
RESEARCH ARTICLE

Identifying trends in SARS-CoV-2 RNA in

wastewater to infer changing COVID-19

incidence: Effect of sampling frequency

Elana M. G. ChanID
1, Lauren C. KennedyID

1, Marlene K. Wolfe2, Alexandria B. BoehmID
1*

1 Department of Civil and Environmental Engineering, Stanford University, Stanford, California, United States

of America, 2 Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory

University, Atlanta, Georgia, United States of America

* aboehm@stanford.edu

Abstract

SARS-CoV-2 RNA concentrations in wastewater solids and liquids are correlated with

reported incident COVID-19 cases. Reporting of incident COVID-19 cases has changed

dramatically with the availability of at-home antigen tests. Wastewater monitoring there-

fore represents an objective tool for continued monitoring of COVID-19 occurrence.

One important use case for wastewater data is identifying when there are sustained

changes or trends in SARS-CoV-2 RNA concentrations. Such information can be used

to inform public health messaging, testing, and vaccine resources. However, there is

limited research on best approaches for identifying trends in wastewater monitoring

data. To fill this knowledge gap, we applied three trend analysis methods (relative

strength index (RSI), percent change (PC), Mann-Kendall (MK) trend test) to daily mea-

surements of SARS-CoV-2 RNA in wastewater solids from a wastewater treatment plant

to characterize trends. Because daily measurements are not common for wastewater

monitoring programs, we also conducted a downsampling analysis to determine the min-

imum sampling frequency necessary to capture the trends identified using the “gold

standard” daily data. The PC and MK trend test appear to perform similarly and better

than the RSI in terms of first detecting increasing and decreasing trends using a 14-day

look-back period, so we only considered the PC and MK trend test methods in the down-

sampling analysis. Using an acceptable sensitivity and specificity cutoff of 0.5, we

found that a minimum of 4 samples/week and 5 samples/week is necessary to detect

trends identified by daily sampling using the PC and MK trend test method, respectively.

If a higher sensitivity and specificity is needed, then more samples per week would

be needed. Public health officials can adopt these trend analysis approaches and

sampling frequency recommendations to wastewater monitoring programs aimed at pro-

viding information on how incident COVID-19 cases are changing in the contributing

communities.
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1.0 Introduction

Public health departments have closely monitored cases of coronavirus disease 2019 (COVID-

19) in their communities throughout the pandemic. Hospitals, healthcare providers, and labo-

ratories are required to report incident laboratory-confirmed cases of COVID-19—hereafter

referred to as incident clinical cases—to public health departments under state disease report-

ing laws [1]. This information allows health departments to track disease occurrence and may

then be used to inform nonpharmaceutical interventions, such as mask mandates and social

distancing, and education and outreach campaigns for testing and vaccines. Clinical test seek-

ing behavior has changed dramatically with the availability of vaccines and at-home antigen

tests [2], and results from the latter are not reported to health departments [2]. As a result, inci-

dent clinical case data may presently suffer from vast under-reporting relative to earlier in the

pandemic and be less useful for tracking COVID-19 infections.

Wastewater-based epidemiology (WBE) uses concentrations of infectious disease markers

in wastewater to track disease occurrence in the contributing community. It has been recom-

mended by the World Health Organization (WHO) since 2003 for poliovirus monitoring in

regions where polio is endemic [3]. The COVID-19 pandemic brought heightened attention to

WBE which is currently in use globally for COVID-19 monitoring [4, 5]. Specifically, RNA

concentrations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in primary

wastewater settled solids are well-correlated with incident clinical COVID-19 cases in the

same sewershed [6–8]. A recent study suggests that wastewater concentrations of SARS-CoV-2

RNA are also well-correlated with COVID-19 prevalence, which was estimated from random-

ized nasal swab sampling, more so than incident clinical cases because case data are prone to

reporting biases such as underreporting of asymptomatic cases [9]. In addition, trends in

wastewater concentrations of SARS-CoV-2 RNA were found to precede trends in incident

clinical cases in communities [10–17]. WBE may therefore be a more reliable and objective

tool than incident clinical case data for continued monitoring of COVID-19 because wastewa-

ter captures both symptomatic and asymptomatic individuals and does not depend on test

seeking behavior or testing availability.

However, there is still uncertainty about how to appropriately interpret WBE data and use

it to aid public health decision-making [18–20]. Accurately interpreting SARS-CoV-2 RNA

concentrations as increasing, decreasing, or plateauing is important for guiding pandemic

response efforts. Yet there has been limited work on how to actively monitor trends in epide-

miology [21]. Common trend metrics (e.g., simple moving averages, rates of change) provide

little attention to the statistical significance and stability of trends and can be misleading or

confusing [17, 21, 22]. Standardized trend analysis methods that are robust and easily inter-

pretable are needed to appropriately identify trends. Trend analysis of time-series data is con-

ducted in other disciplines, such as finance [23], and could be adapted to interpret WBE data.

Predicting the stock market in real time is desirable to traders similar to how predicting the

course of disease occurrence is useful to public health decision makers, and both price data

and WBE data have stochastic elements [23]. One goal of this study was to test different trend

analysis methods for application to WBE.

When analyzing time-series data for trends, a large number of observations provides

greater statistical power [24], and high frequency (e.g., daily) data has previously been identi-

fied as ideal for WBE to most accurately identify trends [25]. However, daily sampling and

processing of wastewater can be challenging to implement [18, 20], and many facilities across

the United States only collect samples once per week [26, 27]. Previous studies found that

sampling wastewater at least twice per week is needed to detect correlations between wastewa-

ter SARS-CoV-2 RNA concentrations and incident clinical cases [6, 28, 29], but these studies
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collected data over a limited duration of time (at most six months) or did not include daily

data in the analysis. In addition, the authors examined the correlation between wastewater

SARS-CoV-2 RNA concentrations and incident clinical cases to come to their conclusions.

Research is needed to investigate how frequently wastewater should be sampled if the goal of

WBE is to correctly identify trends in wastewater concentrations of SARS-CoV-2 RNA.

In this study, we used daily measurements of SARS-CoV-2 RNA in wastewater from a

wastewater treatment plant between November 2020 and September 2022 to (i) compare three

different trend analysis methods for characterizing trends in wastewater SARS-CoV-2 RNA

concentrations and (ii) evaluate the performance of each method using data sampled at a

lower frequency than one time per day. This dataset is ideal because it spans nearly two years

of the pandemic, including three major waves (Delta, BA.1 Omicron, and BA.2 + BA.5 Omi-

cron). These waves differ in magnitude and shape, so this dataset can be used to examine how

trend analysis methods respond across a variety of disease dynamics. This dataset is also ideal

for a downsampling analysis because it can be downsampled to all possible sampling frequen-

cies (1 sample/week to 6 samples/week). We identify robust trend analysis methods and rec-

ommend sampling frequencies that can be used by WBE programs to provide insight about

the disease burden of COVID-19 in the contributing population.

2.0 Methods

2.1. Wastewater data

The San José-Santa Clara Regional Wastewater Facility serves 1.4 million residents and over

17,000 businesses throughout Silicon Valley (Fig A in S1 Text). The wastewater treatment

plant is the largest advanced wastewater treatment plant in the western United States and treats

110 million gallons of wastewater per day on average with a capacity of 167 million gallons per

day [30].

Daily sampling from the wastewater facility began on November 15, 2020, and we used data

through September 15, 2022, for this study (n = 670 days). Sampling and processing details,

including quality assurance and quality control metrics, are registered in protocols.io [31–33]

and have been described previously by Kim et al. [34] and Wolfe et al. [35]. Briefly, a 24-hour

composite sample of the wastewater settled solids in the primary clarifier was manually col-

lected each day for laboratory processing. For this analysis, we used concentrations of the

SARS-CoV-2 RNA N gene in gene copies per gram of dry weight of wastewater settled solids

normalized by concentrations of pepper mild mottle virus (PMMoV) in gene copies per gram

of dry weight of wastewater settled solids (N/PMMoV). The N gene target is described in Huis-

man et al. [36] and is located near the commonly used N2 assay target. PMMoV is used as a

marker of wastewater fecal strength [37, 38]. There were no non-detects for either the N gene

or PMMoV in the dataset. Data between November 15, 2020, and March 31, 2021, have been

previously published by Wolfe et al. [35] and are publicly available through the Stanford Digi-

tal Repository (https://doi.org/10.25740/bx987vn9177) [39]. Data between January 1, 2022,

and April 12, 2022, have been previously published by Boehm et al. [40] and are publicly avail-

able through the Stanford Digital Repository (https://doi.org/10.25740/cf848zx9249) [41]. The

remaining data (April 1, 2021–December 31, 2021, and April 13, 2022–September 15, 2022)

have not been previously published. All data used in this study are available publicly through

the Stanford Digital Repository (https://doi.org/10.25740/yg713sw8276) [42]. Since the pre-

analytical and analytical methods used for measuring the SARS-CoV-2 RNA N gene and

PMMoV are registered and previously described in peer-reviewed publications, they are not

repeated herein.
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2.2. Trend analysis methods

We considered three metrics for identifying trends in N/PMMoV over time: relative strength

index (RSI), percent change (PC), and the Mann-Kendall (MK) trend test. RSI is a common

technical indicator used in finance for trend analysis [43], PC is used by the United States

Centers for Disease Control (CDC) to report trends for the National Wastewater Surveil-

lance System (NWSS) [44], and the MK trend test is a statistical test used to evaluate the exis-

tence of a monotonic trend in time-series data [45–47]. As described below, the RSI informs

about the stability of a trend and PC and the MK trend test inform about the statistical signif-

icance of a trend. All calculations were conducted in R (version 4.1.3) [48]. Data and R code

are available publicly through the Stanford Digital Repository (https://doi.org/10.25740/

yg713sw8276) [42].

The RSI is a momentum indicator used in technical trading systems that measures the

speed and direction of price changes over a specified time period [43]. The RSI is calculated

using the relative strength (RS) which is the ratio of the average increase (gain) and decrease

(loss) of closing prices over the look-back period (typically 14 days) (Eq 1) [43]. Refer to the

S1 Text for further details. The RSI ranges from 0 to 100; values above 70 and below 30 sig-

nify an overbought and oversold market, respectively [43]. Here we calculated the RSI of the

7-day right-aligned moving average (MA) of N/PMMoV using a 14-day look-back period.

Using the raw, or unaltered, N/PMMoV data resulted in a highly variable RSI that was

unlikely to be useful (Fig B in S1 Text). Previous work that applied the RSI to incident clinical

case data early in the pandemic also calculated the RSI of smoothed input data [21]. We spe-

cifically calculated the RSI of a right-aligned MA because, in practice, trend analyses would

be conducted in real time using the most recent available data. A right-aligned 7-day MA

applied to the most recent measurement can be computed with seven days of data and is not

affected by the future data that is not yet available. This is in contrast to a center-aligned

7-day MA which, applied to the most recent measurement, would have to be computed with

just four days of data since data for the future three days is not yet available. Based on previ-

ously published work [21, 43, 49], we interpreted RSI values above 70, 80, and 90 as upward,

likely upward, and very likely upward trends, respectively. We interpreted RSI values below

30, 20, and 10 as downward, likely downward, and very likely downward trends, respectively

(Table 1).

RSI ¼ 100 �
100

1þ RS
;where RS ¼

average gain
average loss

ð1Þ

The second trend analysis method we investigated was PC. Specifically, we used the formula

that the United States CDC uses to calculate trends in wastewater SARS-CoV-2 RNA levels for

the NWSS (Eq 2). The slope is calculated from a least-squares linear regression of log10-trans-

formed values of the raw N/PMMoV data versus day because wastewater SARS-CoV-2 RNA

concentrations are log-normally distributed [44]. The CDC uses a 15-day look-back period to

calculate the slope [44]; here we used a 14-day look-back period for consistency and because

14 days represents an integer multiple of one week. Fourteen days is also generally thought to

be the maximum incubation period of SARS-CoV-2 [50, 51] and duration of active illness for

those with acute symptoms [52]. For each slope estimate, we extracted the 90%, 95%, and 99%

confidence intervals (CIs) to calculate the 90%, 95%, and 99% CIs for each PC estimate. We

interpreted PC values greater than 0 for the 90%, 95%, and 99% upper CIs as upward, likely

upward, and very likely upward trends, respectively. We interpreted PC values less than 0 for

the 90%, 95%, and 99% lower CIs as downward, likely downward, and very likely downward
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trends, respectively (Table 1).

PC ¼ 10slope � 1
� �

� 100 ð2Þ

Lastly, the MK trend test is a nonparametric test that evaluates whether there is a mono-

tonic trend in a time-series dataset [45–47]. Previous work that applied the MK trend test to

incident clinical COVID-19 case data explored 5, 7, and 14-day look-back periods to identify

statistically significant trends in COVID-19 case rates [22]. Here we applied the MK trend test

to raw N/PMMoV data and used a 14-day look-back period to be consistent with the look-

back periods used for RSI and PC. Log-transformation of the raw N/PMMoV values was not

necessary because the MK trend test is nonparametric. We interpreted positive values of the

test statistic, tau (τ), with p� 0.1, p� 0.05, and p� 0.01 as upward, likely upward, and very

likely upward trends, respectively. We interpreted negative τ values with p� 0.1, p� 0.05,

and p� 0.01 as downward, likely downward, and very likely downward trends, respectively

(Table 1).

2.3. Application of trend analysis methods to wastewater data

First, we applied each trend analysis method to daily N/PMMoV measurements. Heatmaps

were generated to visualize the trend classifications in Table 1 over the entire analysis period

(November 15, 2020–September 15, 2022). Moreover, we created separate heatmaps for three

major COVID-19 waves that occurred during our analysis period. Here, a wave is defined as

a substantial rise and eventual decline in N/PMMoV concentrations caused by one or more

SARS-CoV-2 variants as described by Wolfe et al. [53] and Boehm et al. [40] for this wastewa-

ter treatment plant. During the analysis period, the three waves that occurred were caused by

the following SARS-CoV-2 variants: Delta, BA.1 Omicron, and BA.2 + BA.4 + BA.5 Omicron.

Note that the BA.4 Omicron mutation was very rare during the latter wave [54, 55], so we will

herein refer to the BA.2 + BA.4 + BA.5 Omicron wave only as the BA.2 + BA.5 Omicron wave.

The separate heatmaps allowed us to evaluate the performance, which is subjectively and quali-

tatively described, of the trend analysis methods during different phases of the pandemic.

Next, we downsampled the daily dataset and reapplied the PC and MK trend test methods.

We did not consider the RSI method in the downsampling analysis because the RSI performed

the poorest in the trend analysis using daily data (presented below) and cannot be used to

assess statistical significance. We created a downsampled dataset for all possible sampling

Table 1. Trend classification criteria for each trend analysis method.

Trend Classification Relative Strength Index Percent Change Mann-Kendall Test

Very likely upward RSI� 90 99% lower CI > 0 p � 0.01, τ> 0

Likely upward 90 > RSI � 80 95% lower CI > 0 0.01 < p � 0.05, τ> 0

Upward 80 > RSI � 70 90% lower CI > 0 0.05 < p � 0.1, τ > 0

No Trend 70 > RSI > 30 all CIs intersect 0 p > 0.1

Downward 30 � RSI > 20 90% upper CI < 0 p � 0.01, τ< 0

Likely downward 20 � RSI > 10 95% upper CI < 0 0.01 < p � 0.05, τ< 0

Very likely downward 10 � RSI 99% upper CI < 0 0.05 < p � 0.1, τ < 0

CI = Confidence Interval

RSI = Relative Strength Index

PC = Percent Change

MK = Mann-Kendall

https://doi.org/10.1371/journal.pwat.0000088.t001
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combinations encompassing sampling frequencies between 2 samples/week and 6 samples/

week (N = 119) (Table 2). Note that it is not possible to calculate PC or conduct the MK trend

test using a 14-day look-back period and 1 sample/week frequency because these methods

require at least three measurements, so we did not consider any 1 sample/week sampling com-

binations in our analysis. The total number of possible downsampling combinations N was cal-

culated using Eq 3 where f is the number of samples collected per week (f = 2 for 2 samples/

week, f = 3 for 3 samples/week, etc.). Seven was used in the numerator of the binomial coeffi-

cient because there are seven days in a week. For example, there are 21 unique pairs of days for

a 2 samples/week sampling frequency. We did not impute missing N/PMMoV values for days

designated as non-sampling days during the downsampling process (i.e., we kept missing data

as missing in the downsampled datasets).

N ¼
X6

f¼2

7

f

� �
¼
X6

f¼2

7!

f ! 7 � fð Þ!

� �

ð3Þ

To evaluate the impact of using downsampled data for the PC and MK trend test methods,

we calculated the sensitivity and specificity for each trend analysis method for each down-

sampled dataset using the daily dataset as the validation dataset for each method (Fig 1). Sensi-

tivity was defined as the probability of a downsampled dataset to correctly identify when a

trend was identified using the daily dataset (i.e., correctly identify true positives); specificity

was defined as the probability of a downsampled dataset to correctly identify when no trend

was identified using the daily dataset (i.e., correctly identify true negatives). Because the trend

methods classify two distinct trend types (upward versus downward), we calculated upward

sensitivity and downward sensitivity separately (Fig 2). For the sensitivity calculations, an

upward trend includes “very likely upward”, “likely upward”, and “upward” trend classifica-

tions and a downward trend includes “very likely downward”, “likely downward”, and “down-

ward” trend classifications from Table 1.

3.0 Results

We used three different trend analysis methods to characterize trends in wastewater SARS-

CoV-2 RNA concentrations: the relative strength index (RSI) used in finance [43], the percent

change (PC) method used by the United States CDC [44], and the nonparametric Mann-Ken-

dall (MK) trend test [45–47]. The SARS-CoV-2 RNA dataset contained visual periods of

increase, decrease, and stability in N/PMMoV concentrations, allowing us to evaluate the

trend analysis methods throughout different COVID-19 waves. We then reapplied the PC and

MK trend test methods to downsampled data to investigate the impact of using data sampled

at a frequency of less than once per day.

Table 2. Number of sampling combinations for each downsampling frequency.

Downsampling Frequency Number of Sampling Combinations

2 samples/week 21

3 samples/week 35

4 samples/week 35

5 samples/week 21

6 samples/week 7

Number of sampling combinations = 7 choose f, where f is the number of samples collected per week.

https://doi.org/10.1371/journal.pwat.0000088.t002
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3.1. Trend analysis methods applied to daily data

Using the daily dataset, wastewater SARS-CoV-2 RNA trends were classified each day as

increasing, decreasing, or stable using three trend analysis methods (RSI, PC, MK trend test)

(Fig 3A). Excluding the wave at the start of the dataset, three major waves occurred during our

analysis period. The Delta wave was a relatively small wave (roughly identified as starting the

second week of June 2021 and ending the first week of September 2021) (Fig 3B), the BA.1

Omicron wave was a relatively large wave with rapid onset (roughly identified as starting the

third week of December 2021 and ending the fourth week of January 2022) (Fig 3C), and the

BA.2 + BA.5 Omicron wave was a relatively large wave with gradual onset (roughly identified

as starting the first week of April 2022 and ending the second week of September 2022) (Fig

3D). Daily N/PMMoV measurements with a 7-day moving average are shown above each

heatmap for reference.

All three methods identified periods of increase, decrease, and no change in the wastewater

concentrations. The PC and MK trend test methods identified an increasing trend sooner than

the RSI at the start of the Delta and BA.2 + BA.5 Omicron wave. Specifically, PC and the MK

trend test identified an increasing trend 16 and 17 days, respectively, before the RSI at the

start of the Delta wave and 26 and 12 days, respectively, before the RSI at the start of the BA.2

+ BA.5 Omicron wave. All three methods first identified an increasing trend at the start of the

Fig 1. Process for sensitivity and specificity calculations. Each method was (i) applied to the daily dataset and (ii) applied to each downsampled

dataset (N = 119). Then for each method separately, the trend analysis results from each downsampled dataset were validated with the trend analysis

results from the daily dataset.

https://doi.org/10.1371/journal.pwat.0000088.g001
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BA.1 Omicron wave within one day of each other. The PC and MK trend test also identified

decreasing trends at the end of the waves prior to the RSI, in most cases over a week in advance

of the RSI. Given the apparent tendency of the PC and MK trend test methods to identify

changing conditions in advance of the RSI and that the PC and MK trend test are more rigor-

ous than the RSI because they require some measure of statistical significance and hypothesis

testing, the RSI method was not further included in the downsampling analysis portion of the

study.

3.2. Downsampling analysis

For each downsampled dataset, wastewater SARS-CoV-2 RNA trends were classified each day

as increasing, decreasing, or stable using the PC and MK trend test methods. Then for each

method, the trend analysis results from each downsampled dataset were validated using the

trend analysis results from the daily dataset by calculating upward sensitivity (ability to cor-

rectly identify an upward trend), downward sensitivity (ability to correctly identify a down-

ward trend), and specificity (ability to correctly identify no trend). A key assumption of the

downsampling analysis was that the trend analysis results calculated using the daily dataset

were the closest to a “gold standard”. For both PC and the MK trend tests, upward and down-

ward sensitivities were poor at low sampling frequencies but improved as sampling frequency

increased. Using a median sensitivity better than chance (0.5) as an acceptable cutoff, PC

achieved acceptable upward and downward sensitivity with at least 4 samples/week (Fig 4,

Table 3). The MK trend test achieved acceptable upward and downward sensitivity with at

least 5 samples/week (Fig 4, Table 3). Specificity was similar—and very high—at all sampling

frequencies for both methods. A key limitation, however, is that the sensitivity and specificity

Fig 2. Definitions and equations used to calculate upward sensitivity, downward sensitivity, and specificity. Here an upward trend includes “very

likely upward”, “likely upward”, and “upward” trends and a downward trend includes “very likely downward”, “likely downward”, and “downward”

trends.

https://doi.org/10.1371/journal.pwat.0000088.g002
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values cannot be compared between methods because we validated each method with itself so

their validation datasets differ (Fig 1).

4.0 Discussion

We applied three different trend analysis methods to daily measurements of SARS-CoV-2

RNA from the San Jose sewershed between November 15, 2020, and September 15, 2022. We

then created downsampled datasets representing all possible sampling combinations and reap-

plied the PC and MK trend test methods to each downsampled dataset. We evaluated the

performance of each method conducted with downsampled data by calculating sensitivity

and specificity, using the results from each method conducted with daily data as a validation

dataset.

Compared to upward trends, there appeared to be a greater lag between when a downward

trend visually first appeared in the N/PMMoV data versus when the trend analysis methods

first classified a downward trend. It is not clear why this is the case, but perhaps it is related to

changing contributions to the wastewater system after a surge in disease incidence. Additional

mechanistic modeling work could more thoroughly investigate how wastewater concentra-

tions of SARS-CoV-2 RNA are predicted to change during periods of decreasing incidence

rates [56, 57]. Based on the methods presented, the period of “no trend” in between the end of

a period of upward trends and the start of a period of downward trends could be interpreted

as suggesting that a peak in wastewater SARS-CoV-2 RNA concentrations has been reached.

Fig 3. N/PMMoV with a 7-day moving average (MA) and corresponding trend classifications from relative strength index (RSI), percent change

(PC), and the Mann-Kendall (MK) trend test using daily data. (A) Entire analysis period, (B) Delta wave, (C) BA.1 Omicron wave, and (D) BA.2

+ BA.5 Omicron wave. Dates in panel A are given as “month year”; dates in all other panels are given as “day month”. “No Data” indicates that not

enough N/PMMoV measurements were available yet to conduct the trend analysis method.

https://doi.org/10.1371/journal.pwat.0000088.g003
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Regardless, the PC and MK trend test methods appeared to first detect upward and down-

ward trends before the RSI when conducted using daily data except during the BA.1 Omicron

wave. The 7-d MA line was visually not as variable during the uptick and downturn of the

BA.1 Omicron wave relative to the Delta and BA.2 + BA.5 Omicron waves (Fig 3) which might

Fig 4. Upward sensitivity, downward sensitivity, and specificity of each downsampled dataset for the percent change and Mann-Kendall trend

test methods. Results are aggregated by sampling frequency.

https://doi.org/10.1371/journal.pwat.0000088.g004

Table 3. Upward sensitivity, downward sensitivity, and specificity of downsampled data for percent change and Mann-Kendall methods. Median is provided with

standard deviation (SD) in parentheses.

PERCENT CHANGE (PC)

Sampling Frequency (sampling

combinations)

2 samples/week

(n = 21)

3 samples/week

(n = 35)

4 samples/week

(n = 35)

5 samples/week

(n = 21)

6 samples/week

(n = 7)

Sensitivity (upward trend) 0.28 (0.13) 0.46 (0.08) 0.60 (0.07) 0.72 (0.06) 0.80 (0.03)

Sensitivity (downward trend) 0.21 (0.09) 0.38 (0.12) 0.52 (0.11) 0.67 (0.08) 0.79 (0.06)

Specificity (no trend) 0.91 (0.03) 0.90 (0.02) 0.92 (0.02) 0.93 (0.02) 0.96 (0.01)

MANN-KENDALL (MK) TREND TEST

Sampling Frequency (sampling

combinations)

2 samples/week

(n = 21)

3 samples/week

(n = 35)

4 samples/week

(n = 35)

5 samples/week

(n = 21)

6 samples/week

(n = 7)

Sensitivity (upward trend) 0.23 (0.10) 0.29 (0.11) 0.50 (0.10) 0.71 (0.07) 0.87 (0.04)

Sensitivity (downward trend) 0.18 (0.10) 0.26 (0.10) 0.44 (0.11) 0.56 (0.10) 0.79 (0.07)

Specificity (no trend) 0.92 (0.02) 0.95 (0.02) 0.95 (0.02) 0.95 (0.02) 0.95 (0.02)

Median is provided with standard deviation (SD) in parentheses.

https://doi.org/10.1371/journal.pwat.0000088.t003
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explain why all three methods performed similarly during the BA.1 Omicron wave. The PC

method is currently used at the national level by the United States CDC for the NWSS [44],

and a trend analysis of incident clinical COVID-19 cases found that the MK trend test was

both intuitive and accurate [22]. These two methods are also more rigorous than the RSI

method because they require some measure of statistical significance and hypothesis testing to

classify trends (Table 1). It is important to note, however, that we could not quantitatively eval-

uate the accuracy of each method because there is no true validation dataset to identify when

upward, downward, or no trends in SARS-CoV-2 RNA concentrations truly did occur. Even

a potential validation dataset based on clinical case data is subject to biases from test seeking

behavior and availability or delays due to reporting. We only had the benefit of hindsight to

qualitatively compare the three methods which, in practice, would be applied to incoming

wastewater data in real time.

The trend analysis methods presented here report trends based on the likelihood of a trend.

Alternatively, health departments could report trends based on the duration over which a

trend occurs instead of the likelihood of a trend. A study by Holst et al. classified trends in

wastewater SARS-CoV-2 RNA concentrations as sustained increase, increase, plateau,

decrease, or sustained decrease [25]. Sustained versus unsustained trends were differentiated

based on the number of samples over which a statistically significant slope occurred (five sam-

ples for sustained trends and three samples for unsustained trends) [25]. Although beyond the

scope of this study, the criteria used to classify trends could be amended to consider the dura-

tion over which trends occur.

Our downsampling analysis suggests that a minimum sampling frequency of 4 samples/

week and 5 samples/week is necessary to detect trends that were identified by daily sampling

using the PC and MK trend test, respectively. This is based on an acceptable median sensitivity

and specificity better than chance (0.5). Previous studies that examined correlations between

wastewater SARS-CoV-2 RNA concentrations and incident clinical COVID-19 cases found

that collecting a minimum of 2 samples/week was necessary to detect significant correlations

[6, 28, 29]. Our results suggest that collecting only 2 samples/week is not sufficient to detect

trends identified by daily sampling using a 14-day look-back period when wastewater SARS-

CoV-2 RNA concentrations are analyzed independently from incident clinical cases.

We also conducted the downsampling analysis using a 7- and 21-day look-back period for

each method. When using a 7-day look-back period, a minimum sampling frequency of 5 sam-

ples/week is necessary to detect trends identified by daily sampling using both PC and the MK

trend test (Fig F in S1 Text). When using a 21-day look-back period, a minimum sampling fre-

quency of 3 samples/week and 4 samples/week is necessary to detect trends identified by daily

sampling using PC and the MK trend test, respectively (Fig G in S1 Text). Future work should

investigate the appropriateness of different look-back period lengths on infectious disease

trend analysis. Here we used a 14-day look-back period because 14 days represents an integer

multiple of one week and is generally thought to be the maximum incubation period of SARS-

CoV-2 [50, 51] and duration of active illness for those with acute symptoms [52]. It is also sim-

ilar to the 15-day look-back period used by the CDC NWSS [44]. Our sampling frequency rec-

ommendations are based only on the sensitivity and specificity analysis using a 14-day look-

back period for each method and do not account for other factors that influence sampling fre-

quency for a WBE program including availability of funding and staffing.

The PC and MK trend test methods appear to report similar trends for most days in the

study period, but the PC method requires fewer samples per week than the MK trend test

method to detect trends identified in the daily data with acceptable sensitivity and specific-

ity. Therefore, the PC method may be preferred by WBE programs with potential budget

constraints. According to our analysis, the PC method can still provide sufficient trend
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information using 4 samples/week and a 14-day look-back period. Further analysis could

investigate which four-day sampling combinations tend to have an upward sensitivity,

downward sensitivity, and specificity all above 0.5 (i.e., days clustered together versus days

evenly spaced throughout the week). Additionally, WBE programs could adopt an adaptive

approach such that sampling frequency is increased when there is a strong need to know the

current trend (e.g., when COVID-19 incidence is suspected to be high or increasing).

Our analysis has some limitations. First, we applied the three trend analysis methods to

wastewater data from one sewershed. The sewershed is large, so it is possible that the trend

analysis methods may perform differently or that the downsampling results may differ in a

smaller sewershed with more day-to-day variability in SARS-CoV-2 RNA concentrations.

There were also no days in our analysis period in which the N gene was below the limit of

detection. It remains unclear how each trend analysis method performs or how the downsam-

pling results may be affected by brief or prolonged periods in which the N gene concentration

is below detection levels. Our recommendations are based only on the analysis period consid-

ered (November 2020–September 2022); we recognize the post hoc nature of our analysis and

that our recommendations may differ as susceptibility among the population and the SARS-

CoV-2 virus continue to change. Furthermore, wastewater samples from this treatment plant

were collected from primary settled solids. SARS-CoV-2 RNA can be measured in both the liq-

uid and solid fraction of wastewater, and concentrations in both matrices are correlated with

COVID-19 incidence rates [34]. We therefore expect the trend analysis methods presented to

be applicable to WBE programs sampling wastewater primary influent, although future work

could apply the data analysis framework demonstrated herein to SARS-CoV-2 RNA measure-

ments from primary influent samples.

Second, our trend methods only report trend directions; they do not describe the magni-

tude of trends. For example, a small percent increase (e.g., <1%) would be classified as an

upward trend if the lower CI is above 0% and a large percent increase (e.g.,>10%) would be

classified as no trend if the lower CI is below 0% according to our trend classification criteria

—even though the magnitude of the latter trend is larger. The CDC does not consider statisti-

cal significance and only considers magnitude when classifying trends using the PC approach.

Specifically, the CDC classifies trends into five categories based on the magnitude of the PC

estimate over the last 15 days: large decrease (-100% or less), decrease (-99% to -10%), stable

(-9% to 9%), increase (10% to 99%), and large increase (100% or more) [58]. However, catego-

rizing PC trends based on magnitude alone can be misleading when wastewater SARS-CoV-2

concentrations are low or around the limit of detection [17]. If public health departments want

to report both the significance and magnitude of trends, the criteria in Table 1 could be modi-

fied such that the value of the PC or tau estimate must be both significant and above or below

a certain threshold. The RSI only describes trend stability; it does not have an associated statis-

tical significance and does not provide insight about the magnitude of a trend. We engaged

with county and state public health departments when conducting this analysis and encourage

others to do the same when developing tools to interpret WBE data.

Third, trend analysis methods only describe whether wastewater SARS-CoV-2 RNA con-

centrations are increasing, decreasing, or remaining stable. Trend analysis methods do not

describe the abundance of SARS-CoV-2 RNA and whether the quantity is high, medium, or

low. Trends could be reported alongside thresholds to better contextualize the current state

of the pandemic. High, medium, and low thresholds could be constructed based on relative

concentrations (e.g., percentage of the maximum concentration during a recent wave or past

time frame) or absolute concentrations. Future work is needed to determine how best to con-

struct thresholds and which cutoff values to use to differentiate high versus medium versus

low SARS-CoV-2 RNA quantities.
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Notwithstanding these limitations, our analysis is highlighted by several strengths. Our

analysis period spans nearly two years, so we were able to explore how each trend analysis

method performed in response to three distinct COVID-19 waves. In particular, two of our

trend analysis approaches (PC and the MK trend test) addressed the statistical significance of

trends, which is currently not typically reported alongside trends [22], because we categorized

trends for these methods based on statistical significance. In contrast, the United States CDC

categorizes trends on the NWSS dashboard based only on trend magnitude and not whether

the observed trend is statistically significant [58]. Additionally, our dataset contained daily

SARS-CoV-2 RNA measurements which was ideal for a downsampling analysis. We were able

to downsample this dataset to test all 119 possible sampling combinations ranging from 2 sam-

ples/week to 6 samples/week which allowed us to observe the full range of sensitivity and speci-

ficity values and, in turn, improve confidence in our sampling frequency recommendations.

During the COVID-19 pandemic, it has been demonstrated that WBE is a useful tool for

public health monitoring, and the per capita cost of wastewater sampling is significantly lower

than the per capita cost of individual clinical testing [59]. WBE has also been shown to be use-

ful for monitoring the occurrence of other diseases [60–62]. We expect the data analysis frame-

work performed herein to be a useful starting point for interpreting wastewater monitoring

data for COVID-19 and other infectious disease markers.

5.0 Conclusion

We compared three trend analysis methods for characterizing trends in SARS-CoV-2 RNA

concentrations in wastewater. Based on daily data from the San Jose wastewater treatment

plant, the PC and MK trend test appear to perform similarly and better than the RSI in terms

of first detecting trends using a 14-day look-back period. Additionally, both the PC and MK

trend test are inference-based methods so can be used to classify trends in a standard, statisti-

cally sound manner. When using the PC method to classify trends, our downsampling analysis

suggests that a minimum sampling frequency of 4 samples/week is necessary to detect trends

identified by daily sampling (5 samples/week using the MK trend test method). WBE pro-

grams can adopt our trend analysis approaches and sampling frequency recommendations to

better inform public health departments how COVID-19 cases are changing, especially as rates

of clinical testing continue to decline.

Supporting information

S1 Text.

(PDF)

Acknowledgments

We thank the County of Santa Clara Public Health Department and the California Department

of Public Health COVID-19 Wastewater Surveillance, Epidemiology and Data teams for their

feedback about the trend analysis methods. Numerous people contributed to the collection of

wastewater samples including Payak Sarkar, Noel Enoki, and Amy Wong.

Author Contributions

Conceptualization: Elana M. G. Chan, Lauren C. Kennedy, Marlene K. Wolfe, Alexandria B.

Boehm.

Data curation: Elana M. G. Chan.

PLOS WATER Trends in SARS-CoV-2 RNA in wastewater: Effect of sampling frequency

PLOS Water | https://doi.org/10.1371/journal.pwat.0000088 April 6, 2023 13 / 17

http://journals.plos.org/water/article/asset?unique&id=info:doi/10.1371/journal.pwat.0000088.s001
https://doi.org/10.1371/journal.pwat.0000088


Formal analysis: Elana M. G. Chan.

Funding acquisition: Alexandria B. Boehm.

Methodology: Elana M. G. Chan, Lauren C. Kennedy, Marlene K. Wolfe, Alexandria B.

Boehm.

Project administration: Alexandria B. Boehm.

Software: Elana M. G. Chan.

Supervision: Alexandria B. Boehm.

Visualization: Elana M. G. Chan.

Writing – original draft: Elana M. G. Chan, Lauren C. Kennedy, Alexandria B. Boehm.

Writing – review & editing: Elana M. G. Chan, Lauren C. Kennedy, Marlene K. Wolfe, Alex-

andria B. Boehm.

References
1. U.S. Centers for Disease Control and Prevention. FAQ: COVID-19 Data and Surveillance. 5 Oct 2022

[cited 1 Aug 2022]. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/faq-surveillance.html

2. Rubin R. COVID-19 Testing Moves Out of the Clinic and Into the Home. JAMA. 2021; 326: 1362–1364.

https://doi.org/10.1001/jama.2021.15679 PMID: 34550303

3. World Health Organization. Guidelines for environmental surveillance of poliovirus circulation. World

Health Organization; 2003. Report No.: WHO/V&B/03.03. https://apps.who.int/iris/handle/10665/67854

4. Naughton CC, Roman FA Jr, Alvarado AGF, Tariqi AQ, Deeming MA, Kadonsky KF, et al. Show us the

data: global COVID-19 wastewater monitoring efforts, equity, and gaps. FEMS Microbes. 2023; 4:

xtad003. https://doi.org/10.1093/femsmc/xtad003

5. Polo D, Quintela-Baluja M, Corbishley A, Jones DL, Singer AC, Graham DW, et al. Making waves:

Wastewater-based epidemiology for COVID-19 –approaches and challenges for surveillance and pre-

diction. Water Res. 2020; 186: 116404. https://doi.org/10.1016/j.watres.2020.116404 PMID: 32942178

6. Graham KE, Loeb SK, Wolfe MK, Catoe D, Sinnott-Armstrong N, Kim S, et al. SARS-CoV-2 RNA in

Wastewater Settled Solids Is Associated with COVID-19 Cases in a Large Urban Sewershed. Environ

Sci Technol. 2021; 55: 488–498. https://doi.org/10.1021/acs.est.0c06191 PMID: 33283515

7. Peccia J, Zulli A, Brackney DE, Grubaugh ND, Kaplan EH, Casanovas-Massana A, et al. Measurement

of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat Biotechnol. 2020; 38:

1164–1167. https://doi.org/10.1038/s41587-020-0684-z PMID: 32948856

8. Kitamura K, Sadamasu K, Muramatsu M, Yoshida H. Efficient detection of SARS-CoV-2 RNA in the

solid fraction of wastewater. Sci Total Environ. 2021; 763: 144587. https://doi.org/10.1016/j.scitotenv.

2020.144587 PMID: 33360957

9. Layton BA, Kaya D, Kelly C, Williamson KJ, Alegre D, Bachhuber SM, et al. Evaluation of a Wastewa-

ter-Based Epidemiological Approach to Estimate the Prevalence of SARS-CoV-2 Infections and the

Detection of Viral Variants in Disparate Oregon Communities at City and Neighborhood Scales. Environ

Health Perspect. 2022; 130: 067010. https://doi.org/10.1289/EHP10289 PMID: 35767012

10. Pillay L, Amoah ID, Kumari S, Bux F. Potential and Challenges Encountered in the Application of

Wastewater-Based Epidemiology as an Early Warning System for COVID-19 Infections in South Africa.

ACS EST Water. 2022 [cited 5 Jul 2022]. https://doi.org/10.1021/acsestwater.2c00049

11. D’Aoust PM, Graber TE, Mercier E, Montpetit D, Alexandrov I, Neault N, et al. Catching a resurgence:

Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96

h before hospitalizations. Sci Total Environ. 2021; 770: 145319. https://doi.org/10.1016/j.scitotenv.

2021.145319 PMID: 33508669

12. Melvin RG, Hendrickson EN, Chaudhry N, Georgewill O, Freese R, Schacker TW, et al. A novel waste-

water-based epidemiology indexing method predicts SARS-CoV-2 disease prevalence across treat-

ment facilities in metropolitan and regional populations. Sci Rep. 2021; 11: 21368. https://doi.org/10.

1038/s41598-021-00853-y PMID: 34725394

13. Xiao A, Wu F, Bushman M, Zhang J, Imakaev M, Chai PR, et al. Metrics to relate COVID-19 wastewater

data to clinical testing dynamics. Water Res. 2022; 212: 118070. https://doi.org/10.1016/j.watres.2022.

118070 PMID: 35101695

PLOS WATER Trends in SARS-CoV-2 RNA in wastewater: Effect of sampling frequency

PLOS Water | https://doi.org/10.1371/journal.pwat.0000088 April 6, 2023 14 / 17

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/faq-surveillance.html
https://doi.org/10.1001/jama.2021.15679
http://www.ncbi.nlm.nih.gov/pubmed/34550303
https://apps.who.int/iris/handle/10665/67854
https://doi.org/10.1093/femsmc/xtad003
https://doi.org/10.1016/j.watres.2020.116404
http://www.ncbi.nlm.nih.gov/pubmed/32942178
https://doi.org/10.1021/acs.est.0c06191
http://www.ncbi.nlm.nih.gov/pubmed/33283515
https://doi.org/10.1038/s41587-020-0684-z
http://www.ncbi.nlm.nih.gov/pubmed/32948856
https://doi.org/10.1016/j.scitotenv.2020.144587
https://doi.org/10.1016/j.scitotenv.2020.144587
http://www.ncbi.nlm.nih.gov/pubmed/33360957
https://doi.org/10.1289/EHP10289
http://www.ncbi.nlm.nih.gov/pubmed/35767012
https://doi.org/10.1021/acsestwater.2c00049
https://doi.org/10.1016/j.scitotenv.2021.145319
https://doi.org/10.1016/j.scitotenv.2021.145319
http://www.ncbi.nlm.nih.gov/pubmed/33508669
https://doi.org/10.1038/s41598-021-00853-y
https://doi.org/10.1038/s41598-021-00853-y
http://www.ncbi.nlm.nih.gov/pubmed/34725394
https://doi.org/10.1016/j.watres.2022.118070
https://doi.org/10.1016/j.watres.2022.118070
http://www.ncbi.nlm.nih.gov/pubmed/35101695
https://doi.org/10.1371/journal.pwat.0000088


14. Bibby K, Bivins A, Wu Z, North D. Making waves: Plausible lead time for wastewater based epidemiol-

ogy as an early warning system for COVID-19. Water Res. 2021; 202: 117438. https://doi.org/10.1016/

j.watres.2021.117438 PMID: 34333296

15. Zhao L, Zou Y, Li Y, Miyani B, Spooner M, Gentry Z, et al. Five-week warning of COVID-19 peaks prior

to the Omicron surge in Detroit, Michigan using wastewater surveillance. Sci Total Environ. 2022;

157040. https://doi.org/10.1016/j.scitotenv.2022.157040 PMID: 35779714

16. Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA

in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020; 181:

115942. https://doi.org/10.1016/j.watres.2020.115942 PMID: 32425251

17. Keshaviah A, Huff I, Hu XC, Guidry V, Christensen A, Berkowitz S, et al. Separating Signal from Noise

in Wastewater Data: An Algorithm to Identify Community-Level COVID-19 Surges. medRxiv; 2022.

https://doi.org/10.1101/2022.09.19.22280095

18. Hoar C, McClary -Gutierrez Jill, Wolfe MK, Bivins A, Bibby K, Silverman AI, et al. Looking Forward: The

Role of Academic Researchers in Building Sustainable Wastewater Surveillance Programs. Environ

Health Perspect. 130: 125002. https://doi.org/10.1289/EHP11519 PMID: 36580023

19. McClary-Gutierrez JS, Mattioli MC, Marcenac P, Silverman AI, Boehm AB, Bibby K, et al. SARS-CoV-2

Wastewater Surveillance for Public Health Action. Emerg Infect Dis. 2021; 27: e210753. https://doi.org/

10.3201/eid2709.210753 PMID: 34424162

20. Safford HR, Shapiro K, Bischel HN. Wastewater analysis can be a powerful public health tool—if it’s

done sensibly. PNAS. 2022; 119: e2119600119. https://doi.org/10.1073/pnas.2119600119 PMID:

35115406

21. Kriston L. Assessing the strength of case growth trends in the coronavirus pandemic. R Soc Open Sci.

2020; 7: 201622. https://doi.org/10.1098/rsos.201622 PMID: 33391815

22. Ison D. Statistical procedures for evaluating trends in coronavirus disease-19 cases in the United

States. Int J Health Sci (Qassim). 2020; 14: 23–31. PMID: 32952502

23. Nti IK, Adekoya AF, Weyori BA. A systematic review of fundamental and technical analysis of stock

market predictions. Artif Intell Rev. 2020; 53: 3007–3057. https://doi.org/10.1007/s10462-019-09754-z

24. Birnbaum D, Ely JW, Dawson JD, Lemke JH, Rosenberg J. An Introduction to Time-Trend Analysis.

Infect Control Hosp Epidemiol. 1997; 18: 267–274. https://doi.org/10.1086/647609 PMID: 9131373

25. Holst MM, Person J, Jennings W, Welsh RM, Focazio MJ, Bradley PM, et al. Rapid Implementation of

High-Frequency Wastewater Surveillance of SARS-CoV-2. ACS EST Water. 2022; 2: 2201–2210.

https://doi.org/10.1021/acsestwater.2c00094

26. Wu F, Xiao A, Zhang J, Moniz K, Endo N, Armas F, et al. Wastewater surveillance of SARS-CoV-2

across 40 U.S. states from February to June 2020. Water Res. 2021; 202: 117400. https://doi.org/10.

1016/j.watres.2021.117400 PMID: 34274898

27. Biobot Analytics. The Biobot Network of Wastewater Treatment Plants. [cited 13 Sep 2022]. https://

biobot.io/data/

28. Feng S, Roguet A, McClary-Gutierrez JS, Newton RJ, Kloczko N, Meiman JG, et al. Evaluation of Sam-

pling, Analysis, and Normalization Methods for SARS-CoV-2 Concentrations in Wastewater to Assess

COVID-19 Burdens in Wisconsin Communities. ACS EST Water. 2021; 1: 1955–1965. https://doi.org/

10.1021/acsestwater.1c00160

29. Zheng X, Li S, Deng Y, Xu X, Ding J, Lau FTK, et al. Quantification of SARS-CoV-2 RNA in wastewater

treatment plants mirrors the pandemic trend in Hong Kong. Sci Total Environ. 2022; 157121. https://doi.

org/10.1016/j.scitotenv.2022.157121 PMID: 35787900
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