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Abstract

In the context of resilience and sustainability of farming systems it is important to study the

trade-offs and synergies between economic and environmental variables. In this study, we

selected food production, economic and environmental performance indicators of farms in

three potato producing regions in the Netherlands: Flevoland, Zeeland and Veenkoloniën.

We studied the period 2006 to 2019 using farm accountancy data. We used threshold

regressions to determine gradual development and year-to-year variation of those indica-

tors. Subsequently we applied a sparse Partial Least Square (sPLS) regression to study the

response of performance, gradual development and year-to-year variation under different

conditions regarding weather, market and farm structure. sPLS-model performance was at

best moderate. Best model performance was attained for Veenkoloniën, a region with rela-

tively little inter-farm variability and relatively stable economic prices. Model results were

very sensitive to the selection of response variables. We found that food production, eco-

nomic and environmental performance levels and gradual developments were primarily

determined by input intensity levels. How these performance levels were determined by

input intensity, i.e. positively or negatively, differed per case study. Year-to-year variability

was determined by average yearly weather conditions and weather extremes. Overall, we

conclude that the method applied to the data we had available mostly provided insights that

confirm existing knowledge at case study level. sPLS can be seen as a filter and projector of

high-dimensional data that accentuates patterns in the data. In the context of resilience of

farms, while using a relatively small dataset, the applicability of our methodology seems lim-

ited to a rather homogeneous farm population in a stable economic environment. Research-

ers intending to apply this method to (arable) farming systems should be well aware of the

influence they can have on the results through their selection of response variables.
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Author summary

The sustainability and resilience of farming systems is increasingly challenged by eco-

nomic and environmental disturbance. It is, therefore, important to empirically assess

farming system dynamics under these disturbances and to identify farm characteristics

that improve sustainability and resilience. However, quantitative approaches to assess sus-

tainability and resilience simultaneously are scarce. In this paper, we test a multi-variate

statistical approach applied to three potato producing regions in the Netherlands under

varying market and weather conditions over the period from 2006 till 2019. The perfor-

mance of statistical models was at best moderate and model results were very sensitive to

the selection of response variables. We found that sustainability levels are mainly influ-

enced by input intensity levels. Year-to-year variability was determined by average yearly

weather conditions and weather extremes. Farm characteristics that improve resilience

could not be identified. Overall, we conclude that the method applied to the data we had

available mostly provided insights that confirm existing knowledge at case study level.

Researchers intending to apply this method to (arable) farming systems should be well

aware of the influence they can have on the results through their selection of response

variables.

1. Introduction

In an increasingly variable climatic and socio-economic context, a sustainable and resilient

performance of farming systems is challenging [1]. Sustainable performance is important

regarding the provision of system functions in the long-term, while resilient performance is

important to maintain function performance in the face of disturbances in the short-term [2].

Sustainability and resilience of a farming system is dependent on a balanced performance

regarding social, economic and environmental functions [3,4]. However, trade-offs between

those functions are common in farming systems [5,6], thus destabilizing the base for sustain-

ability and resilience. One can imagine that these trade-offs only become sharper when faced

with disturbances that require an immediate response.

Resilience and sustainability of farming systems are complementary concepts that need to

be studied simultaneously in integrated assessments [1,4,7]. Many theoretical and qualitative

studies have suggested attributes that increase resilience and sustainability [e.g. 8,9]. For exam-

ple, diversity is often suggested to increase both. However, few studies have quantitatively

studied resilience of farming systems [10], and even fewer address both sustainability and resil-

ience indicators. Hence, assessing the performance in terms of both types of indicators, quanti-

tatively, is the focus of this paper.

Existing agro-econometric methods often use production functions to assess resource allo-

cation efficiency and thus assess sustainability. The general notion behind these methods is

that increased agronomic and economic efficiency, and thus sustainability, of farming systems

can be achieved by increased output efficiency of individual farms. For instance, yield gap

analyses that are based on an approach that combines concepts from econometrics and pro-

duction-ecology [11–13]. Production functions require specific input regarding the shape of

functions and are primarily developed for evaluating a single good, e.g. (food) production or

economic output. Alternatively, trans-log distance functions could be used that, interestingly,

consider multiple response variables simultaneously [14]. Other, purely econometric methods

are geared towards assessing the potential for increasing production or economic perfor-

mance, such as the Just-Pope production function [15] and damage abatement functions [16].
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These methods do not include environmental response variables, which makes these less useful

for an integrated sustainability study. In addition, these methods usually employed datasets

with a limited number of years.

As to resilience, a concept relating to the dynamics of the system, the element of time

becomes more important, requiring longitudinal data. There are few studies on the quantita-

tive analysis of resilience in general and in particular studies using longitudinal data are rare

[10]. In absence of longitudinal data, cross-sectional data may be used in which the perfor-

mance or resilience of regions is evaluated relative to one another [e.g. 17–19]. Also model-

based methods including future scenarios may be used [20]. Longitudinal data can be used in

different ways to study resilience. For instance, to study yield variability in relation to weather

conditions and farm characteristics [14,21]. More recently, a framework was introduced that

includes multiple variables in combination with resilience concepts such as the recovery time

after a shock [22]. In another recent study, longitudinal data was used to study the resilience

capacities in terms of robustness, adaptability and transformability for agricultural regions in

11 European countries [23].

In a recent review on quantitative resilience studies, it was noted that environmental indica-

tors are hardly included as response variables [10]. In 2017, a framework was presented that

allows to explore covariation of multiple explanatory and response variables over time without

the need to pre-define a production function [24]. This provides opportunities to evaluate eco-

nomic as well as environmental response variables for which no production function can be

defined. The proposed framework has been applied to livestock systems [24,25], but to the best

of our knowledge not to arable systems. In specialized livestock systems, intermediate activi-

ties, such as the growth of grass, are ultimately used to produce one or two outputs, e.g. milk

[25] and/or meat. In arable farms, the cultivation of multiple crops are parallel activities with

parallel outputs, i.e. the output is usually not concentrated in one or two outputs. As a conse-

quence, variability of output at farm level may play out differently than at crop level [26].

In this paper our overall aim is to study economic and environmental sustainability and

resilience simultaneously and quantitatively. To this end, we apply and evaluate the aforemen-

tioned framework [24] to arable farming systems, using multivariate (regression) techniques

in combination with longitudinal farm accountancy data. We selected three different potato

growing regions in the Netherlands as case studies. Employing the method, our specific aim is

to identify resilience attributes at farm level, i.e. farm characteristics, that support sustainability

and resilience in the context of changes and variability in market and climatic conditions.

2. Methods

2.1. Case studies

In this study, three potato growing regions in the Netherlands are compared. Veenkoloniën

(VK) is an agricultural region in the North-East of the Netherlands with sandy and peaty soils.

In this region it is common to find a crop rotation with starch potato up to once in two years

in combination with mainly sugar beet and cereals. Since about ten years, onion is increasingly

cultivated in VK. VK is the largest (starch) potato producing area in the Netherlands and was a

case study in the context of the EU Horizon 2020 project SURE-Farm through which this

study was funded. Resilience and sustainability in this region were also assessed with participa-

tory and modelling approaches [e.g. 1,7,20,27–30], and this study adds an empirical analysis.

For comparative purposes, two other large potato producing areas in the Netherlands were

selected as well: Flevoland (FL) in the centre and Zeeland (ZE) in the South-West of the coun-

try, respectively. FL and ZE have clayey soils with somewhat wider crop rotations compared to

VK, including mainly ware potatoes, sugar beet, cereals and onions (once in three to five years
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is common). Common additions to crop rotations are carrots in ZE and carrots, vegetables

and tulips in FL. Arable farming in VK is less profitable compared to ZE and FL and more

prone to the impacts of weather variability and climate change [31]. However, due to the coop-

erative structure of starch potato cultivation and processing in the area, cultivated area and

farm gate prices of starch potato are relatively stable compared to the ware potato prices in ZE

and FL.

2.2. Data

We used farm accountancy data collected by Wageningen Economic Research (WEcR) for the

Farm Accountancy Data Network (FADN) [32,33]. This data is mainly collected to study eco-

nomic and environmental performance at farm level, while economic data at crop level is also

available. Because of privacy regulations, individual farm data cannot be presented in this

study. The data in this study include time series for the period 2006 to 2019 of seven to 14 sub-

sequent years of potato growing arable farms from the three case study regions. The final num-

ber of individual farms per region included in the analysis was 15 (FL), 19 (VK) and 17 (ZE)

(See also Tables A and B in S1 Text). Weather data was retrieved from the data platform Agri4-

Cast [34]. Market data was retrieved from different online sources [35–37].

2.3. Variable selection

2.3.1. Overview. The variable selection in this paper was guided by a resilience framework

that was created within the context of the SURE-Farm project [1] (Fig 1). This resilience

framework proposes five steps to assess the resilience of farming systems: identification of 1)

the farming system, 2) challenges, 3) functions, 4) resilience capacities and 5) resilience attri-

butes. The farming systems are described in the case study section above (Step 1). Explanatory

variables related to weather conditions (e.g. precipitation, weather extremes) and market con-

ditions (e.g. fertilizer and land prices) represent challenges that are hypothesized to affect the

response variables (Step 2). The response variables are related to functions of farms (Step 3),

e.g. food production (for more details see Section 2.3.2). Resilience capacities (e.g. adaptability)

are deduced based on the outcomes of this study (Step 4). Explanatory variables related to

farm characteristics, e.g. farm area and crop diversity, represent resilience attributes that possi-

bly affect response variables directly, but possibly can also moderate the impact of challenges

(Step 5; Fig 1; for more details see Section 2.3.3). Variable selection and links to the resilience

framework [1] are elaborated below. All variables and abbreviations of these variables are pre-

sented in Table A in S2 Text.

2.3.2. Response variables characterising system functions. For an integrated analysis,

we included response variables that cover production, economic and environmental functions

at crop, crop rotation and farm level (Table 1). The production at crop level was represented

by the average yield of potato (tons/hectare;provided by the data). For the production at crop

rotation level we calculated the consumable energy produced (kJ/ha; Eq 1) [38] for the main

crops (potatoes, sugar beets, wheat, barley, onions).

Crop Rotation Yield ¼
X

C
Energy contentc �

Total yieldC

Area of maincrops
ð1Þ

‘Energy content’ per main crop ‘c’ was in kJ/ton (based on [39]). ‘Total yield’ per main crop

‘c’ (ton) was provided by the data. ‘Area of main crops’ is the sum of area (ha) under cultivation

for the main crops. On average, main crops represented more than 85, 91 and 80% of the farm

area in FL, ZE and VK. Average operating profit of crops (€/ha) is taken as economic indicator
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at crop rotation level (Eq 2).

Profit from crops ¼
X

C

RevenueC � Allocated Costsc
Area of all crops

ð2Þ

Fig 1. Overview of variables included in the analyses (blue blocks) and their link to the steps in the resilience

framework (grey blocks). Green blocks indicate the different analyses that are performed on the data. Orange arrows

indicate the type of patterns that are studied in the sPLS regression. PCA: Principle Component Analysis, sPLS: sparse

Partial Least Squares.

https://doi.org/10.1371/journal.pstr.0000046.g001

Table 1. Overview of response variables.

Type of variable Sub-category Abbreviation Unit

Response variables Output efficiency OutputEff € output / € input

OutputEff_resi € output / € input

OutputEff_slope € / € / year

Potato yield Potatoyield ton / ha

Potatoyield_resi ton / ha

Potatoyield_slope ton / ha / year

Crop rotation energy yield Energyperha kJ / ha

Energyperha_resi kJ / ha

Energyperha_slope kJ / ha / year

Profit crops ProfitCropsperha € / ha

ProfitCropsperha_resi € / ha

ProfitCropsperha_slope € / ha / year

Nitrogen surplus Nsurplus kg / ha

Nsurplus_resi kg / ha

Nsurplus_slope kg / ha / year

https://doi.org/10.1371/journal.pstr.0000046.t001
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Where ‘Revenue’ per crop ‘c’ (Euros) consists of revenue from primary and secondary crop

products. ‘Allocated costs’ per crop ‘c’ include costs for seeding, fertilizer application and crop

protection measures in Euros. ‘Area of all crops’ (ha) represents the sum of all area under crop

cultivation. At farm level, all monetary output (revenues; excluding off-farm income) per

monetary input (all fixed and variable costs) represents the output efficiency of the farm (€
output/€ input; provided by the data). Having an indicator that expresses efficiency may help

to explore possible trade-offs between efficiency and variability that are hypothesized in resil-

ience literature, i.e. more efficient systems are more vulnerable to disturbance [9,40,41]. The

nitrogen surplus at farm level is used as an environmental indicator. Nitrogen surplus contrib-

utes to expulsion of greenhouse gases, acidification of nearby nature areas and leaching or run-

off of N leading to eutrophication of water bodies. Nitrogen surplus is provided by the data. Its

calculation is based on a nutrient balance at farm level that considers all nitrogen inputs (min-

eral fertilizer, external organic nitrogen sources, net manure import, biological nitrogen fixa-

tion and atmospheric deposition) minus outputs (animal and crop products) [33,42,43].

Following that calculation, nitrogen surplus includes soil nitrogen stock changes, gaseous

emissions, leaching and run-off [42].

High observed levels for potato yield, crop rotation energy yield, profit of crops, output effi-

ciency and low observed levels for nitrogen surplus were seen as positive for sustainability.

Slopes and residuals of trendlines were used as additional variables that describe the resilience

of farms (Fig 2) [24,25]. Positive slopes for potato yield, crop rotation energy yield, profit of

crops and output efficiency, and negative slopes for nitrogen surplus were seen as signs of

adaptation towards more sustainability. Small residuals were seen as indicative for farm stabil-

ity and therefore positive for farm robustness. See also Table A in S2 Text for the response vari-

able abbreviations.

Trendlines were fitted using one- and two-segmented linear regression analyses allowing

for an evaluation of structural change in the observed values over time [44]. Linear trendlines

can be considered when at least three data points are available. Given the minimal length of

the time series data (seven years), only one structural change in trend was considered in

between the third from first and third from last observation. To ensure that observed structural

changes were not dependent on a single outlier, two additional two-segmented linear regres-

sion analyses were performed. In these additional threshold regressions either the last observa-

tion of the first segment or the first observation in the second segment was removed. A

structural change in trend, and thus a two-segmented model, was accepted and used for fur-

ther analyses if the p-values of the F-statistics for the optimum breaking point of all three

threshold regressions stayed below 0.05. Otherwise a linear regression with one segment was

assumed. Regression analyses with structural change tests were performed with the package

“strucchange” [44] in the software environment R [45]. We argue that besides the trends them-

selves, structural changes in trends leading to positive or negative developments can also be

seen as indicators for the presence or absence of farm adaptability.

2.3.3. Explanatory variables linking to challenges and resilience attributes. Explanatory

variables related to external influences (i.e. challenges) are classified into the following sub-cat-

egories: market prices, average weather conditions and extreme weather events. Average mar-

ket indicators per year include: oil price (€/ 100 litre) [35], fertilizer price (€/kg; NPK12:10:18)

[35], land prices (€/ha) [36]) and interest rates (%) [37] (Table B in S2 Text). Average weather

conditions included in the analysis are average temperature (degree Celsius), average daily pre-

cipitation (mm/day) and average daily precipitation deficit (mm/day) for the whole year,

spring (April-June) and summer (July-September) (See S2 Text for more details). To cover the

entire growing season of potato from planting (April) until harvesting (September), we devi-

ated from the meteorological definition of spring (1 March– 31 May) and summer (1 June– 31
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August). Based on the average daily precipitation and temperature, extreme weather events for

potato production were calculated using the AgroClimateCalendar (ACC; Table A in S2 Text)

[46,47]. Included weather extremes were wet (and warm) conditions, heatwaves, late frosts,

warm winters and drought (Tables C and D in S2 Text). Descriptions of the effect of weather

extremes are described in Table C in S2 Text. Throughout the observation period, weather

extremes were observed in all three case studies.

Explanatory variables related to farm characteristics are divided into the following sub-cate-

gories: land use, input intensity, assets and management (Table 2; Fig 1). These sub-categories

can be linked to resilience attributes, which are system characteristics that convey general resil-

ience to a farming system [7]. Land use indicators can be used as a proxy for crop diversity,

e.g. the share of cereals or potatoes in the crop rotation. Diversity is generally seen as buffer

against perturbations and is also considered as a source of renewal after a perturbation [8]. In

the case of crop diversity, we see specialization as the inverse of crop diversity, i.e. a large culti-

vation area dedicated to main crops. Regarding diversity we took the fraction of cereals, the

fraction of three main crops (potato, sugar beet and cereals) and the effective number of crops

(also known as true diversity index). The indicators under input intensity could be seen as

Fig 2. Fitted trend lines for two imaginary farms regarding a unitless efficiency indicator. For the farm with

observed values in blue, a two-segmented trendline gives a significant better fit than a single trendline. Three types of

Y-variables are eventually included in the analyses: the observed values, residuals and the slope of the trend lines.

https://doi.org/10.1371/journal.pstr.0000046.g002
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Table 2. Overview of explanatory variables included in the analysis. Weather conditions and market indicators relate to challenges, while farm characteristics to possi-

ble resilience attributes.

Sub-category (1st) Sub-category (2nd) Abbreviation Unit

Weather conditions Average Temperature_Spring degree Celsius

Precipitation_Spring mm / day

Temperature_Summer degree Celsius

Precipitation_Summer mm / day

Temperature degree Celsius

Precipitation Mm / day

Extremes� ExtPrec45_1 (extreme precipitation in 1 day) #

ExtPrec60_3 (extreme precipitation in 3 days) #

HWave (heat waves) #

Frost #

WarmWinter #

WarmWet #

D_Spring (drought in spring) #

D_Summer (drought in summer) #

WetHumPlant (wet and humid at planting) #

WetHumGrow (wet and humid in growing phase) #

WetHumHarv (wet and humid at harvesting) #

Market indicators§ OilPrice €/ 100 L

FertilizerPrice €/ 100 kg

LandPrice €/ha

Interest rate %

Farm characteristics Land use AreaCereals ha

AreaMainCrops ha

TrueDiversity #

Input intensity Monetary input intensity† €/cultivated ha

Labour AWU / cultivated ha

Crop protection products (CPP) €/ cultivated ha

Nitrogen €/ cultivated ha

Phosphate €/ cultivated ha

Energy €/ cultivated ha

TotalCostsperha‡ €/ cultivated ha

Management FarmManagement # fte managers / ha

AgeFarmer Years

OtherRevenue €/ cultivated ha

Assets Area ha

AreaOwned owned ha / total ha

OwnCapital € own / € total assets

ModernityBuildings # (0–100)

ModernityMachines # (0–100)

Depreciation € / cultivated ha

†Monetary input at farm level, i.e. all fixed and variable costs.
‡Cultivation costs, i.e. variable costs for crop cultivation.

�See Table C in S2 Text for more information.
§See Table B in S2 Text for more information.

https://doi.org/10.1371/journal.pstr.0000046.t002
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proxies for the degree to which the system is coupled with local and natural capital. For

instance, a low input of crop protection products may suggest a better coupling of farm prac-

tices with the environment. From a resilience perspective, high dependence on external inputs

(e.g. mineral fertilizer) for a high and stable production in the face of environmental fluctua-

tions (e.g. weather, pests & diseases) may imply a lower degree of autonomy [8]. Certain Euro-

pean crop-livestock systems, for instance, may not be robust enough to withstand a situation

in which the import of mineral nitrogen fertilizers is halted [48]. Asset indicators relate mostly

to system reserves that can be used in difficult times. Modernity of machines and buildings

(actual value/value when new) is linked to the availability of infrastructure for innovation.

However, modernity of machines and buildings could also be related to the absence of adapt-

ability and transformability due to sunk costs, i.e. money invested that cannot easily be re-

invested [49]. Management indicators, such as the number of full time equivalent (fte) manag-

ers per hectare, relate to the degree of experience and attention that is available for agricultural

practices. This relates to the potential for learning from past experiences and building human

capital, both being important for general resilience [8].

2.4. Detecting the underlying data structure

2.4.1. Principal component analyses. To obtain insight in the underlying data structure,

correlation plots were created for response and explanatory variables. In addition, principal

component analyses (PCA) were performed separately for the response and explanatory

farm variables for each case study area. A multi-level design was included to consider the

random effects of individual farms. As a result, farm specific differences will be compen-

sated for, thus reducing the impact of outliers for which multi-variate statistics are sensitive

[50]. The first three components of PCA biplots were inspected to detect farms for which all

observations were visually separated from the rest of the observations. Those outlying farms

were removed from the dataset (only one in FL). PCA biplots were also inspected for the

presence of year effects. The presence of a year effect in the PCA-analyses was used as an

argument for including random year effects in further analyses. Strongly correlated

response variables were removed from further analyses as they can distort the results [51].

We illustrate this potential for distortion by presenting additional model runs with highly

correlated response variables.

2.4.2. Sparse Partial Least Squares regression. We used sparse Partial Least Squares

regression (sPLS) with year and farms as random effects to study the impact of explanatory

variables on the response variables. In sPLS-regressions, explanatory variables (X-variables)

are projected on latent variables in such a way that the projected variables can explain as much

variation of the response variables (Y-variables) that are also projected on latent variables.

Latent variables represent the most dominant patterns in the data. We used sPLS in a regres-

sion mode, where the prediction of Y from X results in different identified latent variables

than when X would be predicted from Y. This limits the possibility to make inferences on

adaptations in X related to observed changes in Y, e.g. changes in inputs as a consequence of a

year with low economic performance. Redundancy analysis, in contrast to PLS analysis, only

projects X-variables on latent variables, but leaves the Y-variables as they are. Leave-one-out

cross-validations were conducted to determine the performance of the sPLS-model. Resulting

Q2 -scores were used to determine the number of latent variables (components) in the sPLS-

model. Q2-scores express the marginal contribution of components to increase the covariation

between the original X- and Y-variables. A component with a Q2-score larger than 0.095 is

considered to have a significant contribution [52].
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Sparse PLS (sPLS) differs from PLS in that it reduces the model to a pre-defined number of

variables that are linked to principal components in the X and Y dimensions. The advantage of

sPLS is that interpreting results is becoming easier. A disadvantage is that choosing the num-

ber of variables per component introduces arbitrariness. We performed multiple sPLS analyses

in which we varied the number of Y-variables (2–5) and X-variables (2–9) per component. To

reduce computation time, we initially limited the number of components to two. We selected

the best model based on the aggregated Q2-score and explained variance of X- and Y-variables.

We also checked the stability of X- and Y-variables selected in the sPLS-models during the

cross-validation. In case the second component was contributing significantly, analyses with a

third component were considered, for (2–5) Y-variables and (2–9) X-variables. In case the

third component contributed significantly, the number of X- and Y-variables to keep was

selected using the same criteria as for the first two components. The best model was selected

based on the aggregated Q2-score over all components. We also compared the correlation

matrix of projected values of continuous explanatory variables and response variables of the

sPLS-model with the correlation matrix of the original data. PCA and (s)PLS were performed

with the software package “mixOmics” [53] in the software environment R [45]. “mixOmics”

does not facilitate the inclusion of interaction terms.

3. Results

3.1. Response variables

3.1.1. General observations. Observed levels of potato yield and profit of crops were high-

est in FL (Fig 3). The inter-farm variability of potato yields and profit of crops within ZE and

FL were much higher than for VK (Fig 3). Observed levels of crop rotation energy yield and

nitrogen surplus were lowest in ZE. On average, observed levels of output efficiency were low-

est in VK (1.05 €/€) and ZE (1.02 €/€) and highest in FL (1.12 €/€) (Fig 3). In ZE and VK

there were multiple outliers regarding nitrogen surpluses of more than 200 kg/ha. In the con-

text of earlier work [54] these values were however not surprising.

The pattern of output efficiency levels from 2006 till 2012 was similar in ZE and FL, with

relatively high levels in 2006, 2010 and 2012 (Fig 3). In VK, output efficiency was highest in

2012, which coincided with a high potato yield. Potato yield in all regions was relatively low in

the dry year of 2018. Interestingly, output efficiency and profit of crops in FL were relatively

high in 2018. Nitrogen surplus levels seemed stable in all case studies. Based on a visual inspec-

tion of Fig 3, there were no particular years in which nitrogen surplus was deviating substan-

tially, except for 2018 in VK when it was high, probably because of low yields due to drought.

3.1.2. Structural change. Breaks in trends were mostly detected in VK for the output effi-

ciency between 2011 and 2013 (15 farms) and crop profit in the years 2011 and 2012 (12

farms) (Table A in S3 Text). This corresponds with the increase in output efficiency and profit

of crops until 2012 in VK that can be observed in Fig 3. In FL and ZE, breaks in trends were

observed for a few farms, mostly in 2012, for potato yield (FL), crop rotation yield (FL, ZE),

output efficiency (ZE) and nitrogen surplus (FL, ZE) (Table A in S3 Text).

3.1.3. Yield, profit and output efficiency. Explained variance of the PCA on response vari-

ables (levels, residuals and slopes of potato yield, crop rotation yield, profit from crops, output effi-

ciency and nitrogen surplus) per region was between 50–57% over the first three components.

Important variables for the first component in all three regions (accounting for 19–29% of varia-

tion) were levels of potato yield and crop rotation yield, often accompanied with their residuals,

indicating larger absolute variation at higher crop yield levels (Figs A, C, and E in S4 Text). In VK,

profit of crops and output efficiency were positively associated with higher crop yields (Fig E in S4

Text). Potato is the largest crop in VK in terms of area and volume, partly explaining the positive
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relation with energy yield and profit. The positive relation between yield and profit could also be

attributed to the local cooperative structure. With relatively inelastic prices for starch potato prod-

ucts, the cooperative benefits from larger volumes to be able to pay a good farm gate price to farm-

ers [20] as long as prices of processed products stay relatively inelastic. In FL, residuals of output

efficiency and profit of crops and the slope of profit of crops were negatively associated with

potato yield and crop rotation energy yield (Fig A in S4 Text). This suggests that farmers in FL

somehow can benefit from relatively high prices when yields are relatively low. By contrast, in ZE,

level of profit of crops and residuals of profit of crops and output efficiency (second component),

had no or very little association with crop yield levels (Fig C in S4 Text).

Fig 3. Observed levels of potato yields, crop rotation energy yield, profits from crops, output efficiency and

nitrogen surplus for three regions (FL = Flevoland, ZE = Zeeland, VK = Veenkoloniën).

https://doi.org/10.1371/journal.pstr.0000046.g003
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3.1.4. Synergies and trade-offs with nitrogen surplus. In FL, the second component

(17% of variation) was mostly correlated with observed levels and residuals of nitrogen surplus,

associated negatively with residuals and level of profit of crops and residuals of output effi-

ciency (Fig A in S4 Text). Overall, this suggested that years with (relatively) high nitrogen sur-

plus coincided with (relatively) low profit of crops and low output efficiency, and vice versa.

Farms associated with high levels of nitrogen surplus also showed declining profit of crops (3rd

component; 14% of variation; Fig B in S4 Text).

On the first component of ZE and VK, higher crop yield levels and residuals were negatively

associated with residuals of nitrogen surplus (Figs C, E in S4 Text). Moreover, in ZE, on the

third component (14% of variation), increasing potato yields were associated with farms that

had low and decreasing nitrogen surpluses (Fig D in S4 Text). In VK, on the second compo-

nent (18% of variation), decreasing nitrogen surplus was mostly correlated with increasing

output efficiency, potato yield and energy production (Fig E in S4 Text). Residuals of nitrogen

surplus were mostly negatively correlated with residuals of profits of crops and output effi-

ciency (third component; 10% of variation; Fig F in S4 Text).

3.1.5. Pre-selection of response variables. Based on the high correlation found between

response variables in the PCA and additional correlation analyses (S4 Text), we continued

our analyses with crop rotation energy yield, profit of crops and nitrogen surplus (S5 Text).

We performed additional analyses with all five response variables and with a different selec-

tion of three response variables (i.e. with output efficiency instead of profit of crops). These

additional analyses were used to assess the impact of selecting different sets of response vari-

ables (S6 Text).

3.2. Explanatory variables

3.2.1. Market indicators. Land prices increased from 2006 till 2008, after which prices sta-

bilized at just above 50,000 €/ha until 2013. From 2013 onwards, land prices increased till over

70,000 €/ha in 2019. Interest rates went up from 3.8% in 2006 to 4.3% in 2007, after which

interest rates steadily decreased to negative values in 2019. Interest rates often dropped more

than 0.5% per year. Oil prices varied from 64 in 2006 to over 100 €/100 L in 2019 and fluctu-

ated over time with a peak in 2013 and 2014. Fertilizer prices increased from 27.75 €/ 100 kg

fertilizer in 2007 to 61.50 €/100 kg in 2009 after which they fluctuated between 41 and 47

€/100 kg. (Fig 4; Table B in S2 Text for absolute values)

3.2.2. Weather conditions. The three case studies were similar in terms of average tem-

peratures per year and per season (spring, summer). With regard to the precipitation deficit,

the three case studies had similar values for spring (1.5 +- 0.4–0.5 mm/day precipitation defi-

cit; Fig 5), but for summer, FL had a lower average deficit (0.3 +- 1.0 mm/day) than VK (0.6 +-

0.9 mm/day) and ZE (0.8 +- 1.0 mm/day), which was probably related to the higher precipita-

tion in FL (2.6 +- 0.8 mm/day) than in VK and ZE (both 2.3 +- 0.7 mm/day). No significant

trends in temperature, precipitation and precipitation deficit could be detected over the mea-

sured period (2006–2019; Table A in S2 Text). Weather extremes occurred regularly (Table D

in S2 Text).

3.2.3. Farm characteristics. Explained variance of the PCA on explanatory farm variables

per region was between 45–50% over the first three components (Figs I-N in S4 Text). In the

PCA’s for the three regions, years appeared to be clustered, indicating that years explained part

of the variation.

In all case studies, most of the variation (1st component; 22–27% of variation) could be

related to many correlated indicators on input intensity in terms of fixed and variable costs

(Figs I, K, M in S4 Text). Values of variables related to input intensity did increase over the
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years. In particular, cultivation costs increased (Table A in S2 Text). In FL and ZE, the second

component was related to the area of main crops and area of cereals (Figs I, K in S4 Text).

Area of main crops and cereals seemed to have decreased in the observation period, suggesting

decreased specialisation (Figs I, K, M in S4 Text; Fig 6). In FL more specialized farms were

associated with less modern machinery, i.e. depreciated machinery (Fig I in S4 Text). In ZE,

more specialized farms were associated with higher nitrogen inputs (Fig K in S4 Text). In FL

and ZE, the third component was associated with larger farm sizes, lower shares of land

Fig 4. Development of relative values of market indicators over time. Absolute values can be found in Table B in S2

Text. Absolute values in 2006 were 44,506 €/ha (land price), 3.8% (interest rate), 64 €/100L (oil price), and 27.35 €/100

kg (fertilizer price).

https://doi.org/10.1371/journal.pstr.0000046.g004

Fig 5. Precipitation deficit, precipitation and temperature in spring in the three case study areas.

https://doi.org/10.1371/journal.pstr.0000046.g005
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owned, lower number of farm managers per hectare and lower labour input intensity (FL; Fig

J in S4 Text) or modernity of buildings (ZE; Fig L in S4 Text).

In VK, the second largest part of the variation was captured by labour input intensity (sec-

ond component; 12% of variation; Fig M in S4 Text). A third part of the variation could be

explained by the number of full time equivalent managers per hectare and the age of the farmer

(third component; 10%; Fig N in S4 Text). These indicators seemed unrelated with the indica-

tors describing the degree of intensity.

Fig 6. Observed levels of important farm characteristics (explanatory variables) for Flevoland, Zeeland and

Veenkoloniën.

https://doi.org/10.1371/journal.pstr.0000046.g006
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3.3. Sparse partial least squares regressions

3.3.1. Model performance. On average, across the three case studies, best performing sPLS

models included the response variables related to profit of crops, nitrogen surplus and crop rota-

tion energy yield. In all case studies, the predictive power of selected components was at most

moderate. The variation in X-variables explained by the X-components was low (Table 3). The

explained variation in the Y-variables was higher but still moderate. The best model in VK had

three components with a varying number of response variables across components (Table 3). In

ZE, sPLS-models performed better when including output efficiency instead of profit of crops (S6

Text). Because the interpretation of sPLS models including either profit of crops or output effi-

ciency is almost identical, we proceed with sPLS models including profit of crops.

3.3.2. System functions affected by challenges and resilience attributes. In all case stud-

ies, there was one component associated with weather conditions that covaried with the resid-

uals of nitrogen surplus (FL, VK), profit of crops (FL, ZE) and/or crop rotation energy yield

(VK). In FL, nitrogen surplus was affected mostly by drought in spring, or wet conditions later

on in the growing period, while profit of crops was positively affected by heatwaves, and gener-

ally high temperatures in summer (see 2nd component in Fig 7 and Fig 8; Table C in S5 Text).

Interestingly, in contrast to droughts in spring, precipitation deficiency in spring seemed to

somewhat improve profits and reduce nitrogen surplus. In ZE, profit of crops was affected

negatively by high temperatures, specifically in spring, which was also related to precipitation

deficit in that season (S5 Text). Interestingly, farms in ZE seem to benefit from warm winters.

The availability of water (precipitation, absence of drought) was correlated to high crop rota-

tion energy yields in VK.

In all case studies, the other component was associated with at least one indicator related to

input intensity, the most important being monetary input intensity (all fixed + variable costs

of a farm expressed per ha)(ZE, FL; Fig 7; S5 Text), total costs per hectare (ZE, VK), deprecia-

tion (FL) and labour (VK). These were negatively correlated with phosphate (VK) and nitro-

gen (VK, FL) and true diversity (FL). The high intensity in FL in combination with low

nitrogen inputs and low diversity, resulted in high and increasing profits, low crop rotation

energy yields and a declining nitrogen surplus (Fig 7 and Fig 8). For high-value crops, rela-

tively little money is spent on nutrients. The high intensity in ZE was associated with declining

profits from crops, low crop rotation energy yields, and to a lesser extent with low, but increas-

ing nitrogen surpluses. In VK, profit of crops, crop rotation energy yield and to a lesser extent

nitrogen surplus were positively linked with phosphate input and low intensity. However, for

VK, additional indicators related to economic conditions were associated with lower profit of

crops (oil prices, interest rates, land prices), while labour input, farm management and other

revenues seemed to compensate for this to a small extent.

Table 3. Number of variables and performance per component of selected sPLS-models with the response variables crop rotation energy yield, nitrogen surplus

and profit of crops. All X-variables included.

Number of variables kept Variation explained

Region Component Q2-score R2-score X-space Y-space X-space Y-space

FL 1 0.113 0.185 6 4 0.154 0.274

2 0.127 0.133 9 2 0.078 0.210

VK 1 0.227 0.351 9 3 0.147 0.298

2 0.304 0.234 9 2 0.096 0.299

3 0.170 0.093 9 5 0.098 0.184

ZE 1 0.073 0.129 2 5 0.175 0.193

2 0.064 0.186 4 2 0.081 0.164

https://doi.org/10.1371/journal.pstr.0000046.t003
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Fig 8. sPLS model results for the first and second Y-component in Flevoland. Groups indicate the different years.

The left and bottom axis indicate the position of observations in the projected Y-space. The top and right axes indicate

the correlation of response variables with the first and second component.

https://doi.org/10.1371/journal.pstr.0000046.g008

Fig 7. sPLS model results for the first and second X-component in Flevoland. Groups indicate the different years.

The left and bottom axis indicate the position of observations in the projected X-space. The top and right axes indicate

the correlation of explanatory variables with the first and second component.

https://doi.org/10.1371/journal.pstr.0000046.g007
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In VK, a third component was associated with input indicators of which nitrogen, energy

and crop protection products were the most important. These were negatively associated with

the share of cereals in the crop rotation. Higher levels of nitrogen and energy input were asso-

ciated with higher crop energy rotation yield, higher, but over time decreasing, nitrogen sur-

plus and higher and increasing profit of crops. Vice versa, a higher share of cereals in the

rotation seemed to reduce nitrogen surpluses.

Interestingly, the strong positive correlation between nitrogen input and nitrogen surplus in

the original data of all three case studies (Figs R, S, T in S5 Text), was only included in the final

sPLS model in VK. In the sPLS-models with fifteen response variables, the correlation between

nitrogen input and surplus was absent in all three case studies (Figs A, B, C in S6 Text).

4. Discussion

4.1. Interpretation of results from a sustainability and resilience

perspective

In this paper we aimed to study economic and environmental sustainability and resilience

simultaneously and quantitatively. In particular, we aimed to identify resilience attributes at

farm level, i.e. farm characteristics, that support sustainability and resilience regarding market

and climatic conditions.

4.1.1. Intensity and farm performance levels and trends. Overall, intensity levels played

out differently in the three case studies, thus limiting us in generalizing the role of intensity of

crop management on economic and environmental farm performance. Higher intensity of

farms in terms of euros spent was primarily associated with higher profits from crops in FL

and ZE, indicating improved economic sustainability through intensification. In FL, the

increased intensity and profit covaried with having additional crops next to the main crops

potato, sugar beet and cereals, i.e. diversification. In ZE, this pattern of a relatively positive

effect of crop diversity on profit was also visible in the original data, but not included in the

final sPLS-model. In FL, a higher intensity level in terms of euros spent, including higher

expenditure on crop protection products and energy, was associated with reduced nutrient

inputs leading to a declining nitrogen surplus, indicating some gain in the environmental per-

formance. By contrast, in ZE, intensity levels in terms of euros were positively associated with

nitrogen input levels, but these were not related to any response variable on nitrogen surplus.

In VK, intensity in terms of euros and in terms of nutrients applied were positively related,

which positively affected energy yield, profit and nitrogen surplus. Only in VK, input intensity

was linked to economic conditions, indicating that increasing production costs are potential

direct drivers of intensification that lead to higher yields and profits. Increasing production

costs are indeed identified as a major challenge and intensification as an important strategy in

VK [7,20,27].

4.1.2. Weather conditions and variability of farm performance. Intensity levels

explained levels of farm performance, but not the year-to-year variability (residuals). Instead,

weather conditions seemed to explain the year-to-year variability of farm performance.

In FL, farms seemed to benefit from drought in summer. In 2018, when drought in summer

was experienced throughout Europe, the clay soils with their high water holding capacity and

the opportunity of irrigation may have reduced the impact of drought, while prices were rela-

tively good in this year. In FL and ZE, relatively high temperatures in spring seemed to be asso-

ciated with the downward fluctuations in profits of crops per ha. In our dataset for FL and ZE,

high temperatures in spring coincided often with high yearly temperatures and precipitation

deficits.
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The results for ZE also suggested that warm winters were actually beneficial for farm eco-

nomic productivity, rather than being a weather extreme that causes early sprouting of pota-

toes in storage [46]. A possible explanation could be that warm winters, if extended into

spring, lead to early sowing of potato and subsequently can lead to higher yields [55,56]. Yet

another explanation could lie in the specific dataset under study: warm winters occurred seven

times from 2006 till 2019, while high temperatures in spring and warm winters coincided only

twice (2014 en 2019) (Table F in S5 Text). The seemingly positive effect of warm winters could

therefore be an artefact, i.e. the coincidental opposite of the observed negative effect of high

temperatures in spring. Longer time series would reduce the possibility of having results that

could be considered an artefact.

In VK, residuals of crop yield and nitrogen surplus were affected by weather extremes. This

suggests that nitrogen supply to fields is adapted to average conditions [54], resulting in nitro-

gen surplus peaks during or after years in which extreme weather events occurred. With

expected increases of heat waves and droughts towards the future, adjusting nitrogen applica-

tions to possible lower yields becomes even more important. This finding may also apply to

the other two case studies where nitrogen application is also high and correlated with nitrogen

surplus, at least in the original dataset (Figs R, S, T in S5 Text). Unfortunately we were not able

to verify this based on the final sPLS-models (Figs C, F, I in S5 Text) that seemed to mask the

correlation between nitrogen supply and surplus.

4.1.3. Resilience attributes. We did not identify resilience attributes at farm level, i.e.

farm characteristics that support farms to cope with trends and variability in market and

weather conditions. Instead, farm characteristics (specifically input intensity) seemed impor-

tant for current levels of system functions (section 4.1.1), while market and weather conditions

were having an impact on farm performance trends and variability (section 4.2.2). More

empirical analyses seem necessary to understand the role of farm level resilience attributes in

coping with market and weather conditions.

4.2. Methodology

4.2.1. General reflections. sPLS can be seen as a projector and filter of high-dimensional

data that accentuates certain patterns in the data. In this study sPLS has been used to analyse

temporal and inter-farm variability of economic and environmental farm performance in

response to challenges regarding market and weather. The method could also be applied to

study soils, water bodies or entire ecosystems in response to hazardous pollutants (e.g. from

waste-water residues or mine tailings) However, while using sPLS, some patterns may also be

overlooked. A general example is the loss of details in sPLS, compared to the PCA analysis. A

specific example is the correlation between nitrogen input and nitrogen surplus in the correla-

tion maps of the original (Figs R, S, T in S5 Text) and projected (Figs C, F, I in S5 Text) data:

the correlation in the original data structure has disappeared in the projected data. Also the

level of detail as provided by the PCA-analyses is not reached. The potential loss of detail in

multivariate statistics needs to be considered in other research fields as well. For instance

regarding the impact of heavy metals on soil microbiota [see e.g. 57].For our case studies, the

models reproduced generally well-known knowledge and experience that could be embedded

in an already existing narrative. Including more management specific indicators and following

individual farms as was done before could improve model performance and the interpretation

of results, but a large part of the variability is likely to remain unexplained [24,25]. At best, this

positions the used methods as being explorative (hypothesis forming).

The method simplifies reality by assuming linearity over time and linearity regarding

response to explanatory variables. Regarding time, the threshold regression analysis has
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compensated somewhat for this (see also S5 Text). Regarding explanatory variables such as

input intensity levels, it should be noted that these are known to have a non-linear impact on

food production and economic productivity. However, due to large differences in input use

efficiency among farmers, de facto a linear function may be approaching the data well enough.

Interaction effects, for instance of farm characteristics on the impact of weather extremes,

could not be studied well. In our case studies, the combination of sPLS (instead of PLS) and

random effects improved model performance considerably, but also resulted in a focus on the

general impact, rather than a farm specific impact, of weather conditions on farm residuals. In

Figs 7 and 8, for instance, farms seem to be impacted in the same extent by weather conditions,

i.e. farm characteristics don’t seem to influence this. However, it should be noted that weather

conditions only explain a small part of variability. Moreover, sPLS (artificially) reduces co-var-

iation between the different model components, compared to PLS as, for instance, was used

before [24]. Studying interaction terms in multi-variate ordination techniques, such as PLS

and redundancy analyses, are notoriously difficult [58]. A few coarse methods are provided for

(visually) assessing interaction effects for data from controlled experiments [58]. Further

development of such methods is needed before they can be applied to the datasets used in our

analysis, i.e. relatively small, multi-level datasets with continuous and discrete values from an

uncontrolled real life context.

4.2.2. sPLS in a sustainability and resilience context. By putting response variables in

the context of resilience, a general idea about system’s resilience could be obtained. It should

be noted that the resilience of an individual farming system should in the end be evaluated in a

broader context. For example, lower dependence on externally sourced nitrogen input may be

good for reducing the environmental foot print and increasing resilience through increased

autonomy. Some reduction in nitrogen input in the Netherlands is not expected to necessarily

lead to yield decrease [54,59]. Thus, there seems little risk of externalising environmental pres-

sure to other regions through a decrease in production.

In our analyses, sPLS performed lower in more diverse regions, i.e. in FL and ZE, where

farms were more different from one another and where crop prices are more variable com-

pared to VK. This could imply that, when using relatively small datasets, sPLS should be

applied to systems with rather uniform farms in a relatively stable economic environment, in

order to detect patterns in farm data that is known to usually contain a lot of noise. Interest-

ingly, diversity, in particular in the form of farming system heterogeneity, is considered impor-

tant in the context of building resilience [7,8,60]. Moreover, stable economic environments are

uncommon for most contemporary, intensive farming systems as most are exposed to (fluctu-

ating market prices of) global markets [61–63]. Considering the reflections above, datasets

containing more farms over a longer time span are needed to increase the usefulness of our

methodology. However, even with large datasets of farms, finding patterns and good explana-

tory power is not guaranteed [56].

Small residuals were seen as indicative for farm stability and therefore positive for farm

resilience regarding robustness. Some argue that stability is not the same as robustness and

that more specific indicators are needed [e.g. 22,64]. Interesting in previous work is the use of

absolute benchmarks [22], e.g. for minimum wage reflecting economic performance, while

our study looks at deviations from the mean or trend without referring to standards. Similarly

to economic indicators, yield indicators could be benchmarked against potential yields [e.g.

38] and environmental indicators to existing environmental standards [e.g. 65]. Using stan-

dards could put results of our type of work more into perspective of (societal) desired sustain-

ability levels.

4.2.3. Selection of models and response variables influences results. Although sPLS is

largely data-driven, the study design has influenced the results. With regard to the selection of
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components, the acceptable level of the Q2-score is arbitrary [53]. We therefore presented the

R2-values as well. Some of the components included the maximum or minimum number of

indicators per component as specified a priori, i.e. for the sake of interpretability, arbitrariness

was included here as well. Additional analyses suggested that model performance was relatively

robust regarding the inclusion of strongly correlated explanatory variables (Table C in S6

Text). In contrast, in the case studies in this paper, strong correlations among response vari-

ables lowered model performance (Table A in S6 Text). More specifically, the strong correla-

tion between nitrogen input and nitrogen surplus in the original dataset was disfavoured over

correlations of other explanatory variables with response variables related to yield and eco-

nomic response variables. This “finding” can be seen as an illustration how an abundance of

the relatively easy measurable indicators in the economic domain can mask patterns of gener-

ally less abundant and more difficult to measure environmental indicators. To avoid neglecting

important environmental variables, overrepresentation of economic indicators should be

discouraged.

5. Conclusions

Overall, our statistical analyses of farm accountancy data from three regions over a period of

14 years mostly confirmed already existing knowledge. Current levels of farm output and thus

sustainability were mainly related to variables associated to farm structure, in particular input

intensity-related indicators. Year-to-year variability of farm performance was mainly related

to weather conditions and weather extremes. The usefulness of our method to test hypotheses

on resilience attributes at farm level seems therefore limited, which may be at least partly due

to the dataset.

We aimed to identify resilience attributes at farm level, where resilience attributes are sup-

posed to support farms to cope with trends and variability in market and weather conditions.

While our method shows the importance of farm characteristics (specifically input intensity)

for current levels of system functions, their importance to cope with challenges remains

unclear, because of the much larger effect of the challenges on trends and variability in system

functions as compared to farm characteristics. Interactions between challenges and farm char-

acteristics thus need to be further explored with other methods.

The presented methods in this paper can be seen as a way to filter and project high-dimen-

sional data and to accentuate patterns in the data. As such it is a useful way of getting to know

the data. In the context of resilience of farms, while using a relatively small dataset, the applica-

bility of our methodology seems limited to a rather homogeneous farm population in a rela-

tively stable economic environment. More comprehensive datasets in terms of number of

farms and time span captured should be used to increase the usefulness of our methodology.

Researchers intending to apply this method in (arable) farming systems should be well aware

of the influence they can have on the results through the selection of response variables. In par-

ticular regarding the relative abundance of economic indicators that could mask environmen-

tal indicators that are generally more difficult to measure and therefore less abundant.
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