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Abstract

Metabolic reactions of single-cell organisms are routinely observed to become dispensable or even incapable of carrying
activity under certain circumstances. Yet, the mechanisms as well as the range of conditions and phenotypes associated
with this behavior remain very poorly understood. Here we predict computationally and analytically that any organism
evolving to maximize growth rate, ATP production, or any other linear function of metabolic fluxes tends to significantly
reduce the number of active metabolic reactions compared to typical nonoptimal states. The reduced number appears to
be constant across the microbial species studied and just slightly larger than the minimum number required for the
organism to grow at all. We show that this massive spontaneous reaction silencing is triggered by the irreversibility of a large
fraction of the metabolic reactions and propagates through the network as a cascade of inactivity. Our results help explain
existing experimental data on intracellular flux measurements and the usage of latent pathways, shedding new light on
microbial evolution, robustness, and versatility for the execution of specific biochemical tasks. In particular, the identification
of optimal reaction activity provides rigorous ground for an intriguing knockout-based method recently proposed for the
synthetic recovery of metabolic function.
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Introduction

A fundamental problem in systems biology is to understand how

living cells adjust the usage pattern of their components to respond

and adapt to specific genetic, epigenetic, and environmental

conditions. In complex metabolic networks of single-cell organ-

isms, there is mounting evidence in the experimental [1–6] and

modeling [7–14] literature that a surprisingly small part of the

network can carry all metabolic functions required for growth in a

given environment, whereas the remaining part is potentially

necessary only under alternative conditions [15]. The mechanisms

governing this behavior are clearly important for understanding

systemic properties of cellular metabolism, such as mutational

robustness, but have not received full attention. This is partly

because current modeling approaches are mainly focused on

predicting whole-cell phenotypic characteristics without resolving

the underlying biochemical activity. These approaches are

typically based on optimization principles, and hence, by their

nature, do not capture processes involving non-optimal states, such

as the temporary activation of latent pathways during adaptive

evolution towards an optimal state [16,17].

To provide mechanistic insight into such behaviors, here we

study the metabolic system of single-cell organisms under optimal

and non-optimal conditions in terms of the number of active

reactions (those that are actually used). We implement our study

within a flux balance-based framework [18–23]. Figure 1

illustrates key aspects of our analysis using the example of

Escherichia coli. For any typical non-optimal state (Figure 1B), all the

reactions in the metabolic network are active, except for those that

are necessarily inactive due either to mass balance constraints or

environmental conditions (e.g., nutrient limitation). In contrast, a

large number of additional reactions are predicted to become

inactive for any metabolic flux distribution maximizing the growth

rate (Figure 1A). This spontaneous reaction silencing effect, in

which optimization causes massive reaction inactivation, is

observed in all four organisms analyzed in this study, H. pylori, S.

aureus, E. coli, and S. cerevisiae, which have genomes and metabolic

networks of increasing size and complexity (Materials and

Methods). Our analysis reveals two mechanisms responsible for

this effect: (1) irreversibility of a large number of reactions, which

under intracellular physiological conditions [14] is shared by more

than 62% of all metabolic reactions in the organisms we analyze

(Table 1 and Note 1); and (2) cascade of inactivity triggered by the

irreversibility, which propagates through the metabolic network

due to stoichiometric and flux balance constraints. We provide

experimental evidence of this phenomenon and explore applica-

tions to data interpretation by analyzing intracellular flux and gene

activity data available in the literature.

The drastic difference between optimal and non-optimal

behavior is a general phenomenon that we predict not only for
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the maximization of growth, but also for the optimization of any

typical objective function that is linear in metabolic fluxes, such as

the production rate of a metabolic compound. Interestingly, we

find that the resulting number of active reactions in optimal states

is fairly constant across the four organisms analyzed, despite the

significant differences in their biochemistry and in the number of

available reactions. In glucose media, this number is ,300 and

approaches the minimum required for growth, indicating that

optimization tends to drive the metabolism surprisingly close to the

onset of cellular growth. This reduced number of active reactions

is approximately the same for any typical objective function under

the same growth conditions.

We suggest that these findings will have implications for the

targeted improvement of cellular properties [24]. Recent work

predicts that the knockout of specific enzyme-coding genes can

enhance metabolic performance and even rescue otherwise

nonviable strains [25]. The possibility of such knockouts bears

on the issue of whether the inactivation of the corresponding

enzyme-catalyzed reactions would bring the whole-cell metabolic

state close to the target objective. Thus, our identification of a

cascading mechanism for inducing optimal reaction activity for

arbitrary objective functions provides a natural set of candidate

genetic interventions for the knockout-based enhancement of

metabolic function [25].

Results

Typical Nonoptimal States
We model cellular metabolism as a network of metabolites

connected through reaction and transport fluxes. The state of the

system is represented by the vector v = (v1,…,vN)T of these fluxes,

including the fluxes of n internal and transport reactions, as well as

nex exchange fluxes for modeling media conditions. Under the

constraints imposed by stoichiometry, reaction irreversibility,

substrate availability, and the assumption of steady-state condi-

tions, the state of the system is restricted to a feasible solution space

M(RN (Materials and Methods). Within this framework, we first

consider the number of active reactions in a typical non-optimal

state vMM.

We can prove that, with the exception of the reactions that are

inactive for all vMM, all the metabolic reactions are active for

almost all vMM, i.e., for any typical state chosen randomly from M

(Text S1, Section 1). Accordingly, the number n+(v) of active

reactions in a typical non-optimal state is constant, i.e.,

nz vð Þ~n
typ
z , for almost all v[M: ð1Þ

The reactions that are inactive for all states are so either due to mass

balance or environmental conditions, and can be identified

numerically using flux coupling [26] and flux variability analysis [9].
Mass balance. Part of the metabolic reactions are forced to

be inactive solely due to mass balance, independently of the

medium conditions. For example, glutathione oxidoreductase in

the E. coli reconstructed model involves oxidized glutathione, but

because there is no other metabolic reaction that can balance the

flux of this metabolite, the reaction cannot be active in any steady

state. We characterize such reactions uniquely by a linear

relationship between vectors of stoichiometric coefficients (Text

S1, Section 2). Although these reactions are inactive in any steady

state, some of them may play a role in transient dynamics (e.g.,

after environmental changes) [28], for which time-dependent

analysis is required [29]. Others may be part of an incomplete

pathway at an intermediate stage of the organism’s evolution or,

more likely, an artifact of the incompleteness or stoichiometric

inconsistencies of the reconstructed model. Such inconsistencies

have been identified in previous models [27], such as an earlier

version of the model we use for S. cerevisiae [30].
Environmental conditions. Other reactions are constrained

to be inactive due to the constraints arising from the

environmental conditions imposed by the medium. For example,

all reactions in the allantoin degradation pathway must be inactive

for E. coli in media with no allantoin available, since allantoin

cannot be produced internally. Similarly, the reactions involved in

aerobic respiration are generally inactive for any state under

anaerobic growth.

The results for the typical activity of each organism in glucose

minimal media (Materials and Methods) are summarized in the

top bars of Figure 2 and in Table 2. The fraction of active

reactions ranges from 50%–82%, while 9%–23% are inactive due

to mass balance constraints and 9%–26% are inactive due to the

environmental conditions. Although the absolute number of active

reactions tends to increase with the size of the metabolic network,

the fraction of active reactions appears to show the opposite

tendency. Figure 1B shows that most of the subsystems of the E.

coli metabolism are almost completely active, but a few have many

inactive reactions. For example, due to the incompleteness of the

network many reactions involving cofactors and prosthetic group

biosynthesis cannot be used under steady-state conditions in any

environment. In addition, many reactions in the alternate carbon

metabolism, as well as many transport and extracellular reactions,

must be inactive in the absence of the corresponding substrates in

the glucose medium.

Growth-Maximizing States
We now turn to the maximization of growth rate, which is often

hypothesized in flux balance-based approaches and found to be

consistent with observation in adaptive evolution experiments [31–

34]. Performing numerical optimization in glucose minimal media

(Materials and Methods), we find that the number of active

reactions in such optimal states is reduced by 21%–50% compared

to typical non-optimal states, as indicated in the middle bars of

Author Summary

Cellular growth and other integrated metabolic functions
are manifestations of the coordinated interconversion of a
large number of chemical compounds. But what is the
relation between such whole-cell behaviors and the
activity pattern of the individual biochemical reactions?
In this study, we have used flux balance-based methods
and reconstructed networks of Helicobacter pylori, Staph-
ylococcus aureus, Escherichia coli, and Saccharomyces
cerevisiae to show that a cell seeking to optimize a
metabolic objective, such as growth, has a tendency to
spontaneously inactivate a significant number of its
metabolic reactions, while all such reactions are recruited
for use in typical suboptimal states. The mechanisms
governing this behavior not only provide insights into why
numerous genes can often be disabled without affecting
optimal growth but also lay a foundation for the recently
proposed synthetic rescue of metabolic function in which
the performance of suboptimally operating cells can be
enhanced by disabling specific metabolic reactions. Our
findings also offer explanation for another experimentally
observed behavior, in which some inactive reactions are
temporarily activated following a genetic or environmental
perturbation. The latter is of utmost importance given that
nonoptimal and transient metabolic behaviors are argu-
ably common in natural environments.

Reaction Silencing in Metabolic Optimization
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Figure 2. Interestingly, the absolute number of active reactions

under maximum growth is ,300 and appears to be fairly

independent of the organism and network size for the cases

analyzed. We observe that the minimum number of reactions

required merely to sustain positive growth [7,8] is only a few

reactions smaller than the number of reactions used in growth-

maximizing states (bottom bars, Figure 2). This implies that

surprisingly small metabolic adjustment or genetic modification is

sufficient for an optimally growing organism to stop growing

completely, which reveals a robust-yet-subtle tendency in cellular

metabolism: while the large number of inactive reactions offers

tremendous mutational and environmental robustness [52], the

system is very sensitive if limited only to the set of reactions

optimally active. The flip side of this prediction is that significant

increase in growth can result from very few mutations, as observed

recently in adaptive evolution experiments [35].

We now turn to mechanisms underlying the observed reaction

silencing, which is spread over a wide range of metabolic

subsystems (see Figure 1 for E. coli). The phenomenon is caused

by growth maximization via reaction irreversibility and cascading

of inactivity.

Irreversibility. We identify three different scenarios in which

reaction irreversibility causes reaction inactivity under maximum

growth. The simplest case is when the reaction is part of a parallel

pathway structure. While stoichiometrically equivalent pathways

lead to alternate optima [9], ‘‘non-equivalent’’ redundancy can

force irreversible reactions in less efficient pathways to be inactive.

To illustrate this effect, we show in Figure 3A three alternative

pathways (P1, P2, and P3) for glucose transport and utilization in

the E. coli metabolism. Pathway P1 is active under maximum

Figure 1. Optimal (A) and non-optimal (B) reaction activity in the reconstructed metabolic network of E. coli in glucose minimal
medium (Materials and Methods). The pie charts show the fractions of active and inactive reactions in the metabolic subsystems defined in the
iJR904 database [75]. The color code is as follows: active reactions (red), inactive reactions due to mass balance (black) and environmental constraints
(blue), inactive reactions due to the irreversibility (green) and cascading (yellow) mechanisms, and conditionally inactive reactions (orange), which are
inactive reactions that can be active for other growth-maximizing states under the same medium condition. The optimal state shown in panel A was
obtained by flux balance analysis (FBA, see Materials and Methods). The network is constructed by drawing an arrow from one subsystem to another
when there are at least 4 metabolites that can be produced by reactions in the first subsystem and consumed by reactions in the second. Larger pies
represent subsystems with more reactions.
doi:10.1371/journal.pcbi.1000236.g001

Table 1. Reversibility of metabolic reactions in the
reconstructed networks.

H. pylori S. aureus E. coli S. cerevisiae

Total number of reactions [n] 479 641 931 1149

Reversible 165 220 245 430

Irreversible 314 421 686 719

doi:10.1371/journal.pcbi.1000236.t001

Reaction Silencing in Metabolic Optimization
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growth, while P2 and P3 are inactive because they are

stoichiometrically less efficient for cellular growth. Indeed, we

computationally predict that knocking out P1 would make P2

active, but the growth rate would be reduced by 2.5%. Knocking

out both P1 and P2 would make P3 active, but the growth rate

would be reduced by more than 10%. Here, the irreversibility of

P2 and P3 is essential. For example, if P2 were reversible, the

biomass production could be increased (by about 0.05%) by

making this pathway active in the opposite direction, which creates

a metabolic cycle equivalent to a combination of the pyruvate

kinase reaction and the transport of protons out of the cell. The

pyruvate kinase itself does not contribute to the increase in

biomass production (it is inactive under maximum growth

condition), but the cycle would provide a more efficient

transport of protons to balance the influx of protons

accompanying the ATP synthesis, which in turn would increase

biomass production.

A different silencing scenario is identified when no clear parallel

pathway structure is recognizable. In this scenario there is a

transverse pathway that, were it reversible, could be used to increase

growth by redirecting metabolic flow from ‘‘non-limiting’’

pathways to those that limit the production of biomass precursors.

This includes transverse reactions that establish one-way commu-

nication between pathways that lead to different building blocks of

the biomass (when one of them is more limiting than the others).

In the E. coli model, for example, isocitrate lyase in the glyoxylate

bypass is predicted to be inactive under maximum growth, as

shown in Figure 3B. This prediction is consistent with the

observation from growth experiments in glucose media [17].

Again, the irreversibility of the reaction (Note 2) is essential for this

argument because, if this constraint is hypothetically relaxed, we

predict that the reaction becomes active in the opposite direction,

which leads to a slight increase in the maximum growth rate

(about 0.005%).

A third scenario for the irreversibility mechanism arises when a

transport reaction is irreversible because the corresponding

substrate is absent in the medium. For example, since acetate, a

Figure 2. Number of active and inactive reactions in the metabolic networks of H. pylori, S. aureus, E. coli, and S. cerevisiae. For each
organism, the bars correspond to a typical non-optimal state (top), a growth-maximizing state (middle), and a state with the minimum number of
active reactions required for growth (bottom), which was estimated using the algorithm described in Materials and Methods. The error bar represents
the upper and lower theoretical bounds, given by Eq. (3), on the number of active reactions in any growth-maximizing state. The breakdown of
inactive reactions and their color coding are the same as in Figure 1. All results are obtained using glucose minimal media (Materials and Methods)
and are further detailed in Tables 2 and 3.
doi:10.1371/journal.pcbi.1000236.g002

Table 2. Metabolic reactions in typical non-optimal states of
the simulated metabolisms.

H. pylori S. aureus E. coli S. cerevisiae

Total number of reactions [n] 479 641 931 1149

Inactive reactions: 87 222 322 570

Due to mass balance 44 133 141 268

Due to environmental
conditionsa

43 89 181 302

Active reactions [ntyp
z ] 392 419 609 579

aThese reactions are inactive due to constraints arising from the availability of
substrates in the media defined in Materials and Methods.

doi:10.1371/journal.pcbi.1000236.t002

Reaction Silencing in Metabolic Optimization
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possible carbon and energy source, is absent in the given medium,

the corresponding transport reaction is irreversible; acetate can

only go out of the cell (Note 3). For E. coli under maximum growth,

we computationally predict that this transport reaction is inactive.

This indicates that E. coli growing maximally in the given glucose

medium wastes no acetate by excretion, which is consistent with

experimental observation in glucose-limited culture at low dilution

rate [36]. Our predictions in the previous section, in contrast,

imply that acetate transport would be active in typical non-optimal

states, suggesting that suboptimal growth may induce behavior

that mimics acetate overflow metabolism. More generally, we

predict that a suboptimal cell will activate more transport reactions,

and hence excrete larger number of metabolites than a growth-

optimized cell. This experimentally testable prediction can be

further supported by our single-reaction knockout computations

considered in a subsequent section (Experimental Evidence) to

model suboptimal response to perturbation.

We interpret these inactivation mechanisms involving reaction

irreversibility as a consequence of the linear programming

property that the set of optimal solutions Mopt must be part of

the boundary of M [37]. As such, Mopt is characterized by a set of

binding constraints, defined as inequality constraints (e.g., vi#bi)

satisfying two conditions: the equality holds (vi = bi) for all vMMopt

and Mopt is sensitive to changes in the constraints (changes in bi).

In two dimensions, for example, Mopt would be an edge of M,

characterized by a single binding constraint, or a corner of M,

characterized by two binding constraints. In general, at least d –

dopt linearly independent constraints must be binding, where d and

dopt are the dimensions of M and Mopt, respectively. Since many

metabolic reactions are subject to the irreversibility constraint

(vi$0), this is expected to lead to many inactive reactions (vi = 0).

Indeed, by excluding the k constraints that are not associated with

reaction irreversibility (those for the ATP maintenance reaction

and exchange fluxes), we obtain an upper bound on the number of

active reactions n+(v):

nz vð Þƒn
typ
z { d{dopt{k

� �
: ð2Þ

Cascading. The remaining set of reactions that are inactive

for all vMMopt is due to cascading of inactivity. On one hand, if all

the reactions that produce a metabolite are inactive, any reaction

that consumes this metabolite must be inactive. On the other

hand, if all the reactions that consume a metabolite are inactive,

any reaction that produces this metabolite must be inactive to

avoid accumulation, as this would violate the steady-state

assumption. Therefore, the inactivity caused by the irreversibility

mechanism triggers a cascade of inactivity both in the forward and

backward directions along the metabolic network. In general,

there are many different sets of reactions that, when inactivated,

can create the same cascading effect, thus providing flexibility in

potential applications of this effect to the design of optimal strains

[25]. The cascades in the growth-maximizing states, however, are

spontaneous, as opposed to those that would be induced in

metabolic knockout applications [25] or in reaction essentiality

and robustness studies [38–40]. Different but related to the

cascades of inactivity are the concepts of enzyme subsets [41],

coupled reaction sets [26] and correlated reaction sets [10], which

Figure 3. Portions of E. coli metabolic network under maximum growth condition. (A) P1, P2, and P3 are alternative pathways for glucose
transport and utilization. The most efficient pathway, P1, is active under maximum growth in glucose minimal medium. P2 and P3 are inactive, but if
P1 is knocked out, P2 becomes active, and if both P1 and P2 are knocked out, P3 becomes active. In both knockout scenarios, the growth is predicted
to be suboptimal. (B) Isocitrate lyase reaction in the pathway bypassing the tricarboxylic acid (TCA) cycle is predicted to be inactive under maximum
growth due to its irreversibility. If it were to operate in the opposite direction, it would serve as a transverse pathway which redirects metabolic flow
to growth-limiting reactions, increasing the maximum biomass production rate slightly. In both panels, single and double arrows are used to indicate
irreversible and reversible reactions, respectively, and colors indicate the behavior of the reactions under maximum growth: active (red), inactive due
to the irreversibility (green), and inactive due to cascading (yellow).
doi:10.1371/journal.pcbi.1000236.g003

Reaction Silencing in Metabolic Optimization
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describe groups of reactions that operate together and are thus

concurrently inactivated in cascades.

Conditional inactivity. While the irreversibility and

cascading mechanisms cause the inactivity of many reactions for

all vMMopt, the inactivity of other reactions can depend on the

specific growth-maximizing state, whose non-uniqueness in a given

environment has been evidenced both theoretically [9,10,42] and

experimentally [16]. To explore this dependence, we use the

duality principle of linear programming problems [37] to identify

all the binding constraints generating the set of optimal solutions

Mopt (Text S1, Section 3). This characterization is then used to

count the number n
opt
z (n

opt
0 ) of reactions that are active (inactive)

for all vMMopt, leading to rigorous bounds for the number of active

reactions n+(v):

n
opt
z ƒnz vð Þƒn{n

opt
0 : ð3Þ

Numerical values of the bounds under maximum growth are

indicated by the error bars in Figure 2. Note that the upper

bounds are consistently smaller than n
typ
z for typical non-optimal

states, indicating that reaction silencing necessarily occurs for all

growth-maximizing states. For E. coli, these results are consistent

with a previous study comparing reaction utilization under a range

of different growth conditions [10]. They are also consistent with

existing results for different E. coli metabolic models [12–14] based

on flux variability analysis [9]. Furthermore, we can prove (Text

S1, Section 3) that the distribution of n+(v) within the upper and

lower bounds is singular in that the upper bound is attained for

almost all optimal states:

nz vð Þ~n{n
opt
0 for almost all v[Mopt: ð4Þ

Numerical simulations using standard simplex methods [43]

actually result in much fewer active reactions, as shown in

Figure 2 (red middle bars), because the algorithm finds solutions

on the boundary of Mopt. This behavior is expected, however,

under the concurrent optimization of additional metabolic

objectives, which generally tend to drive the flux distribution

toward the boundary of Mopt.

Figure 2 summarizes the inactivity mechanisms for the four

organisms under maximum growth in glucose media (see also

Figure 1), showing the inactive reactions caused by the

irreversibility (green) and cascading (yellow) mechanisms, as well

as those that are conditionally inactive (orange). Observe that in

sharp contrast to the number of active reactions, which depends

little on the size of the network, the number of inactive reactions

(either separated by mechanisms or lumped together) varies widely

and shows non-trivial dependence on the organisms.

Typical Linear Objective Functions
Although we have focused so far on maximizing the biomass

production rate, the true nature of the fitness function driving

evolution is far from clear [44–47]. Organisms under different

conditions may optimize different objective functions, such as ATP

production or nutrient uptake, or not optimize a simple function at

all. In particular, some metabolic behaviors, such as the selection

between respiration and fermentation in yeast, cannot be

explained by growth maximization [48]. Other behaviors may

be systematically different in situations mimicking natural

environments [49]. Moreover, various alternative target objectives

can be conceived and used in metabolic engineering applications.

We emphasize, however, that while specific numbers may differ in

each case, all the arguments leading to Eqs. (2)–(4) are general and

apply to any objective function that is linear in metabolic fluxes.

To obtain further insights, we now study the number of active

reactions in organisms optimizing a typical linear objective

function by means of random uniform sampling.

We first note the fact (proved in Text S1, Section 4) that with

probability one under uniform sampling, the optimal solution set

Mopt consists of a single point, which must be a ‘‘corner’’ of M,

termed an extreme point in the linear programming literature. In

this case, dopt = 0, and Eq. (2) becomes

nz vð Þƒn
typ
z {dzk: ð5Þ

With the additional requirement that the organism show positive

growth, we uniformly sample these extreme points, which

represent all distinct optimal states for typical linear objective

functions.

We find that the number of active reactions in typical optimal

states is narrowly distributed around that in growth-maximizing

states, as shown in Figure 4. This implies that various results on

growth maximization extend to the optimization of typical

objective functions. In particular, we see that a typical optimal

state is surprisingly close to the onset of cellular growth (estimated

and shown as dashed vertical lines in Figure 4). Despite the

closeness, however, the organism maintains high versatility, which

we define as the number of distinct functions that can be optimized

under growth conditions. To demonstrate this, consider the H.

Figure 4. Probability distribution of the number of active
reactions in nonzero-growth states that optimize typical
objective functions. The red solid lines indicate the corresponding
number in the growth-maximizing state of Figure 2 (middle bar, red),
and the red dashed lines indicate our estimates of the minimum
number of reactions required for the organism to grow (Materials and
Methods). [When the nonzero growth requirement is relaxed, a second
sharp peak (not shown) arises, corresponding to a drop of ,250 in the
number of active reactions caused by the inactivation of the biomass
reaction.]
doi:10.1371/journal.pcbi.1000236.g004

Reaction Silencing in Metabolic Optimization
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pylori model, which has 392 reactions that can be active, among

which at least 302 must be active to sustain growth (Table 3). While

only a few more than 302 active reactions are sufficient to optimize

any objective function, the number of combinations for choosing

them can be quite large. For example, there are
392{302ð Þ!

392{302{5ð Þ!5!
&4|107 combinations for choosing, say, 5 extra

reactions to be active. Moreover, this number increases quickly

with the network size: S. cerevisiae, for example, has less than 2.5

times more reactions than H. pylori, but about 500 times more

combinations (
579{275ð Þ!

579{275{5ð Þ!5!
&2|1010).

Experimental Evidence
Our results help explain previous experimental observations.

Analyzing the 22 intracellular fluxes determined by Schmidt et al.

[50] for the central metabolism of E. coli in both aerobic and

anaerobic conditions, we find that about 45% of the fluxes are

smaller than 10% of the glucose uptake rate (Table 4). However,

less than 19% of the reversible fluxes and more than 60% of the

irreversible fluxes are found to be in this group (Fisher exact test,

one-sided p,0.008). For the 44 fluxes in the S. cerevisiae metabolism

experimentally measured by Daran-Lapujade et al. [51], less than

8% of the reversible fluxes and more than 42% of the irreversible

fluxes are zero (Table 5; Fisher exact test, one-sided p,1027). This

higher probability for reduced fluxes in irreversible reactions is

consistent with our theory and simulation results (Table 6)

combined with the assumption that the system operates close to

an optimal state. For the E. coli data, this assumption is justified by

the work of Burgard & Maranas [44], where a framework for

inferring metabolic objective functions was used to show that the

organisms are mainly (but not completely) driven by the

maximization of biomass production. The S. cerevisiae data was

also found to be consistent with the fluxes computed under the

assumption of maximum growth [52].

Additional evidence for our results is derived from the

inspection of 18 intracellular fluxes experimentally determined

by Emmerling et al. [53] for both wild-type E. coli and a gene-

deficient strain not exposed to adaptive evolution. It has been

shown [21] that while the wild-type fluxes can be approximately

described by the optimization of biomass production, the

genetically perturbed strain operates sub-optimally. We consider

the fluxes that are more than 10% (of the glucose uptake rate)

larger in the gene-deficient mutant than in the wild-type strain.

This group comprises less than 27% of the reversible fluxes but

more than 45% of the irreversible fluxes (Table 7; Fisher exact test,

one-sided p,0.12). This correlation indicates that irreversible

fluxes tend to be larger in non-optimal metabolic states,

consistently with our predictions.

Altogether, our results offer an explanation for the temporary

activation of latent pathways observed in adaptive evolution

experiments after environmental [16] or genetic perturbations

[17]. These initially inactive pathways are transiently activated

after a perturbation, but subsequently inactivated again after

adaptive evolution. We hypothesize that transient suboptimal states are

the leading cause of latent pathway activation. Since we predict

that a large number of reactions are inactive in optimal states but

active in typical non-optimal states, many reactions are expected

to show temporary activation if we assume that the state following

the perturbation is suboptimal and both the pre-perturbation and

post-adaptation states are near optimality. To demonstrate this

computationally for the E. coli model, we consider the idealized

scenario where the perturbation to the growth-maximizing wild

type is caused by a reaction knockout and the initial response of

the metabolic network—before the perturbed strain evolves to a

new growth-maximizing state—is well approximated by the

method of minimization of metabolic adjustment (MOMA) [21].

MOMA assumes that the perturbed organisms minimize the

square-sum deviation of its flux distribution from the wild-type

distribution (under the constraints imposed by the perturbation).

Figure 5A shows the distribution of the number of active

reactions for single-reaction knockouts that alter the flux

distribution but allow positive MOMA-predicted growth. While

the distribution is spread around 400–500 for the suboptimal states

in the initial response, it is sharply peaked around 300 for the

optimal states at the endpoint of the evolution, which is consistent

Table 3. Metabolic reactions in maximum growth states of the simulated metabolisms.a

H. pylori S. aureus E. coli S. cerevisiae

Active reactions under typical non-optimal states [ntyp
z ] 392 419 609 579

Active reactions under maximum growthb 308 282 297 289

Lower bound [n
opt
z ] 257 77 272 196

Upper bound [n{n
opt
0 ] 351 414 355 426

Minimum number of active reactions for growthc 302 281 292e 275

Inactive reactions under maximum growthb [nopt
0 ]: 171 359 634 860

Due to irreversibility 29 3 147 72

Due to cascading 12 2 107 81

Due to mass balance 44 133 141 268

Due to environmental conditions 43 89 181 302

Conditionally inactived 43 132 58 137

aWith respect to the minimal media defined in Materials and Methods.
bBased on a single optimal state found using an implementation of the simplex method [43].
cEstimated using the algorithm described in Materials and Methods.
dPredicted to be inactive by the simplex method [43], but can be active in some other growth-maximizing states. Likewise, some of the reactions predicted to be active

can be inactive in some other optimal states, but the number of such reactions is expected to be small since the simplex method finds a solution on the boundary of
Mopt, which tends to have more inactive reactions than a typical optimal solution.

eThe corresponding minimum number of active reactions for maximum growth is 293.
doi:10.1371/journal.pcbi.1000236.t003
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with our results on random sampling of the extreme points

(Figure 4). We thus predict that the initial number of active

reactions for the unperturbed wild-type strain (which is 297, as

shown by a dashed vertical line in Figure 5A) typically increases to

more than 400 following the perturbation, and then decays back to

a number close to 300 after adaptive evolution in the given

environment, as illustrated schematically in Figure 5B. A neat

implication of our analysis is that the active reactions in the early

post-perturbation state includes much more than just a superposition

of the reactions that are active in the pre- and post-perturbation

optimal states, thus explaining the pronounced burst in gene

expression changes observed to accompany media changes and

gene knockouts [16,17]. For example, for E. coli in glucose

minimal medium, temporary activation is predicted for the

Entner-Doudoroff pathway after pgi knockout and for the

glyoxylate bypass after tpi knockout, in agreement with recent

flux measurements in adaptive evolution experiments [17].

Another potential application of our results is to explain

previous experimental evidence that antagonistic pleiotropy is

important in adaptive evolution [54], as they indicate that

increasing fitness in a single environment requires inactivation of

many reactions through regulation and mutation of associated

genes, which is likely to cause a decrease of fitness in some other

environments [15].

Table 4. Experimentally determined fluxes of intracellular reactions involved in the glycolysis, pentose phosphate pathway, TCA
cycle, and amino acid biosynthesis of E. coli K12 MG1655 under aerobic and anaerobic conditions [50].

Aerobic Anaerobic

Reversible Irreversible Reversible Irreversible

Number of fluxes 8 14 8 14

Number of fluxes ,10% of glucose uptake rate 1 7 2 10

doi:10.1371/journal.pcbi.1000236.t004

Table 5. Experimentally determined fluxes of intracellular reactions involved in the glycolysis, metabolic steps around pyruvate,
TCA cycle, glyoxylate cycle, gluconeogenesis, and pentose phosphate pathway of S. cerevisiae strain CEN.PK1137D grown under
glucose, maltose, ethanol, and acetate limitation [51].

Glucose Maltose Ethanol Acetate

Rev. Irr. Rev. Irr. Rev. Irr. Rev. Irr.

Number of fluxes 22 22 22 22 22 22 22 22

Number of zero fluxes 2 8 2 7 1 11 2 11

Percentage of zero fluxes 9.1% 36.4% 9.1% 31.8% 4.5% 50.0% 9.1% 50.0%

doi:10.1371/journal.pcbi.1000236.t005

Table 6. Fraction of inactive reactions in the simulated metabolism of E. coli and S. cerevisiae under maximum growth condition.a

E. coli S. cerevisiae

Reversible Irreversible Reversible Irreversible

Number of reactions 245 686 430 719

Number of inactive reactions 139 495 301 559

Percentage of inactive reactions 56.7% 72.2% 70.0% 77.7%

aSame states considered in Table 3.
doi:10.1371/journal.pcbi.1000236.t006

Table 7. Experimentally determined fluxes of reversible and irreversible reactions of wild-type E. coli JM101 versus its pyruvate
kinase-deficient mutant PB25 [53].

Reversible Irreversible

Number of fluxes 30 24

Number of mutant fluxes that are largera by .10% of glucose uptake rate 8 11

aRelative to the corresponding fluxes in the wild-type strain.
doi:10.1371/journal.pcbi.1000236.t007
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Discussion

Combining computational and analytical means, we have

uncovered the microscopic mechanisms giving rise to the

phenomenon of spontaneous reaction silencing in single-cell

organisms, in which optimization of a single metabolic objective,

whether growth or any other, significantly reduces the number of

active reactions to a number that appears to be quite insensitive to

the size of the entire network. Two mechanisms have been

identified for the large-scale metabolic inactivation: reaction

irreversibility and cascade of inactivity. In particular, the reaction

irreversibility inactivates a pathway when the objective function

could be enhanced by hypothetically reversing the metabolic flow

through that pathway. We have demonstrated that such pathways

can be found among non-equivalent parallel pathways, transverse

pathways connecting structures that lead to the synthesis of

different biomass components, and pathways leading to metabolite

excretion. Although the irreversibility and cascading mechanisms

do not require explicit maximization of efficiency, massive reaction

silencing is also expected for organisms optimizing biomass yield

or other linear functions (of metabolic fluxes) normalized by

uptake rates [18]. Furthermore, while we have focused on minimal

media, we expect the effect to be even more pronounced in richer

media. On one hand, a richer medium has fewer absent substrates,

which increases the number of active reactions in non-optimal

states. On the other hand, a richer medium allows the organism to

utilize more efficient pathways that would not be available in a

minimal medium, possibly further reducing the number of active

reactions in optimal states.

Our study carries implications for both natural and engineered

processes. In the rational design of microbial enhancement, for

example, one seeks genetic modifications that can optimize the

production of specific metabolic compounds, which is a special

case of the optimization problem we consider here and akin to the

problem of identifying optimal reaction activity [24,25]. The

identification of a reduced set of active reactions also provides a

new approach for testing the existence of global metabolic

objectives and their consistency with hypothesized objective

functions [46]. Such an approach is complementary to current

approaches based on coefficients of importance [44,45] or putative

objective reactions [47] and is expected to provide novel insights

into goal-seeking dynamic concepts such as cybernetic modeling

[55]. Our study may also help model compromises between

competing goals, such as growth and robustness against environ-

mental or genetic changes [56].

In particular, our results open a new avenue for addressing the

origin of mutational robustness [57–62]. Single-gene deletion

experiments on E. coli and S. cerevisiae have shown that only a small

fraction of their genes are essential for growth under standard

laboratory conditions [1,5,6]. The number of essential genes can

be even smaller given that growth defect caused by a gene deletion

may be synthetically rescued by compensatory gene deletions [25],

an effect not accounted for in single-gene deletion experiments.

Under fixed environmental conditions, large part of this

mutational robustness arises from the reactions that are inactive

under maximum growth, whose deletion is predicted to have no

effect on the growth rate [52]. For example, for E. coli in glucose

medium, we predict that 638 out of the 931 reactions can be

removed simultaneously while retaining the maximum growth rate

(Note 4), which is comparable to 686 computed in a minimal

genome study in rich media [11]. But what is the origin of all these

non-essential genes?

A recent study on S. cerevisiae has shown that the single deletion

of almost any non-essential gene leads to a growth defect in at least

one stress condition [15], providing substantive support for the

long-standing hypothesis that mutational robustness is a byproduct

of environmental robustness [61] (at least if we assume that the

tested conditions are representative of the natural conditions under

which the organisms evolved). An alternative explanation would

be that in variable environments, which is a natural selective

pressure likely to be more important than considered in standard

laboratory experiments, the apparently dispensable pathways may

play a significant role in suboptimal states induced by environ-

mental changes. This alternative is based on the hypothesis that

latent pathways provide intermediate states necessary to facilitate

adaptation, therefore conferring competitive advantage even if the

pathways are not active in any single fixed environmental condition. In light

of our results, this hypothesis can be tested experimentally in

medium-perturbation assays by measuring the change in growth

or other phenotype caused by deleting the predicted latent

pathways in advance to a medium change.

We conclude by calling attention to a limitation and strength of

our results, which have been obtained using steady-state analysis.

Such analysis avoids complications introduced by unknown

regulatory and kinetic parameters, but admittedly does not

account for constraints that could be introduced by the latter.

Nevertheless, we have been able to draw robust conclusions about

dynamical behaviors, such as the impact of perturbation and

adaptive evolution on reaction activity. Our methodology scales

well for genome-wide studies and may prove instrumental for the

identification of specific extreme pathways [63,64] or elementary

modes [65,66] governing the optimization of metabolic objectives.

Combined with recent studies on complex networks [67–73] and

the concept of functional modularity [74], our results are likely to

lead to new understanding of the interplay between network activity

and biological function.

Figure 5. Distribution of the number of active reactions in the
E. coli metabolic network after a single-reaction knockout. (A)
The initial response is predicted by the minimization of metabolic
adjustment (MOMA) and the endpoint of adaptive evolution by the
maximization of the growth rate (FBA), using the medium defined in
Materials and Methods and a commercial optimization software
package [79]. We consider all 77 nonlethal single-reaction knockouts
that change the flux distribution. (B) Schematic illustration of the
network reaction activity during the adaptive evolution after a small
perturbation, indicating the temporary activation of many latent
pathways.
doi:10.1371/journal.pcbi.1000236.g005
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Notes

1. In addition, under steady-state conditions in the media

considered in this study, more than 77% of the reversible

reactions become constrained to be irreversible, rendering a

total of more than 92% of all reactions ‘‘effectively’’

irreversible.

2. This reaction is regarded in the biochemical literature as

irreversible under physiological conditions in the cell, and is

constrained as such in the modeling literature [14,32,75,76].

3. Similar effective irreversibility is at work for any transport or

internal reaction that is a unique producer of one or more

chemical compounds in the cell.

4. For single-reaction knockouts, MOMA predicts that 662 out of

the 931 deletion mutants grow at more than 99% of the wild-

type growth rate. Among these 662 reactions, 95% are

predicted to be inactive under maximum growth.

Materials and Methods

Strains and Media
All the stoichiometric data for the in silico metabolic systems used

in our study are available at http://gcrg.ucsd.edu/In_Silico_Or-

ganisms. For H. pylori 26695 [77], we used a medium with unlimited

amount of water and protons, and limited amount of oxygen

(5 mmol/g DW-h), L-alanine, D-alanine, L-arginine, L-histidine, L-

isoleucine, L-leucine, L-methionine, L-valine, glucose, Iron (II and

III), phosphate, sulfate, pimelate, and thiamine (20 mmol/g DW-h).

For S. aureus N315 [78], we used a medium with limited amount of

glucose, L-arginine, cytosine, and nicotinate (100 mmol/g DW-h),

and unlimited amount of iron (II), protons, water, oxygen, phospate,

sulfate, and thiamin. For E. coli K12 MG1655 [75], we used a

medium with limited amount of glucose (10 mmol/g DW-h) and

oxygen (20 mmol/g DW-h), and unlimited amount of carbon

dioxide, iron (II), protons, water, potassium, sodium, ammonia,

phospate, and sulfate. For S. cerevisiae S288C [76], we used a

medium with limited amount of glucose (10 mmol/g DW-h),

oxygen (20 mmol/g DW-h), and ammonia (100 mmol/g DW-h),

and unlimited amount of water, protons, phosphate, carbon

dioxide, potassium, and sulfate. The flux through the ATP

maintenance reaction was set to 7.6 mmol/g DW-h for E. coli

and 1 mmol/g DW-h for S. aureus and S. cerevisiae.

Feasible Solution Space
Under steady-state conditions, a cellular metabolic state is

represented by a solution of a homogeneous linear equation

describing the mass balance condition,

Sv~0, ð6Þ

where S is the m6N stoichiometric matrix and v[RN is the vector

of metabolic fluxes. The components of v = (v1,…,vN)T include the

fluxes of n internal and transport reactions as well as nex exchange

fluxes, which model the transport of metabolites across the system

boundary. Constraints of the form vi#bi imposed on the exchange

fluxes are used to define the maximum uptake rates of substrates in

the medium. Additional constraints of the form vi$0 arise for the

reactions that are irreversible. Assuming that the cell’s operation is

mainly limited by the availability of substrates in the medium, we

impose no other constraints on the internal reaction fluxes, except

for the ATP maintenance flux for S. aureus, E. coli, and S. cerevisiae

(see Strains and media section above). The set of all flux vectors v
satisfying the above constraints defines the feasible solution space

M5RN , representing the capability of the metabolic network as a

system.

Maximizing Growth and Other Linear Objective
Functions

The flux balance analysis (FBA) [18–20,22,23] used in this study

is based on the maximization of a metabolic objective function cTv
within the feasible solution space M, which is formulated as a

linear programming problem:

maximize : cT v~
XN

i~1

civi

subject to : Sv~0,v[RN ,

aiƒviƒbi,i~1, . . . ,N:

ð7Þ

We set ai = 2‘ if vi is unbounded below and bi = ‘ if vi is

unbounded above. For a given objective function, we numerically

determine an optimal flux distribution for this problem using an

implementation of the simplex method [43]. In the particular case

of growth maximization, the objective vector c is taken to be

parallel to the biomass flux, which is modeled as an effective

reaction that converts metabolites into biomass.

Finding Minimum Reaction Set for Nonzero Growth
To find a set of reactions from which none can be removed

without forcing zero growth, we start with the set of all reactions

and recursively reduce it until no further reduction is possible. At

each recursive step, we first compute how much the maximum

growth rate would be reduced if each reaction were removed from

the set individually. Then, we choose a reaction that causes the

least change in the maximum growth rate, and remove it from the

set. We repeat this step until the maximum growth rate becomes

zero. The set of reactions we have just before we remove the last

reaction is a desired minimal reaction set. Note that, since the

algorithm is not exhaustive, the number of reactions in this set is

an upper bound and approximation for the minimum number of

reactions required to sustain positive growth.

Supporting Information

Text S1 Mathematical Results

Found at: doi:10.1371/journal.pcbi.1000236.s001 (0.06 MB PDF)
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