a low-lying N-free structure. The native structure has the blue N-free termini
pointed towards into the paper.
doi:10.1371/journal.pcbi.1000835.g003

Folding Kinetics of a Knotted Protein
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in the knotted region. Similar behavior is seen in DNA, where

local unfolding speeds up diffusion of the knot along the polymer

chain [47]. To provide meaningful comparisons with these

observations will require simulations of longer systems, rather

than the truncated sequence considered in the present work. When

compared to other protein folding proteins of a similar length,

which fold on the microsecond time scale [2], this system folds

over six orders of magnitude more slowly.

Methods

In order to describe an energy landscape with an exponential

number of states, we reduce the atomistic detail of the system and

discretize the energy landscape into minima and transition states.

The associative memory Hamiltonian (AMH) protein model

[34,35], is a coarse-grained molecular mechanics potential inspired

by the physics of protein folding. The energy functions consist of a

polypeptide backbone term, Eback, with a molecular interaction

term, Eint [48–53]. The number of atoms per residue is limited to

three (Ca, Cb, and O), except for glycine. The interaction

parameter �, which is the unit of energy, is defined by the native

state energy excluding backbone contributions, Eint, via

�~
DEintD
4N

, ð1Þ

where N is the number of residues. All temperatures are quoted in

reduced units as kBT=�. While Eback creates self-avoiding peptide-

like stereochemistry, Eint introduces the majority of the attractive

interactions that produce folding. Using the interactions described

by Eint, we define a pairwise additive G�oo model [54,55], which is

biased toward the native basin. Such models have been shown to

reproduce many features of the mechanism and kinetics of protein

folding [56,57]. The interactions between residues were defined by,

Eint~{
�

a

X
ivj{3

c½x(Di{jD)� exp {
(rij{rnat

ij )2

2s2
ij

" #
ð2Þ

where the distances in the Gaussian term rnat
ij are determined by the

native state. The interactions are defined in this minimal model for

residues with greater than three residues sequence separation

between the Ca{Ca,Ca{Cb,Cb{Ca,Cb{Cb atom pairs. The

weights, c, corresponding to the depths of the Gaussian wells, are

set to (0.177,0.048,0.430) in order to approximately divide the

interaction energy equally between the different distance classes, as

suggested by previous theoretical models [58]. The width of the

Gaussian, s2
ij , is determined by the sequence separation as Di{jD0:15

Figure 4. Contact map between the global minimum and the N-free structure.
doi:10.1371/journal.pcbi.1000835.g004

Folding Kinetics of a Knotted Protein
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Å. The scaling factor a is used to satisfy Eq. (1). We measure the

quality of the structures encountered with an order parameter, Q,

which measures the sequence dependent structural similarity of two

configurations. Q is calculated from Eq. (3) as a summation of Ca

pairwise differences between distances in a target and a reference

structure (usually the native state), normalized by the number of

contacts, where N is sequence length:

Q~
2

(N{1)(N{2)

X
ivj{1

exp {
(rij{rnat

ij )2

s2
ij

" #
: ð3Þ

The resulting order parameter, Q, ranges from zero, when there is

no similarity between structures at a pair level, to unity, which

indicates an exact overlap.

We made several changes to the original AMH backbone

potential, Eback, in the present work. Eliminating some compro-

mises necessary for rapid molecular dynamics simulations allows

the AMH potential to be used with geometry optimization

methods to produce tightly converged stationary points. This tight

convergence is necessary for the construction of a kinetic transition

network [20,22,59–61]. The terms shown in Eq. (4) are used to

reproduce the peptide-like conformations in the original molecular

dynamics energy function:

Eback~EharmzERamazEchainzEchizEev: ð4Þ

For all calculations, we replaced the SHAKE method for bond

constraints with a harmonic potential, Eharm, between the Ca-Ca,

Ca-Cb, and Ca-O atoms. This replacement permits the location of

local minima without requiring an internal coordinate transfor-

mation, and avoids discontinuous gradients [62]. The neighboring

residues in sequence sterically limit the positions the backbone

atoms can occupy, and this effect is reproduced with a

Ramachandran potential, ERama. The planarity of the trans

peptide bond is ensured by another harmonic potential, Echain.

The chirality of the Ca centers is maintained using the scalar triple

product between neighboring Cb, C
0
, and N atoms, Echi. Excluded

volume repulsion between the backbone atoms is achieved with via

a smooth step (hyperbolic tangent) function, Eev, in order to have a

continuous potential, and differs from the previous hard sphere

potential in the AMH.

For this Hamiltonian, we employed the discrete path sampling

(DPS) approach to create databases of local minima and their

intervening transition states, starting from two end points. To

identify suitable endpoints, we used basin-hopping global

optimization [63,64] to search for the global minimum of the

Figure 5. Contact map between the global minimum and the C-free structure.
doi:10.1371/journal.pcbi.1000835.g005

Folding Kinetics of a Knotted Protein
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energy landscape, and to create an unfolded conformation. We

have previously shown how basin-hopping can be successfully

combined with associative memory Hamiltonians for identifying

low energy states, and high quality structures [62]. The discrete

path sampling approach is a coarse-grained analogue of the

transition path sampling method [29,65,66], where geometry

optimization tools are employed to refine a kinetic transition

network. The network consists of local minima and transition

states of the energy potential, where a transition state is defined

as a stationary point with a single negative Hessian eigenvalue

[67]. The connectivity is defined by approximate steepest-

descent paths obtained by energy minimization following

infinitesimal displacements parallel and anti-parallel to the

eigenvector corresponding to the unique negative eigenvalue.

A discrete path then refers to a series of minimum-to-minimum

connections together with the intervening transition states. The

original DPS formulation has been presented in detail elsewhere

[16,20], as have more recent developments [18,21]. The aim is

to enlarge a database of connected stationary points start-

ing from those in the initial path, by adding all the minima

and transition states found during successive connection-

making attempts for pairs of minima selected from the current

database.

The main challenge of DPS calculations is the characterisation

of transition states. In contrast, energy minimization and

identifying approximate steepest-descent pathways is straightfor-

ward; here we used the limited-memory Broyden–Fletcher–

Goldfarb–Shanno (LBFGS) algorithm of Liu and Nocedal

[68,69]. The transition state searches are connection attempts

for a given pair of local minima. A doubly-nudged [38] elastic

band [39–41] (DNEB) refinement of interpolated images was first

run for each connection attempt, and the images corresponding to

local energy maxima were then tightly converged using hybrid

eigenvector-following [70]. The missing-connection algorithm

[71] was employed to choose subsequent pairs of minima for

further connection attempts [15].

To avoid unphysical chain crossed transition states, we made

two changes in methodology to generate physical interpolations for

finding potential transition state structures. We define two new

potentials Vres, which maintains chain connectivity, and Vrep,

which introduces atomic repulsion. The potential is modified in

three stages during the DNEB refinement. During the first third of

the DNEB steps Vres and Vrep are used with modified distances. In

the second third the distances are relaxed to physically meaningful

values, and in the final third we switch to the full AMH potential.

We also define a simpler potential function, often referred to as an

Figure 6. Energy/e as a function of integrated path length/Å for the pathway that makes the largest contribution to the rate
coefficient calculated for transitions from a denatured state to a low-lying knotted state. The integrated path length is the summation of
the displacement of the atoms between the two end points.
doi:10.1371/journal.pcbi.1000835.g006

Folding Kinetics of a Knotted Protein
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elastic network model [72] to represent the system during some of

the DNEB refinement. The two end points for the DNEB

calculation are analyzed to identify pairs of atoms within a cutoff

distance (10 Å) that are found at the same separation within a

given tolerance in both structures. If rS
ij and rF

ij are the distances

between atoms i and j in the starting and finishing geometries,

then we introduced a harmonic restraining potential for this pair if

DrS
ij{rF

ij D=rijv0:1, where rij~(rS
ij zrF

ij )=2. For Nres such pairs the

restraining potential was then

Vres~Ares

XNres

a~1

ra{r0
a

� �2
, ð5Þ

where ra is the distance between the atoms involved in restraint a,

and r0
a was initially set equal to ra~(rS

a zrF
a )=2. The parameter

Ares was set to 1000� in the present calculations, where the DNEB

spring constant was set to 10�. Vres has the appearance of an

elastic network model [72], which reflects the conserved

interatomic distances in the two endpoints. Analyzing the

conserved distances is also useful for diagnosing when crossings

occur, so that corresponding changes can be made to the potential,

as described below. The initial images in the DNEB interpolation

were simply placed at regular intervals for a linear interpolation

between the specified endpoints, after putting these two structures

into optimal alignment [73]. All pairs of atoms corresponding to

different restraints with no common atoms were then examined for

all pairs of DNEB images. The crossing check was applied for the

largest untested image separation of every remaining image. Only

pairs of restraints where the separation of the midpoints between

the restrained atoms in both images were below a cutoff value of

10 Å were considered. The midpoint separation in one of the two

images was also required to change by at least 3 Å from the value

in the nearest endpoint structure. For restrained pairs satisfying

these criteria a crossing is diagnosed when the dot product

between the vectors joining the midpoints between the constraint

pairs in the two images is negative. Outer and inner atom pairs are

then defined according to how far the midpoints move between

the two images: the midpoint that moves the furthest is assumed to

belong to the outer chain, which needs to move around the inner

chain.

To avoid unphysical crossings in the interpolation, we modify

the potential Vres and add repulsive terms through Vrep. If atomic

contacts within the set of Nres pairs are found to cross, using the

Figure 7. Energy/e as a function of integrated path length/Å for the pathway that makes the largest contribution to the rate
coefficient calculated for transitions from a low-lying minimum with a free C terminus to a low-lying knotted state.
doi:10.1371/journal.pcbi.1000835.g007
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above geometrical condition, then repulsive terms are added

according to the four distances between the two pairs of atoms. For

Ncross crossings of restrained distances, the repulsive contribution

to the potential is

Vrep~Brep

XNcross

c~1

X4

b~1

H(rcut
cross{rc,b)=rc,b, ð6Þ

where H is a step function, rcut
cross (10 Å) is a cut-off for the repulsive

terms, Brep (100�) defines the magnitude of the repulsion, and rc,b

is one of the four distances between pairs of atoms whose

restrained contacts are found to cross. To enable chains to pass

around one another when crossings are diagnosed, further changes

were made to Vres. For the restrained contact in the

outer and inner chains r0
a was changed to max (r0

a=2,0:01) and

min (3r0
a=2,2ra), respectively, for each crossing. Hence the outer

chain shrinks while the inner chain expands. The first third of the

DNEB iterations were run with the modified Vres potential plus

Vrep. For the middle third of the DNEB optimization the restraint

distances r0
a were switched back to the value ra according to the

schedule r0
a?(1{f )r0

azf ra, with f ~10{4. The full AMH

potential was then used for the last third of the DNEB iterations.
To describe the global kinetics of the transition network, we

calculated the rate coefficients associated with each transition

state using transition state theory [74] (TST) with vibrational

densities of states obtained from harmonic normal mode

analysis. The most important features of the mechanism of

folding to the knotted state are relatively insensitive to the values

assigned to minimum-to-minimum rate coefficients, while the

total rate coefficients that we report are order of magnitude

estimates.

Figure 8. Energy/e as a function of integrated path length/Å for the pathway that makes the largest contribution to the rate
coefficient calculated for transitions from a low-lying minimum with a free N terminus to a low-lying knotted state.
doi:10.1371/journal.pcbi.1000835.g008
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Supporting Information

Video S1 This is an animation of the transition states found

between the global minimum and a low-lying C-free states. The

protein structures were shaded from blue to red between the N

and C termini.

Found at: doi:10.1371/journal.pcbi.1000835.s001 (3.94 MB

MPG)

Video S2 This is an animation of the transition states found

between the global minimum and a low-lying N-free states. The

protein structures were shaded from blue to red between the N

and C termini.

Found at: doi:10.1371/journal.pcbi.1000835.s002 (2.64 MB

MPG)
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