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Abstract

Local and climate-driven challenges combined with an increasing anthropogenic pollution of
the water compartment all around the world make a sustainable handling of wastewater
imperative. New additional treatment methods are under examination, including cavitation-
based advanced oxidation processes. To quantify structural influences on chemical pro-
cesses, quantitative structure-property relationship (QSPR) modelling can be used, which
calculates a correlation between a defined endpoint and structural properties expressed by
molecular descriptors. In this study, QSPR modelling has been applied to investigate the
structural influence on the degradability of organic micropollutants with high-frequency
sonolysis. The dataset of a previous study on 32 phenol derivates was expanded by 60
mostly aromatic compounds, whose kinetic degradation constants were obtained in a stan-
dardized experimental setup. QSPR modelling was conducted using the software PaDEL
for descriptor calculation and QSARINS for the modelling process using a multiple linear
regression approach and genetic algorithm. All five OECD-requirements for applicable
QSPR models were respected. The obtained model included 12 model descriptors, was
evaluated with numerous statistical quality parameters, and shows good regression abilities
as well as robustness and predictability (R® = 0.8651, CCCy, = 0.9277, Q%o = 0.8010, R%.
=0.7836, CCC.y = 0.8838, Q%-; = 0.7697). The interpretation of selected model descriptors
showed interesting connections between the model results and the experimental back-
ground. A strong influence of the polarity of organic compounds on their degradability with
high-frequency sonolysis could been quantified, as more nonpolar molecules are degraded
faster. Additionally, the impact of specific fingerprints, including for example substituents
with heteroatoms, the number of fused and non-fused aromatic rings as well as the numeri-
cal appearance of secondary carbon could be identified as relevant for this cavitation-based
treatment method.
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Introduction

Water is not only the foundation and a general need of life but also the world’s most threat-
ened resource. Natural local scarcity and the accelerating climatic-driven challenges are addi-
tionally exacerbated by the increasing anthropogenic pollution, which is not limited to
drinking water, but affects all sources of fresh and sea water [1-3]. This consequently results in
risks and harms not only for the natural environment and wildlife, but also for human health
[4, 5]. Water pollutants are quite divers, including for example radioactive material, heavy
metals and organic micropollutants [1]. The later have a wide structural variety and a huge
range of toxicity. Among these emerging contaminants, special substance classes like pharma-
ceuticals, pesticides, herbicides, synthetic dyes, and cosmetics cause major concern around the
world. Even though the concentration of these organic molecules is generally low at pg/L or
ng/L [6], possible human health risks include carcinogenic and mutagenic effects as well as
acute and chronic toxicity [7, 8]. Endocrine disruptive chemicals (EDCs) additionally interfere
with hormonal activities and therefore might disturb reproduction, development and behav-
iour [9]. In addition, most of these compounds are quite persistent and therefore only partially
degraded by current installed water treatment plants or even bypass treatment altogether,
emerging in receiving water, which is then again often used as human water source [10].
Despite this accumulating water usage cycle and although the production of these micropollu-
tants steadily increases, a final solution for universally effective water treatment has yet to be
found [7].

This is why additional water treatment methods are a crucial and growing research field.
Within the development of such processes, advanced oxidation processes (AOPs) have been
gaining more and more attention, as they present great potential for treating a large variety of
organic micropollutants [11]. AOPs generally have in common, that highly reactive oxygen
species (ROS) such as hydroxyl radicals (OH") and superoxide anion radicals (O,") are gener-
ated in-situ. With the low selectivity of the ROS, a conversion of micropollutants into non-
toxic compounds or a full mineralization into CO,, H,O and inorganic ions can be achieved
[11].

Cavitation-based degradation processes has emerged as a promising oxidative technology
for the degradation of organic compounds by utilizing the sonochemical phenomenon [12,
13]. Acoustic cavitation is produced when ultrasound frequencies between 20 and 1000 kHz
are transmitted through a liquid [14]. The passing of the ultrasound wave through the medium
results in a periodic movement of solvent molecules, creating compression and expansion
cycles. If the local static pressure is equal or lower than the vapor pressure of the gas dissolved
in the solvent, liquid voids and cavitation bubbles are formed [15]. The cavitiesexpand during
the cycles until they reach a critical size and collapse [16]. The implosion of these cavitation
bubbles creates locally high temperatures and pressures of around 5000 K and 1000 atm,
respectively. These so-called hot spots concentrate the ultrasonic energy and can be seen as
micro-reactors within the liquid [12, 17].

Acoustic cavitation generally forms three different regions (Fig 1), where different reaction
pathways can take place [14, 18].

Within the bubble interior, pyrolytic degradation reactions of volatile and hydrophobic
molecules occur due to the high temperature and pressure. Additionally, vaporized water mol-
ecules undergo decomposition resulting in the formation of hydroxyl radicals. In the bubble-
liquid interface, hydroxyl radicals react predominantly to form H,O, and oxidize organic
compounds. The bulk solution contains free reactive species, which migrated from the inter-
face area. In the bulk, they can react with organic molecules in secondary sonochemical reac-
tions [18].
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Fig 1. Three reaction zones in the cavitation process (following Adewuyi [18]).

https://doi.org/10.1371/journal.pwat.0000082.9001

Among challenges in method development, the large variability of the structure of organic
micropollutants and therefore their chemical behaviour has to be considered. Previous studies
of the sonolysis of organic micropollutants observed a very different behaviour of various
micropollutants, showing for example a qualitative influence of the polarity on the degradabil-
ity with sonolysis, stating that a higher polarity results in a slower degradation [12, 19, 20].

The calculation of such mathematical, predictive in-silico models via quantitative structure-
property relationship (QSPR) (or quantitative structure-activity relationship (QSAR)) can be a
useful tool to correlate various biological, physical or chemical properties of a molecule with
its chemical structure, which therefore is translated into numerous numerical parameters, so-
called molecular descriptors [21]. In general, QSPR/QSAR modelling studies usually utilize a
set of chemicals with known experimental target endpoint and their calculated molecular
descriptors (training set) to select relevant descriptors and to develop a correlation equation.

The use of QSPR modelling in regulatory and industrial purposes receives growing support.
To ensure the quality and reliability of such models, the OECD (Organisation of Economic
Cooperation and Development) defined five principles, which should be met in good practiced
QSPR modelling. (1) a defined endpoint, (2) an unambiguous algorithm, (3) a defined domain
of application, (4) appropriate measures of goodness-of-fit, robustness, and predictivity, and
(5) a mechanistic interpretation, if possible [22, 23].

In addition to its predictive value, QSPR modelling can help to identify molecular proper-
ties and sites which are important for the degradation and therefore can contribute to a
broader understanding of reaction pathways. This was shown in our previous study on the
sonolytic degradation of 32 phenol derivates and the first predictive QSPR model on sonolysis
[24]. By interpreting some selected model descriptors, a potential influence of the polarity and
the occurrence of strong hydrogen bonds could be identified. Due to the limitations of the
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small underlying dataset though, it could not be excluded that these two descriptors were only
selected because of a dataset anomaly and the simultaneous occurrence of a stabilizing meso-
meric effect. Therefore, in this study we increased the experimental dataset from the previous
study to 92 organic micropollutants, that were experimentally investigated in a standardized
laboratory setup with fixed parameters under the same reproducible conditions to ensure the
needed homogeneity of the underlying dataset [25, 26]. The QSPR workflow from Glienke

et al. [24] was executed again to ensure comparability as well as sufficient model quality,
including multiple validation methods. The selected model descriptors were interpreted within
the experimental background to connect the quantitative mathematical model with the under-
lying experimental reaction pathways.

Material and methods
Reagents and materials

All sources of chemicals, including CAS-numbers, molecular weight, structures, SMILES-
codes, and purity, are described in Tables A and B in S1 Text. All chemicals were used as
received and possessed a purity > 90%. Reaction solutions were prepared using freshly filtered
ultrapure water (o < 0.055 uS/cm, TOC < 5 ppb; GenPure Pro, Fisher Scientific).

Experimental data

The sonolytic degradation experiments at 860 kHz performed in our previous study (Glienke
et al. [24]) on 32 phenol derivates were extended by 60 more organic micropollutants, includ-
ing bisphenol derivates, pharmaceuticals, pesticides and herbicides. The dataset ultimately
contained mostly aromatic compounds, with a focus on phenol derivates and anilines, but also
substituted benzenes, azabenzenes, naphthalenes and (benzo)azoles. The same laboratory
setup and parameters were used to ensure data homogeneity and comparability.

The concentration of micropollutants were mainly analysed using a high-performance liq-
uid chromatography (HPLC) (LC2000, Jasco), including a fluorescence detector (FP-2020Plus,
Jasco), a multiwavelength detector (MD-2010Plus, Jasco), an autosampler (AS-2055Plus), a
100 L injection loop and a RP C18 column (Dr. Maisch GmbH Kromasil 100 C18
10mm*4.6mm, 5 um & 250mm*4.6mm, 5 um) tempered at 40°C. The concentrations of
organic dyes were measured using a spectral photometer (DR 3900, Hach Lange). All analytical
methods are described in detail in Table C in S1 Text.

Reaction rate constants were calculated following the pseudo-first-order kinetic equation
(Eq 1) [27]. The average value of the kinetic constant obtained by a triple determination for
each substance in 1/h was logarithmically transformed to serve as the modelling dataset.

1n(_) Ckxt (1)

With ¢ as start concentration, ¢, as concentration of the analyte at time t and k as the rate
constant.

QSPR modelling process

The executed QSPR modelling followed the process described in detail in Glienke et al. [24].
More information can be also found in the supplement material (Texts D-H in S1 Text). The
PaDEL-descriptor software [28], version 2.21, was used to calculate all used model descriptors
and fingerprints, which were then imported into QSARINS-software, version 2.2.4 [http://
www.gsar.it] [29, 30].
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Molecular descriptors

CDK (Chemistry Development Kit) fingerprints were calculated with a length of 1024 and a
search depth of 8 based on all 92 molecules. They were reduced by pair-wise correlation >95%
and constancy >90%. The dataset was then split into a representative training set and valida-
tion set in a ratio of 4:1 based on structural properties characterized by principal component
analysis (PCA) of the CDK fingerprints.

Descriptor pool for modelling

The software PaDEL was used to calculate one- and bi-dimensional descriptors, PubChem fin-
gerprints, substructure fingerprints and substructure fingerprint. PubChem fingerprints as
well as substructure fingerprints have values of either 0 or 1, indicating the absence or the pres-
ence of the fingerprint within the molecule, respectively. It was dealt with redundant informa-
tion and binary collinearity by filtering the descriptor pool for pair-wise correlation greater
95% and constancy greater 90%. The remaining descriptors (Text F in S1 Text) were normal-
ized and imported to the QSARINS-software for further modelling. The splitting into training
set and validation set obtained from chapter 2.3.1. was adopted. The distribution of the experi-
mental endpoint and the structural domain of the descriptor pool were inspected for possible
outliers and potential clusters within the dataset and examine the splitting.

QSPR modelling and validation

Multiple linear regression was used as the underlying mathematical approach (Eq 2). The algo-
rithm thereby tied to minimize the sum of squares of the difference between experimental end-
point and its calculated value on basis of the training set.

J
Y=by+ Y (b xX)=b,+bX, +bX,+ - +bX +u (2)
=1

All possible combinations of subsets of 2 descriptors were calculated before computing higher
dimensional models using genetic algorithm (fitness function: Q%o population size: 400, generations
per size: 100, mutation rate: 20%). The maximum number of descriptors was set t0 Ngapuremax = 13>
because the number of model descriptors should not exceed 1/5 of the number of molecules in the
training set (nt, = 75). The variable significance level was set to < 0.05 and the critical QUIK-value
[31] to 0.050 to immediately dismiss all models with a high multicollinearity.

The best 10 models per size stored by the program were further analysed. Besides the internal
LOO-cross validation conducted during the algorithm, an internal leave-many-out (LMO) cross val-
idation, external validation, Y-scrambling, and Y-randomization were executed (Text H in S1 Text).

To obtain the final, most optimized model from the pool of calculated models, multi-crite-
ria decision-making (MCDM) was used to select the best overall performing model from all
stored models integrating all calculated statistical values.

For the overall best performing model, the applicability domain was defined by both a Wil-
liams and an Insubria plot and permuted and randomized response tests were applied to calcu-
late the probability of chance correlation of the model descriptors.

Results and discussion
Experimentally derived k values and calculated descriptors

Sonolytic degradation experiments at 860 kHz were performed with 60 organic compounds in
a standardized setup. The kinetic constants from a previous study for 32 phenol derivates were
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supplemented [24] to obtain a total of 92 investigated compounds for the underlying dataset.
Table D in S1 Text gives a full overview of all rate constants including standard deviation and
their variation coefficient. The values of the experimental rate constants vary between 0.0035
min™ (Nicotinamide) and 0.2909 min™ (Tetrachlorocatechol).

The graphic display of the first two principal component analysis dimensions based on the
628 normalized descriptors used as the pool for the modelling process (Fig 2A) showed no
structural outlier or hard clusters within the dataset. Additionally, the splitting based on CDK
fingerprints resulted in an even distribution of validation molecules within the structural spec-
trum. The distribution of the rate constants (Fig 2B) however showed a high endpoint outlier
of Tetrachlorocatechol relative to the rest of the dataset, even though it was not conspicuous in
the PCA analysis. As the dataset for QSPR modelling purposes should be distributed normally
at best, and Tetrachlorocatechol affected the modelling results negatively in pre-tests, this mol-
ecule was excluded from the dataset (Fig 2C).

QSPR model for kyg

Statistical quality of the QSPR model. The QSPR modelling procedure was carried out
as described in chapter 2.3 based on the experimental values for the rate constant kys. The best
obtained model selected via MCDM is defined by the following equation for unstandardized
coefficients:

logk

ored = —0.2851 + 0.4009 x ALogP — 0.2053 x AATS8m + 0.2490 x ATSC8c¢ — 0.2881
x ATSC5e + 0.1036 x MATS4p 4 0.1036 x VE1,zs + 0.1347 x PubchemFP257
— 0.0912 x PubchemFP365 + 0.1566 x PubchemFP542 + 0.0821

x PubchemFP688 — 0.1579 x SubFP135 + 0.3104 x SubFPC2 (3)

The coefficients, standardized coefficients, the confidence intervals (Co. int 95%) and the p-
values of the model descriptors are listed in Table 1. The model must not be considered suspect
as the ratio of the confidence interval and the descriptor coefficient is below 1 and the
respected p-values are below 0.05.

All binary correlation values of the 12 model descriptors (Table E in S1 Text) are well below
the critical value of 0.7 [32]. With the additional executed QUIK test with a critical value of
0.05, severe multicollinearity between the model descriptors can be dismissed with high
probability.

Table 2 gives an overview of all statistical values calculated during the modelling process.
The goodness of fit, model stability and predictability of the model seem very high based on
good values for R? Q%,, and R%.,, respectively. The good regression ability of the model, addi-
tionally shown in the regression plot in Fig 3A, is also supported through a low value for the
lack of fit (LOF) and simultaneously high values for the concordance correlation coefficients
CCCy, and CCC.y. With good results of the Y-scrambling and Y-randomization tests (Fig 3B
and 3C), and the calculations of the permuted and randomized endpoint randomization tests
applied on the whole modelling process (Fig C in S1 Text), the possibility of mathematical
chance correlation of the model descriptors can be dismissed.

To define the applicability domain of the model, a Williams plot and a Insubria graph are
used (Fig 4). As the Williams plot uses standardized residuals, experimental endpoint values
are needed to see if a molecule lies within the applicability domain of the model. As the Insu-
bria plot uses only the predicted endpoint, no experimental data is needed for external com-
pounds. It can be seen that 1,2,4-Benzenetricarboxylic acid is the only structural outlier.
Additionally for the Williams plot, Nicotinamide and 4,4’-Diaminodiphenylsulfone have stan-
dardized residuals higher than the critical value of 2.5, so their experimental rate constant
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Fig 2. A) PCA analysis of the descriptor pool, B) Response distribution of all 92 molecules, C) Response
distribution without Tetrachlorocatechol.

https://doi.org/10.1371/journal.pwat.0000082.g002

might have to be seen with caution. For Nicotinamide, this might be due to the very low value
of the rate constant, almost at 0., leading to a higher deviation of the results within the triple
determination.

Descriptor interpretation

Twelve descriptors were selected via genetic algorithm for the final model with the best overall
statistical performance. When compared to the descriptors selected in the best ten models, the
relevance of their structural information for the degradation of micropollutants with sonolysis
at 860 kHz seems to be very high, as eight of these variables are present in all of the best ten
models (Fig 5).

An overview of the model descriptors with a description of their mathematical background,
their class and their qualitative influence on the rate constant is given in Table 1. Even though
a complete mechanistical interpretation of the sonolytic degradation of micropollutants based
on this QSPR model is restricted due to limitations of dataset size and descriptor interpretabil-
ity, some interesting aspects can be identified.

The first selected descriptor relevant for describing the rate constant in sonolytic degrada-
tion is ALogP, calculated with an atomic approach, which considers the contribution of each
atom of a molecule to its overall logP value [33, 34]. Within this QSPR model, the ALogP con-
tributes positively to the calculation of the rate constant. More nonpolar molecules therefore
seem to be degraded faster. The same influence was previously calculated in our QSPR model
based on the sonolytic degradation of phenol derivates [24]. In that study however, larger
polarity was equal to the occurrence of a stabilizing negative mesomeric effect due to limita-
tions of the underlying dataset. Therefore, it could not definitely be sure which influence was

Table 1. Standardized coefficients, standardized coefficient, confidence intervals (Co. Int. 95%), p-values, background and class of the model descriptors and

intercept.

Variable

Intercept
ALogP
AATS8m

ATSC8c
ATSC5e

MATS4p
VE1_Dzs

PubchemFP257
PubchemFP365
PubchemFP542
PubchemFP688
SubFP135
SubFPC2

https://doi.org/10.1371/journal.pwat.0000082.t001

-0.2851
0.4009
-0.2053

0.2490

-0.2881

0.1036
0.1036

0.1347
-0.0912
0.1566
0.0821
-0.1579
0.3104

Coefficient | Standardized

coefficient

0.5030
-0.2151

0.2086

-0.2585

0.1369
0.1597

0.4037
-0.2173
0.4559
0.2493
-0.3139
0.3196

Standard Co. Int. p-value | Background of the Descriptor Class

error 95%

0.0735 0.1469 0.0002

0.0468 0.0935 0.0000 | Ghose-Crippen LogKow 2D

0.0688 0.1376 0.0039 | average centered Broto-Moreau autocorrelation of lag 8 / weighted | 2D
by mass

0.0744 0.1487 0.0013 | Centered Broto-Moreau autocorrelation of lag 8 / weighted by 2D
charges

0.0611 0.1222 0.0000 | Centered Broto-Moreau autocorrelation of lag 5 / weighted by 2D
Sanderson electronegativities

0.0503 0.1005 0.0429 | Moran autocorrelation of lag 4 / weighted by polarizabilities 2D

0.0364 0.0727 0.0057 | Coefficient sum of the last eigenvector from Barysz matrix / 2D
weighted by I-state

0.0209 0.0419 0.0000 | > 2 aromatic rings FP

0.0240 0.0480 0.0003 | C(~H)(~N) FP

0.0203 0.0406 0.0000 | O-C:C-[#1] FP

0.0181 0.0362 0.0000 | C-C-C-C-C-C-C FP

0.0287 0.0574 0.0000 | Vinylogous carbonyl or carboxyl derivative FP

0.0557 0.1113 0.0000 | Secondary carbon FP
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Table 2. Calculated statistical parameters of the final QSPR model.
Ny = 75, Nyt = 17, MCDM = 0.820
Fitting criteria:

R* = 0.8651, R%,4; = 0.8390, R*-R?,4; = 0.0261, LOF = 0.0078, K, = 0.2818, AK = 0.0502, RSME,, = 0.0600, MAE,, =
0.0472, RSS,, = 0.2703, CCC,, = 0.9277, s = 0.0660, F = 33.1346

Internal validation criteria:

Q%0 = 0.8010, R%-Q?% 0 = 0.0641, RMSE,, = 0.0729, MAE,, = 0.0570, PRESS,, = 0.3988, CCC,, = 0.8946, Q*.ni0 =
0.7791, R?yyer = 0.1627, Q%yyer = -0.2416, RMSE Averagey.., = 0.1494, R?y 4 = 0.1629, Q*yyng = -0.2456

External validation criteria:

RMSE,y; = 0.0735, MAE,; = 0.0646, PRESS ., = 0.0865, R’y = 0.7836, Q’5; = 0.7697, Q’g, = 0.7603, Qg3 = 0.7977,
CCCey = 0.8838, 2 = 0.7459, Ar2 = 0.0114

Permuted Endpoint Randomization Test:

Average R?,.x = 0.4037, standard deviation,,,, R* = 0.1185, Probability of chance correlation = 0.0000

Average Q?max = 0.2342, standard deviation ., Q* = 0.1078, Probability of chance correlation = 0.0000
Randomized Endpoint Randomization Test:

Average R%,ax = 0.3779, standard deviation,,x R* = 0.1100, Probability of chance correlation = 0.0000

Average Q% max = 0.2663, standard deviation,,,, Q* = 0.1002, Probability of chance correlation = 0.0000

https://doi.org/10.1371/journal.pwat.0000082.t002

the true reason behind the selection of this descriptor during the genetic algorithm. However,
with the larger dataset in this study including more complex aromatic compounds, the pres-
ence of a substituent with negative mesomeric effect does not always goes along with low val-
ues for ALogP compared to the entire dataset (Table E in SI Text). An example for that is 4-
(4-hydroxyphenoxy)phenol, which is one of the more polar compounds of the dataset and
simultaneously contains two hydroxy- and one ether-group, which both possess a positive
mesomeric effect. Therefore, it seems that the selection of ALogP for the model is due to the
actual influence of molecular polarity on the reactivity in sonolysis. This corresponds with
qualitative experimental observations, where more nonpolar molecules could be degraded
faster with sonolysis [19, 20]. A possible explanation for the increased reactivity of nonpolar
compounds in sonolysis could be given by looking at potential degradation pathways. Hydro-
philic molecules mostly react with ROS in the bulk solution, whereas hydrophobic thus non-
polar, non-volatile compounds undergo degradation in the bubble-liquid interface via thermal
and/or radical pathways [35]. As the ROS concentration is higher in the interface, the degrada-
tion of hydrophobic compounds therefore tends to be faster. As ALogP has the largest coeffi-
cient in the model equation (Table 1), the high importance of the polarity for the degradation
of organic micropollutants with high-frequency ultrasound could be quantified with this
QSPR model.

Additionally, based on the fingerprint PubChem257, the occurrence of two or more aro-
matic rings within a molecule increases its rate constant, regardless of their actual count. This
means that the fingerprint is either 0 for molecules with less than two aromatic rings, or 1 for
molecules with two or more. Within the underlying dataset, an important distinction has to be
made, as the bisphenol derivates have two separate aromatic rings, whereas some other mole-
cules possess a system of fused aromatic rings, named polycyclic aromatic hydrocarbons
(PAHs). The former can undergo electrophilic substitution of ROS such as hydroxyl radicals
same as phenol to form polyhydroxyphenols, which can further degrade [36]. Therefore, if bis-
phenol derivates are compared to phenol derivates, more aromatic rings can act as additional
reactive sites for substitution reactions, leading to an overall faster first degradation step. This
reason might be a bit different for PAHs though because the fusion of aromatic rings leads to a
change of bonds characteristics within the molecule. The C-C bonds in isolated aromatic rings
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Fig 3. A) Regression plot of predicted vs experimental endpoint values, B) Y-randomization, C) Y-scrambling.

https://doi.or

0/10.1371/journal.pwat.0000082.9003

PLOS Water | https://doi.org/10.1371/journal.pwat.0000082  January 30, 2023

10/17


https://doi.org/10.1371/journal.pwat.0000082.g003
https://doi.org/10.1371/journal.pwat.0000082

PLOS WATER

Structural influence on the sonolytic degradability of organic micropollutants

“q « Training set ¢ Training set
° Validation set ° Validation set|
34
0,25

24
i e
< 1 *
3 % 3 07
@ . 4
O 04 & a
x v - E .
5 o 00
&1 ik 0,25

-
24
-0,50 : 10520
34
A) =020 B)
-4 T T T T T T T T T T T T T T
0,0 0,1 02 03 04 05 06 0,7 0,0 0,1 0,2 03 04 05 0,6 07
HAT i/l (h*=0.520) HAT i/l (h*=0.520)

Fig 4. A) Williams plot with (1) 1,2,4-Benzenetricarboxylic acid, (2) Nicotinamide, (3) 4,4’-
Diaminodiphenylsulfone, B) Insubria plot with (1) 1,2,4-Benzenetricarboxylic acid.

https://doi.org/10.1371/journal.pwat.0000082.9004

are all equal in length with properties between single and double bonds, whereas the bonds in
fused aromatic rings tend to differ, as some C-C bonds possess more single properties, while
some have more of a double bond character [37]. The later can serve as a reactive site for elec-
trophilic addition of ROS other than substitution reactions onto aromatic systems. As within
addition reactions, only n-bonds have to be broken, this reaction tends to be faster than substi-
tution reactions. Therefore, different mechanistic pathways might be predominant for PAHs
compared to phenol derivates, leading to a faster degradation with sonolysis.

PubchemFP365 is a fingerprint for the substructure C(~H)(~N), regardless of the bond
order or count. It has a negative influence on the rate constant, indicating its occurrence is

SubFPC2 -
SubFP135
PubchemFP688
PubchemFP542
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nHBInt5
VE2_Dzs -
VE1_Dzs -
GATS2p
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]
ATSCTm 4]
]

P
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T
0,0 0,2 0,4 0,6 0,8 1,0
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Fig 5. Descriptor frequencies for the 10 best models.

https://doi.org/10.1371/journal.pwat.0000082.9005
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hindering for the sonolytic degradation of organic micropollutants. Within the dataset, the
occurrence of that fingerprint mostly represents the presence of nitrogen as a heteroatom
within a ring like pyridine, of a substituted nitro group or an amino group. Nitrogen bound to
carbon has an electron-withdrawing or negative inductive effect, respectively, leaving less elec-
tron density to the immediate intermolecular environment. The aromatic ring is generally
deactivated toward electrophilic aromatic substitution with negative inductive effects by polar-
izing the o-bond system [37].

The occurrence of PubchemFP542, which represents the substructure O-C:C-[#1], where
an oxygen atom is substituted to an aromatic ring with a single bond, increases the degradation
speed. Within the underlying dataset, this is true for aromatic compounds with hydroxy-sub-
stituents or ether groups. As -OH and -OR groups have a positive mesomeric effect, the elec-
tron density in the aromatic ring increases and is stabilized. The aromatic ring therefore has
an increased nucleophilic character, likely making it more accessible for the reaction with elec-
trophilic ROS.

The fingerprint PubchemFP688, representing the substructure C-C-C-C-C-C-C, regardless
of its count, also increases the rate constant within the model equation. In the dataset, the
descriptor has a value of 1 for all compounds containing more than one fused aromatic ring or
an aromatic system with an alkyl- or carboxyl-substituent. As discussed before, the presence of
fused rings accelerates the degradation due to the developed double bond characteristics for
some of the C-C bonds. Alkyl groups substituted onto aromatic rings on the other hand pos-
sess a positive isomeric effect by increasing the electron density in the aromatic ring near their
substituent region due to their hybrid orbitals [38]. This in turn increases the reactivity
towards electrophilic substitution reactions in ortho or para position [39].

SubFP135 is a fingerprint for the substructure of vinylogous carbonyl or carboxyl derivative
([#6X3] (= [OX1])[#6X3] =,: [#6X3][#7,#8,#16,F,Cl,Br,I]), regardless of its count. The sub-
structure represents the presence of a carbonyl or carboxyl group connected by a double or
aromatic bond to another heteroatom (O, N, S, halogens) (Fig 6). In the model equation it has
a negative influence on the rate constant. On the one hand, this is because the carbonyl group
next to an aromatic bond can influence the electron density of the aromatic system by its nega-
tive mesomeric effect. The decreased electron density within the aromatic ring will lower reac-
tivity towards the electrophilic ROS, resulting in slower degradation. On the other hand, the
connection of a carbonyl/carboxyl-group with another functional group over a double bond
leads to a charge distribution, generally lowering the overall reactivity of that structural side
(Fig 6). Within this descriptor, the influence of the negative mesomeric effect, which previ-
ously could not be distinguished from other possible influences [24], is still represented in this
model, indicating its relevance for the sonolytic degradation of aromatic compounds.

N/O/S o‘ P

N/O/S+
C/ _— \

Fig 6. Charge distribution within the substructure of the fingerprint SubFP135.
https://doi.org/10.1371/journal.pwat.0000082.9g006
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SubFPC2 is a fingerprint count, which represents the number of secondary carbon atoms
within a molecule. With higher values for that descriptor, the rate constant of a substance
increases. For once, a high number of secondary carbons, which are mostly consecutive in the
underlying dataset, could increase the hydrophobicity of a molecule, resulting in additional
degradation reactions in the bubble-liquid interface or in the bubble. There, long alkyl-chains
can undergo alkane pyrolysis through a homolytic break of a C-C bond [40]. This would gen-
erally increase the overall degradation speed of the target molecule.

Qualitative model interpretation

After the individual descriptor interpretation, a qualitative interpretation of the model as a
whole can be done to show that the model can not only be used for quantitative calculation of
the endpoint but also for describing some trends within the dataset. Serving as an example,
4-butylbenzene-1,3-diol and 4-aminobenzenesulfonamide can be compared. Fig 7 shows the
chemical structure, the rate constant, and the normalized descriptor values of these two
compounds.

As seen in Fig 7, 4-butylbenzene-1,3-diol degrades 3 times faster than 4-aminobenzenesul-
fonamide. The much higher reactivity can be explained by selected model descriptors and
therefore influences. First, 4-butylbenzene-1,3-diol is more nonpolar, which is favourable for
the sonolytic degradation. Additionally, 4-butylbenzene-1,3-diol possesses secondary carbon
atoms, expressed by the fingerprint PubChemFP688 and the fingerprint count SubFPC2. The

4- butylbenzene-1,3-diol 4-aminobenzenesulfonamide
&\A i
oo HZN—QS\/

o NH,

rate constant kg [min'] 0.0285 0.0091

ALogP 0.2088 0.1390

AATS8m 0.0828 0.0053

ATSC8c 0.5057 0.5755

ATSCb5e 0.6743 0.6654

MATS4p 0.4885 0.3749

VE1_Dzs 0.6565 0.4704

PubchemFP257 0 0

PubchemFP365 0 0

PubchemFP542 1 0

PubchemFP688 1 0

SubFP135 0 0

SubFPC2 0.6 0

Fig 7. Comparison of 4-butylbenzene-1,3-diol and 4-aminobenzenesulfonamide with chemical structure,
endpoint values and normalized model descriptors.

https://doi.org/10.1371/journal.pwat.0000082.9007
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butyl-group not only increases the electron density in the aromatic ring, which will increase
the reactivity towards electrophilic substitution of a ROS, but also additional degradation
mechanisms through pyrolysis of the alkyl group can take place, which further increases the
degradability of the compound. The presence of two hydroxyl-groups substituted to the aro-
matic system (expressed with PubChemFP542) further increases the reactivity of the aromatic
system due to the positive mesomeric effect of that functional group. All things considered, the
higher rate constant of 4-butylbenzene-1,3-diol compared to for example 4-aminobenzenesul-
fonamide could not only be quantified by the calculated QSPR model, but also the structural
influences responsible for the higher degradability are visible qualitatively.

Overall, even though a complete mechanistical interpretation of the sonolytic degradation
of the investigated molecules only based on the calculated QSPR model is limited due to limi-
tations of the interpretability of some model descriptors, a lot of interesting aspects could be
determined and connected to previous experimental studies and the theoretical knowledge of
sonolytic degradation pathways.

Conclusions

In this study, QSPR modelling was used to quantify the structural influence of organic micro-
pollutants on the degradability with high-frequency sonolysis. The experimental data was
obtained under standardized conditions with fixed test parameter to ensure the homogeneous
quality of the rate constants. The modelling process, executed with the software QSARINS,
included multiple validation techniques and all five OECD principles for applicable QSPR
models were respected.

The overall best performing model was selected using a multi-criteria decision-making tool
based on all calculated statistical parameters. It consists of 12 model descriptors and shows
good regression abilities as well as robustness and predictability (R* = 0.8651, CCC,, = 0.9277,
Q%100 = 0.8010, R%.; = 0.7836, CCC,y = 0.8838, Q’g; = 0.7697). The results of Y-scrambling
and -randomization as well as permuted and randomized response modelling allows for the
exclusion of chance correlation.

The interpretation of selected model descriptors resulted in insights for high-frequency
sonolysis. The following structural influences could be quantified with the conducted QSPR
modelling based on the underlying structural spectrum of mainly aromatic compounds:

1. ALogP as a measure of the molecular polarity increases the rate constant of a molecule.
This indicates that more nonpolar compounds are degraded faster.

2. The occurrence of more than one aromatic ring in a molecule also increases the degradabil-
ity. For molecules with two or more non fused rings, this is probably due to additional reac-
tive sites for an electrophilic attack of ROS. For compounds with fused aromatic rings, the
change of bond characteristics of aromatic bonds to more of single/double bond properties
makes electrophilic addition reactions possible, which enhances the reactivity towards reac-
tive species.

3. A nitrogen as a heteroatom within a ring or as a substituent onto an aromatic system
decreases the rate constant, presumable due to its electron-drawing properties and negative
inductive effect.

4. Substituted hydroxy- or ether-groups onto aromatic systems enlarge the reactivity of the
molecule towards sonolytic degradation due to a positive mesomeric effect.

5. Substituted alkyl-groups increase the rate constant of a molecule due to a positive isomeric
effect.
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6. Substituted vinylogous carbonyl and carboxyl derivates decrease the degradability due to
negative mesomeric effects and charge distribution.

7. Alarger number of secondary carbon atoms enhances the degradability due to a related
lower polarity and additional alkane pyrolysis.
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