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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Negative emissions technologies (NETs) will be needed to reach net-zero emissions by

mid-century. However, NETs can have wide-ranging effects on land and water availability,

food production, and biodiversity. The deployment of NETs will also depend on regional and

national circumstances, technology availability, and decarbonization strategies. Process

integration (PI) can be the basis for decision support models for the selection, planning, and

optimization of the large-scale implementation of NETs. This paper reviews the literature

and maps the role of PI in NETs deployment. Techniques such as mathematical program-

ming, pinch analysis (PA), process graphs (P-graphs), are powerful methods for planning

NET systems under resource or footprint constraints. Other methods such as multi-criteria

decision analysis (MCDA), marginal abatement cost curves, causality maps, and machine

learning (ML) are also discussed. Current literature focuses mainly on bioenergy with car-

bon capture and storage (BECCS) and afforestation/reforestation (AR), but other NETs

need to be integrated into future models for large-scale decarbonization.

Author summary

Radical approaches will be needed to deal with the ongoing climate crisis. In addition to

the reduction of greenhouse gas emissions through strategies such as energy conservation

or decarbonization of electricity, negative emissions technologies (NETs) that remove car-

bon dioxide from the atmosphere will also have to be commercialized. These technologies

can offset both historical greenhouse gas emissions as well as residual emissions from sec-

tors that are inherently hard to decarbonize. However, the rapid scale-up of NETs poses

the risk of unintended consequences due to their need for energy, land, water, nutrients,

and other resources. These requirements also translate to incremental cost and social

acceptability aspects of carbon drawdown options. The evaluation of many alternatives is

also problematic due to the uncertainties inherent in new technologies. This paper surveys

the emerging literature on decision support models that have been developed to deal with

these issues and facilitate the large-scale deployment of NETs.
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Introduction

Negative emissions technologiesAU : PerPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; allitalicizedwordshavebeenchangedtoregulartextthroughoutthearticle:(NETs) will be needed to achieve the global net-zero emission

target by mid-century [1]. NETs remove CO2 from the atmosphere and transfer it to other

physical or biological compartments [2]. The drawback of NETs is the potential effects on bio-

geochemical cycles that lead to adverse environmental impacts [3]. The scale and timing of

NETs deployment will depend on the regional and national circumstances, technology avail-

ability, and level of decarbonization of different sectors [1]. Hence, computer-aided decision

support for NETs deployment is an important research area. Process integration (PI), a branch

of process systems engineering (PSE), offers various methods for such applications.

PI is defined as “a holistic approach to design and operation that emphasizes the unity of

the process” [4] and focuses on the efficient use of resources and the reduction of pollution [5].

Two groups of techniques developed in PI are pinch analysis (PA) and mathematical program-

ming (MP) [5]. PI techniques were first used for heat recovery system design in process plants

[6]. Mass integration was later developed by capitalizing on the structural similarity of heat

and mass transfer [7]; PI principles were extended to CO2 emissions reduction through car-

bon-constrained energy planning with tools such as carbon emissions pinch analysis (CEPA)

[8]. Combining PI with artificial intelligence (AI) is also a promising area [9].

PI models can play an important role in high-level policy decision analysis to fight climate

change [10]. Integrated assessment models (IAMs) remain critical in emissions reduction anal-

ysis, but they should be supplemented with other modeling approaches [11]. In particular,

there is a need for optimization models to prescribe normative courses of action rather than

merely describing the results of predefined scenarios [12]. PI models can therefore supplement

IAMs in planning the large-scale implementation of NETs.

A keyword map based on a Scopus database search (using the search terms “negative emis-

sions” or “carbon dioxide removal” and the techniques, “optimization,” “mathematical pro-

gramming,” “linear programming,” “pinch analysis,” “marginal abatement cost,” “p-graph,”

“multi-criteria decision analysis,” and “machine learning” until the year 2022 is shown in

Fig 1. The sizes of the nodes indicate the frequency of occurrence. Five thematic clusters of

topics based on content [13] can be seen in different colors, namely, carbon dioxide removal

and optimization (blue), climate change and GHG (red), carbon capture and biomass bioe-

nergy (green), negative emissions (yellow), and life cycle assessment (LCA) (violet). The key-

word “process integration” is found under the red cluster but is linked with all the other

thematic clusters, indicating that PI is an emerging topic that warrants attention.

Early literature reviews on NETs assess their technological readiness, costs, and carbon

dioxide removal (CDR) potentials [14]. The biophysical limits of NETs were also evaluated

based on multiple footprints [15]. A comprehensive report evaluated NETs based on costs and

potentials as well as co-benefits, social acceptance, implementation barriers, and readiness [2].

A three-part review series that emphasized the importance of NET portfolios assessed the

research landscape [16], costs and side impacts [17], and commercialization prospects [18].

NETs have been evaluated using the United Nations Sustainable Development Goals (UN

SDGs) [19] and LCA [20]. Despite the extensive literature on NETs, no reviews have been

found on the optimization and decision support models for their deployment.

This paper addresses this gap in the literature by giving a state-of-the-art survey of the opti-

mization and decision support models for NETs, with an emphasis on PI-based techniques.

The rest of the paper is organized as follows. The next section gives an overview of NETs. Sub-

sequent sections discuss the different modeling approaches and applications in NETs depend-

ing on the task. The final section gives the conclusions and future research outlook.
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Overview of negative emissions technologies

Early discussions on engineered CDR date back to the 1970s [21]. Climate change is now rec-

ognized as a global crisis that requires gigaton-scale solutions [22]. The Fourth Assessment

Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) discussed 2 NETs,

namely, bioenergy with carbon capture and storage (BECCS) and afforestation/reforestation

(AR) [23]. The term CDR appeared in the IPCC’s Fifth Assessment Report (AR5) wherein

NETs were included in the new GHG emissions mitigation scenarios [24]. In AR5 scenarios,

higher emissions lead to greater reliance on NETs after 2050 [24]. IAMs that simulate the

global GHG emitting systems use NETs to make feasible scenarios and reduce system costs

[25]. The first installment of the Sixth Assessment Report (AR6), “The Physical Science Basis,”

stated that NETs have the potential to remove carbon from the atmosphere for storage in res-

ervoirs, reverse ocean acidification, offset residual emissions to reach the net-zero target [3].

The role of NETs in addressing hard-to-abate emissions was further highlighted in the third

installment of the AR6 report, “Mitigation of Climate Change” [1].

NETs can be grouped according to their carbon capture mechanism (biological, geochemi-

cal, or chemical) [1]. Many biological pathways are also classified under the term “natural cli-

mate solutions” [26,27]. The most prevalent NETs in the literature, AR, BECCS, wetland

restoration (WR), soil carbon sequestration (SCS), biochar (BC), ocean fertilization (OF),

enhanced weathering (EW), ocean alkalinization (OA), and direct air carbon capture and stor-

age (DACCS) are summarized in Table 1. Industrial systems can also be designed to become

carbon-negative using the underlying principles of the NETs in Table 1.

Fig 1. Keyword map of the literature on the optimization and decision support techniques for NETs deployment. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 3andTables1 � 2:Pleaseverifythatallentriesarecorrect:
Each node represents the keywords that have occurred at least 5 times in the literature, based on a Scopus database

search (using the search terms “negative emissions” or “carbon dioxide removal” and the techniques, “optimization,”

“mathematical programming,” “pinch analysis,” “marginal abatement cost,” “P-graph,” “multi-criteria decision

analysis,” and “machine learning”). The search yielded 150 results (excluding articles from unrelated fields). The bigger

the size of the node, the more frequent the occurrence of the keyword. NET, negative emissions technology.

https://doi.org/10.1371/journal.pstr.0000059.g001
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Table 1. Overview of NETs.

Capture

method

NET Description Co-benefits Limitations Risks

Biological AR Increasing the forest area to enhance the

carbon sink [33]

Food, fuel, and fiber production, air

quality and water regulation,

recreation, and biodiversity

improvement [34]

Land and water

availability, permanence,

and sink saturation [35]

Albedo effect, biodiversity

and food security [35]

WR Restoration of wetlands to enhance the

anaerobic storage of dead organic matter

[36]

Prevent floods, filter pollutants from

air and water, improve biodiversity,

and provide recreation, fish, and

shrimp [36]

Difficulties in restoring,

permanence, and sink

saturation [36]

CH4 emissions, albedo

effect [36]

SCS Applying land management practices

that increase the carbon content of the

soil [37]

Soil enhancement and improvement

of soil biodiversity [38]

Fertilizer supply,

permanence, and sink

saturation [37]

N and P utilization,

increase in N2O emissions

[37]

BC Thermochemical conversion of organic

matter under low or zero oxygen

conditions to produce char, then storing

it in soil or away from the atmosphere

[39]

Agricultural waste management,

energy source, N2O and CH4

emissions reduction, soil

enhancement, pollution adsorption,

and soil biodiversity improvement

[39]

Sustainable biomass

supply, suitable soils for

storage, sink saturation

[39]

Land-use change, albedo

effect, competition for

biomass [39]

BECCS Bioenergy production from the

combustion of renewable biomass, then

the CCS of the exhaust CO2 from the

combustion process [40]

Bioenergy production [40] CO2 storage, sustainable

biomass supply, land and

water availability, suitable

facilities [41]

Land-use change, food

security and biodiversity,

competition for biomass,

albedo effect, CO2 leakage

[40]

OF Application of nutrients (phosphates,

nitrates, and iron) to the ocean surface to

enhance the photosynthesis by

phytoplankton and using the ocean’s

“biological pump” to move the biomass

deep in the ocean [42]

No known co-benefits aside from

carbon sequestration

Fertilizer supply [42] Unknown impacts on

marine biodiversity, toxic

algal blooms [42]

Geochemical/

chemical

EW Enhancing the natural weathering of

rocks by crushing, grinding, and

spreading alkaline materials that use CO2

and release metal, carbonate, and

bicarbonate ions [43]

Increased nutrient availability, higher

quality soils, reduced erosion rates,

reversal of soil and ocean

acidification, strengthens crops’

resistance to pests [44]

Finite solubility of silicic

acid, availability of

suitable land, energy

supply [43]

Ultrafine particles may

cause pulmonary diseases,

mining impacts [45]

OA The addition of calcium hydroxide or

calcium oxide to ocean surface waters

accelerates the uptake of CO2 from the

atmosphere [46]

Reversal of ocean acidification [46] Lime supply, energy

supply [46]

Uncertain impacts on

marine biodiversity [47],

mining impacts [46]

DACCS Capturing low concentration CO2 from

the atmosphere using supported amines

in solid form, wet scrubbing systems

based on calcium or sodium cycling

technology, or other technologies, then

storing the captured CO2 in geological

reservoirs, minerals, or low carbon

concrete [48]

No known co-benefits aside from

carbon sequestration

CO2 storage, energy

supply [48]

High CO2 penalty if fossil

fuels are used, high capital

costs [41]

AR, afforestation/reforestation

BC, biochar

BECCS, bioenergy with carbon capture and storage

CCS, carbon capture and storage

DACCS, direct air carbon capture and storage

EW, enhanced weathering

NET, negative emissions technology

OA, ocean alkalinization

OF, ocean fertilization

SCS, soil carbon sequestration

WR, wetland restoration.

https://doi.org/10.1371/journal.pstr.0000059.t001
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As with any large-scale technology, NETs are not without risks. They have biogeochemical

and technological limits and may cause unintended side effects [24]. The possible negative

consequences of BECCS and AR were reiterated in AR6, as the maladaptation of BECCS and

AR may result in risks such as damage to biodiversity, water and food security, and livelihoods

[28]. NETs also have uncertain performance and costs due to immaturity [29]. NETs strategies

should be tailored to fit national or regional targets and conditions [1]. Aside from resource

constraints, NETs are also bound to temporal constraints such as technological readiness and

time-varying peak CDR potentials [17,30]. Inherent uncertainties in the scale and permanence

of CDR should also be considered [31]. These aspects call for careful planning of NETs deploy-

ment [32]. NETs portfolios optimized for local conditions can be more sustainable [17]. Fig 2

illustrates the range of available NETs and the resources potentially needed to achieve CO2

sequestration. Portfolio optimization models can be used to prescribe the mix of NETs to max-

imize CDR given economic and environmental constraints [12].

Optimization of NETs deployment

Mathematical programming models

MP models consist of an objective function subject to constraints in the form of equations,

inequalities, and variable specifications [49]. They can handle complex, large-scale problems

when properly formulated and structured. IAMs, which are based on the MP framework, opti-

mize or simulate the global energy and other GHG-emitting systems [11]. Most IAM studies

focus on BECCS due to its flexibility in transitioning energy systems to net-zero emissions

[25]. It is also common to run IAMs as standalone energy systems to determine the optimum

energy mix [11]. For example, a study investigated the impact of BECCS on the global energy

mix using a linear programming (LP) optimization model [50]. Similar studies have been done

for specific countries such as Japan [51] and the Netherlands [52]. Another study used an

energy systems model to minimize the overall system cost while modeling complex carbon

flows with fossil energy and biomass-based CCS/CCUS [53].

Most IAMs only focus on BECCS and AR applied individually [54]. Only 1 study to date

simulated a NETs portfolio composed of BECCS, DACCS, AR, and EW, and concluded that a

balanced portfolio is best from a regional perspective [55]. A review paper argues that IAMs

should be supplemented by other models and analytical approaches to consider social and

technical perspectives as well as local energy system conditions [11].

In PSE literature, models and algorithms are developed to find the optimum system config-

uration [56]. For instance, value chain optimization that considers the energy, water, food, and

carbon nexus has been reported in NETs literature. Multiple conflicting objectives occur in

such models, necessitating analysis of the Pareto front [57]. An example of a multi-objective

NETs value chain optimization MP is the Modeling and Optimization of NET (MONET) [58].

The framework was applied to BECCS to generate the optimal supply chain by minimizing

land and water use and maximizing CDR and electricity generation [58]. The framework was

also demonstrated in a global BECCS network [59] and for national scenarios in the United

Kingdom [60] and Qatar [61]. Another approach is life cycle optimization, which combines

life cycle impact analysis and MP. This approach was demonstrated for the multi-objective

optimization of a BECCS supply chain [62].

PI models are also used in optimizing the supply chains of NETs other than BECCS. In con-

trast with IAMs, these models are prescriptive rather than descriptive. The first paper on the

optimal planning of negative emissions BC networks used a mixed-integer linear program-

ming (MILP) model to maximize CDR by matching sources and sinks [63]. A subsequent

study extended this model by adding an economic objective function and by considering the
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quality of the receiving soils as a sink [64]. BC systems were further explored by generating

near-optimal solutions using integer cuts [65] since these solutions may exhibit desirable prop-

erties not reflected in MPs [66]. A hybrid renewable energy system with BC production was

optimized in another bi-objective model that maximizes both cost and CDR [67]. The BC net-

work was further improved by considering higher resolution constraints (CDR, and land,

Fig 2. Superstructure for the optimization of NET portfolios. Alternative NETs rely on different physical, chemical, or biological mechanisms to sequester

carbon. Each option will incur a characteristic cost and environmental footprint profile per unit of negative emissions. Portfolio optimization models can be

used to prescribe the mix of NETs to maximize negative emissions given the economic and environmental constraints. NET, negative emissions technology.

https://doi.org/10.1371/journal.pstr.0000059.g002
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water, and nutrient footprints), costs, and transport network topology [68]. MP models have

also been applied to EW networks. An LP model for maximizing EW CDR by matching rock-

crushing plants with rock application sites under temporal constraints was developed [69].

Models have also been proposed for the optimal design of EW networks using alkaline indus-

trial waste in Taiwan [70] and mainland China [71].

MPs have also been proposed for integrating NETs into existing systems. For example, indi-

rect biomass co-firing was modeled in existing coal-fired power plants wherein BC is co-pro-

duced and applied to the soil for negative emissions [72]. Another study included negative

emissions BC production in optimizing combined heat and power systems with renewable

(biomass and solar) energy sources [73]. A study optimized networks of ethanol biorefineries

and CCS plants in the United States for total cost using integer programming [74]. Polygenera-

tion systems, which deliver combined cooling, heating, and power, can be integrated with a

negative emissions desalination process based on OA [75] while considering hourly variations

in product demand and electricity price [76].

There are few PI models in the literature that consider NET portfolios. An MP model inte-

grated BC and EW in the same system and capitalized on the synergistic relationship between

the 2 NETs [77]. Another LP model optimized a NETs portfolio with AR, SCS, BECCS, BC,

EW, and DACCS by evaluating the environmental footprints of each technology [78]. This

approach gives the optimum NETs mix by minimizing the total cost using the Planetary

Boundaries as constraints [79]. Accounting for nutrient flows in biological NETs is also critical

since phosphorous is a non-renewable resource; also excess fertilizer use causes eutrophica-

tion, while excess nitrogen generates nitrous oxide (N2O), a potent GHG [79]. The study was

extended to an MILP model by considering the synergistic resource interactions between

NETs [80].

MP is used in energy system models and value chain optimization commonly involving

BECCS and is utilized in PI models involving BECCS, BC, EW, and rarely OA. The models

usually consider cost, energy, carbon, land, and water footprints but rarely nutrient footprints.

Multi-footprint models are also rare. Since NETs are commonly modeled individually, there

have been few attempts to evaluate their synergistic or antagonistic interactions. Although MP

is useful for detailed modeling, they have the drawback of poor interactivity when used for

decision support. In the next section, alternative interactive methods will be discussed.

Graphical and algebraic pinch analysis extensions

In MP models, the optimization procedure is inherently detached from the thought processes

of the decision-maker [81]. In contrast, interactive methods provide critical insights and visu-

alization that are important in the first steps of decision analysis [82]. For example, CEPA has

been extended to the planning of CCS systems [83] and more recently to NETs deployment

planning (see Fig 3A; [84]). Derivative graphical [84,85] and algebraic techniques [86] have

been proposed for the optimum deployment of NETs. A CEPA study of the UK’s decarboniza-

tion concluded that net-zero emissions can be achieved with BECCS [87]. CEPA has also been

applied for planning individual NETs such as BC [88] and EW networks [89]. Graphical PA

techniques can also be replaced with mathematically equivalent algebraic procedures for easier

implementation using spreadsheets [56].

Another graphical technique, known as the marginal abatement cost (MAC) curve, was

originally developed in the 1980s [90]. MAC curves were popularized by McKinsey & Com-

pany to identify global cost-effective GHG emissions reduction solutions [91]. Model-based

MAC curves that run alongside IAMs have also been used in NETs analysis; MAC curves for

reforestation and avoided deforestation were generated using economic models [92]. Another
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study examined the effect of BECCS on the overall system cost and MACs using energy and

economic system models [93]. MAC curves were used with an energy model to select cost-effi-

cient emissions reduction measures including biomass co-firing and CCS in Indonesia [94].

Expert-based MACs have been supplemented with algebraic targeting methods and other

improvements. A minimum MAC approach, which is a hybrid graphical and algebraic target-

ing technique, was developed and has been illustrated in decarbonization planning as shown

in Fig 3B [95].

The graphical approaches have focused on optimizing cost, energy, and carbon footprints.

Demonstrating these tools on other footprints such as land, water, and nutrients can provide

key insights on NETs deployment, but this remains as a research gap in the literature. Both

MP and graphical approaches are powerful tools for NETs decision support. The next section

discusses multi-criteria decision analysis (MCDA) techniques for ranking NETs.

Multi-criteria decision analysis techniques

In addition to quantifiable techno-economic criteria, it is also important to consider other

intangible aspects of NETs, such as social acceptance, feasibility, secondary impacts, and co-

benefits [96]. MCDA techniques are useful tools for the selection and prioritization of NETs

considering these indicators. A study combined 2 popular MCDA methods, the analytic hier-

archy process (AHP) [97] and the technique for order preference by similarity to ideal solution

(TOPSIS) [98] to rank NETs based on technical readiness, potential capacity, cost, and energy

requirement [99]. Another study used MCDA to evaluate various NETs based on feasibility,

effectiveness, and side impacts [30]. A neutrosophic data envelopment analysis (NDEA)

model was developed to rank NETs based on environmental footprints, costs, and the albedo

effect [100]. A graphical decision-making tool based on a “2 × 2” framework to assess the

regional value of NETs was proposed [101]. This approach maps options using “zero-carbon

availability” and “benefit-cost” as the horizontal and vertical axes [101].

MCDA techniques provide decision support for ranking NETs based on hard and soft crite-

ria. Miscellaneous decision support tools for NETs deployment will also be discussed in the

next section.

Fig 3. Graphical approaches in the optimization and prioritization of NETs deployment. (A) CEPA adapted from [84] and (B) extended MAC curve

adapted from [95]. CEPA, carbon emissions pinch analysis; MAC, marginal abatement cost; NET, negative emissions technology.

https://doi.org/10.1371/journal.pstr.0000059.g003
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Miscellaneous techniques

Machine learning (ML), which is a subset of AI, can handle tasks such as prediction, forecast-

ing, or classification. ML techniques, which include random forests, support vector machines,

and artificial neural networks, have been recently applied in NETs. Random forests were used

to predict the yields of BC from slow pyrolysis, and then, the results were further subjected to

LCA and economic analysis [102]. The same ML approach was used to predict the product

yields and characteristics using hydrothermal treatment of different biomass feedstocks cou-

pled with CCS [103]. A decision framework was developed to evaluate the economic feasibility

of BECCS through a combination of ML, LCA, and economic analysis and was demonstrated

in a regional case study [104].

Rule-based ML approaches have also been used for the classification of geological CO2 stor-

age sites for BECCS or DACCS. These techniques that generate if-then rules have the advantage

of inherent interpretability [105]. A study developed a rough set-based ML technique [106] to

predict reliable CO2 storage sites. The rule-based classifier was trained on a dataset of CO2 stor-

age sites with known geological attributes [107]. A rule-based hyperbox classifier trained using

an MILP model has also been developed to identify secure CO2 storage sites [105].

The process graph (P-graph) framework was originally developed to solve process network

synthesis (PNS) problems [108] and is now used to solve a range of analogous problems [109].

It has the advantage of being able to exhaustively generate optimal and near-optimal solutions,

which is important in decision-making since the optimal solutions are sometimes impractical

and less robust than the suboptimal solutions [66]. P-graph models have been proposed for

planning NETs systems based on BC application [110] and OA [111]. An inductive MCDA

technique based on P-graph has been proposed to rank NETs [112]. The approach is similar to

ML in that it relies on learning from examples. Implementation of NETs considering govern-

ment–industry interactions was modeled as a Stackelberg game and solved with P-graph

[113]. P-graph was also used to generate causality maps to show complex influences between

NETs barriers and enablers [114].

The various modeling approaches involving NETs presented in this work and the tech-

niques matched with the tasks are summarized in Table 2. Note each has its own applicability,

strengths, and limitations.

Table 2. NETs modeling techniques and the tasks involved.

Simulation Optimization Selection Prioritization Classification Examples

MP ✓ ✓ ✓ ✓ ✓ [60–67,69–80,82]

PA ✓ ✓ ✓ ✓ [85–91]

MAC curves ✓ ✓ ✓ [94–97]

MCDA ✓ ✓ [32,101]

ML ✓ ✓ [105–108,110]

P-graph ✓ ✓ ✓ ✓ [114–118]

MAC, marginal abatement cost

MCDA, multi-criteria decision analysis

ML, machine learning

MP, mathematical programming

PA, pinch analysis

P-graph, process graph.

https://doi.org/10.1371/journal.pstr.0000059.t002
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Uncertainty analysis

Epistemic uncertainties due to a lack of knowledge of the system are common in emerging

technologies like NETs [9]. Examples of epistemic uncertainties in NETs planning include

uncertainties in performance and cost [17,29], resource constraints [115], permanence

[16,116], and social acceptability [2,117]. Stochastic uncertainties, which arise from the ran-

domness of the system, are also present in NET planning in the form of variations in the

parameters [117]. Fuzzy, stochastic, and robust programming techniques can be used to deal

with these uncertainties [118].

Fuzzy decision-making seeks the “confluence” of the fuzzy goals with the fuzzy constraints

in a given problem [119]. Fuzzy MP can address epistemic uncertainties of model parameters

[120] and perform non-compensatory, multi-objective optimization [77]. It has been widely

applied in sustainable energy technologies [121]. Fuzzy optimization has been demonstrated

on NETs such as BC from biomass co-firing [72], EW networks [70], integrated EW and BC

networks [77], and multi-footprint optimization of NET portfolios [80].

Post-optimization sensitivity analysis can also be done to evaluate the parametric uncertain-

ties in NETs. For example, this approach was applied to negative emission desalination by

varying the price of treated brine [76] and to BC by varying CDR targets [68]. Optimized

NETs portfolios were also subjected to sensitivity analysis by evaluating the parametric uncer-

tainties in the resource constraints [78]. Monte Carlo simulation has been used for the analysis

of suboptimal solutions generated using integer cuts [66] or P-graph [109]. This two-step

approach has also been reported in the literature to identify robust emissions reduction strate-

gies [29] and robust CCS networks [122].

Conclusions and future research outlook

Planning for NETs deployment will play a significant role in achieving global climate goals

[12]. Although the climate change mitigation benefits of NETs deployment are global, the

costs, risks, and environmental impacts (or co-benefits) may be geographically localized. Various

modeling approaches have been surveyed in this work. Ubiquitous IAM models need to be supple-

mented with other computing tools capable of prescribing optimal decisions [11]. PI techniques can

bridge this gap by reducing resource consumption, carbon footprint, and waste [4] in the imple-

mentation of NETs. The following specific research gaps and opportunities are identified:

• Whereas IAMs have focused on BECCS and AR [54], there is a research gap in models

involving other NETs. PI techniques can supplement IAMs by modeling other NETs such as

BC, EW, and OA. PI tools can also be applied to carbon management networks and indus-

trial processes involving NETs.

• There are very few studies on NETs portfolios on smaller scales, even if their sustainability

benefits are clear [16]. PI tools can support the optimization of NETs portfolios on regional

scales to ease the impact of individual technologies and hedge risks of underdevelopment of

individual technologies.

• Multi-objective studies should consider cost, CDR, and environmental footprints [57].

Nutrients (nitrogen and phosphorous) footprints of biomass-based NETs need to be exam-

ined more closely relative to the Planetary Boundaries [79].

• Graphical approaches like PA and MAC have been extended to NETs considering cost and

CDR. These tools need to be improved to be able to handle other aspects of NETs

deployment.
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• Multi-period models are available in the PI NETs literature, but they only consider short

timeframes [76]. Future NETs planning models need to account for readiness and peak

CDR potentials over multiple decades [96].

• There is also a need to address the intangible aspects of NETs such as social acceptance, feasi-

bility, secondary impacts, and co-benefits [30]. These aspects can be addressed by MCDA

techniques. Models evaluating the synergistic and antagonistic effects between NETs are also

needed. Portfolio optimization models can be used to determine the best mix of NETs con-

sidering these details.

• The data-driven approach in NETs planning is an emerging research area that is foreseen to

grow in the future [9]. P-graph goes beyond supply chain synthesis by performing other

tasks such as determining criteria weights using training data (similar to ML), generating

optimal and suboptimal solutions for game theory, and producing causality maps. The use

of P-graphs for NETs remains limited and presents an opportunity for further research.

• Lastly, planning NETs requires dealing with uncertainty [29]. Stochastic and robust MP

models can be explored in future research.

The different techniques discussed in this work can be applied to the various tasks required

in NETs planning to prescribe normative courses of action, rather than merely describing the

results of predefined scenarios. These techniques can also mitigate the potential negative side

impacts of NETs [17]. Planners need to carefully consider the local conditions before deploy-

ing NETs [1]. The optimization and decision support models presented in this work demon-

strate the value of high-level decision support for developing climate policy.
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