SUPPLEMENTARY MATERIAL

Supplementary table 1: Immunization Schedule.

Llamas 1 and 3 were immunized via intramuscular injection as indicated in the table. Protein injections were in a freshly prepared 4.5-ml water in oil emulsion prepared by vigorously mixing 2 vol U of antigen with 2.5 vol U of the adjuvant Stimune (CEDI Diagnostics).

Day	Immunogen	Adjuvant	Sample
0	Intramuscular injection of plasmid DNA encoding R2 and	No	10 ml blood
	96ZM651.02 gp160 in PBS (7.5 mg of DNA)		
14	Intramuscular injection of plasmid DNA encoding R2 and	No	No
	96ZM651.02 gp160 in PBS (7.5 mg of DNA)		
28	Intramuscular injection of plasmid DNA in PBS (7.5 mg of	No	10 ml blood
	DNA) and VLPs bearing R2 and 96ZM651.02 envelope		
	proteins in PBS (protein content 50 μg)		
35	Intramuscular injection of plasmid DNA in PBS (7.5 mg of	No	No
	DNA) and VLPs bearing R2 and 96ZM651.02 envelope		
	proteins in PBS (protein content 50 μg)		
42	VLPs bearing R2 and 96ZM651.02 envelope proteins in PBS	No	10 ml blood
	(protein content 50 μg)		
49	VLPs bearing R2 and 96ZM651.02 envelope proteins in PBS	No	No
	(protein content 50 μg)		
54	No	n/a	150 ml blood,
			from Ilamas 1 & 3,
			used for library
			generation
131	Intramuscular injection of 96ZM651.02 and R2 gp140 protein	Stimune	10 ml blood
	(50 μg each)		
	Intramuscular injection of 96ZM651.02 and R2 gp140 protein	Stimune	10 ml blood
145	(50 μg each)		
	Intramuscular injection of 96ZM651.02 gp140 and R2 protein	Stimune	10 ml blood
159	(50 μg each)		
	Intramuscular injection of 96ZM651.02 and R2 gp140	Stimune	10 ml blood
166	protein (50 μg each)		
174	No	n/a	150 ml blood,
			from Ilamas 1 & 3,
			used for library
			generation

Supplementary Table 2: IC50 against 77 viruses.

VHH were titrated threefold from 50 μ g/ml and incubated with the indicated pseudoviruses on TZM-bl assay as described in the materials and methods. No virus inactivation was observed with a negative control VHH or with a pseudovirus bearing a mouse leukemia virus Env. VHH IC50 titers were calculated using the XLFit4 software (IDBS) or the Labkey Neutralizing Antibody Tool (Piehler et al., 2011). Potent neutralization (IC50 < 1 μ g/ml) is color-coded red, intermediate neutralization (1-10 μ g/ml) is color-coded yellow and weak neutralization (10-50 μ g/ml) is color-coded green, non neutralization (>50 μ g/ml) is color-coded white, strains that weren't tested for particular VHH are indicated by a •.

VIRUS:	CLADE	В9	B21	A14	3E3	J3
92UG037	Α	2.52	10.02	0.56	0.03	0.33
MS208.A1	Α	41.5	>50	>50	0.17	6.5
Q461.e2	Α	>50	>50	47.2	0.31	•
Q23.17	Α	0.04	0.09	0.28	3.04	7.73
Q842.d12	Α	>50	>50	>50	0.13	0.57
3301.v1.c24	AC	<0.02	0.03	<0.02	0.18	0.97
6041.v3.c23	AC	1.32	2.17	1.31	<0.02	1.82
6540.v4.c1	AC	>50	>50	>50	>50	3.72
0815.v3.c3	ACD	>50	>50	36.66	<0.02	4.64
T257-31	AG	10	50	>50	6.5	
T250-4	AG	14	14.5	>50	14.5	12.14
T266-60	AG	<0.023	0.0304	0.02	0.079	1.92
236-8	AG	<0.023	0.103	0.32	0.037	5.4
271-11	AG	3.31	4.3	18.76	<0.02	14.67
242-14	AG	>50	>50	>50	0.12	>50
928-28	AG	>50	>50	>50	0.18	2.42
T33-7	AG	•	•	•	0.15	•
T278-50	AG	•	•	•	4.1	0.84
T25118	AG	•	•	•	0.71	0.63
R1166.c07	AE	<0.02	0.02	1.24	13.81	10.39
R3265.c06	AE	0.04	0.05	0.12	35.27	12.13
C2101.c01	AE	<0.02	<0.02	0.03	>50	<0.023
SS1196	В	10.98	29.64	7.05	0.71	<0.023

Bal26	В	0.743	2.65	0.36	0.1	0.213
TRJO4551.58	В	48.7	>50	>50	11.8	0.565
AC10.0.29	В	0.238	0.732	0.2	>50	•
IIIb	В	0.75	2	1.2	<1	0.84
THRO4156.18	В	0.94	2.275	1.6	0.85	1.31
6535.3	В	>50	>50	11.97	2.78	33.85
QH0692.42 SC422661.8	B B	0.3 3.33	0.49 4.04	0.11 1.07	0.13 2.45	0.12
PVO.4	В	0.19	0.19	0.05	0.52	0.19
TRO.11	В	<0.02	<0.02	<0.02	3.39	0.63
RHPA4259.7	В	0.03	0.05	<0.02	0.07	0.1
REJO4541.67	В	0.24	0.38	0.19	0.05	0.97
WITO4160.33	В	8.63	14.36	0.07	1.17	1.01
CAAN5342.A2	В	1.57	2.55	0.88	10.85	1.19
СН038	ВС	>50	>50	>50	<50	0.85
CH181.12	ВС	4.6	5.7	1.9	0.86	7.99
CH110.2	ВС	6	17.7	6.3	0.99	<0.023
CH064.20	ВС	1.43	4.8	1.6	0.12	<0.1
CH091.9	ВС	3.4	7.2	3	0.18	0.049
CH119.10	ВС	•	•	•	1.1	•
CH114.8	ВС	•	•	•	11.1	•
CH115.12	ВС	•	•	•	>50	•
CH120.6	ВС	•	•	•	>50	•
CH070.1	ВС	•	•	•	>50	•
CH111.8	ВС	•	•	•	1.4	0.534
CH117.4	ВС	•	•	•	>50	•
CNE19	ВС	0.08	0.12	0.04	0.37	0.101
CNE20	ВС	>50	>50	>50	>50	0.13
CNE21	ВС	0.19	0.28	0.07	2.44	•
DU172	С	0.293	0.891	0.51	31.4	0.193

TV1.12	С	>50	>50	>50	>50	0.21
Du156.12	С	0.368	1.597	0.55	0.43	•
ZM135M.PL10a	С	0.0876	0.27	0.11	4.35	0.284
ZM109F.PB4	С	0.0337	0.2	0.122	6.93	0.633
96ZM651.02	С	0.43	0.67	0.069	0.28	0.783
93MW965.26	С	0.19	0.48	0.21	2.09	0.801
Du422.1	С	0.36	0.47	0.4	0.64	0.958
ZM197M.PB7	С	41.86	>50	>50	6.17	1.51
ZM214M.PL15	С	<0.02	0.04	0.02	0.36	3.67
ZM249M.PL1	С	1.19	1.9	0.71	0.27	7.66
6952.v1.c20	CD	>50	>50	>50	1.02	14.35
6811.v7.c18	CD	0.14	0.27	0.12	0.28	23.77
X2131_C1_B5	G	14.38	18.85	3.96	0.56	0.12
P1981_C5_3	G	>50	>50	>50	>50	0.19
X1632_S2_B10	G	0.1	0.14	5.54	0.75	0.74
X1254_C3	G	>50	>50	>50	>50	0.97
X2160_C25	G	2.88	4.81	48.35	2.02	1.2
X2088_C9	G	>50	>50	>50	>50	0.126
Viruses neutralized		47	44	45	58	
Viruses tested		61	61	61	71	
%		77	72	74	81.7	
Median IC50 μg/ml		0.85	0.82	0.53	0.73	

Supplementary Table 3. IC50 values for B9 VHH and S54W mutant against nine viruses.

The S54W mutant was generated by site-directed mutagenesis as described in the materials and methods. VHH were titrated threefold from 50 μ g/ml and incubated with the indicated pseudoviruses on TZM-bl assay. VHH IC50 titers were calculated using the XLFit4 software (IDBS). Highly potent neutralization (IC50 < 0.1 μ g/ml) is color-coded dark red, potent neutralization (0.1-1 μ g/ml) is color-coded red, intermediate neutralization (1-10 μ g/ml) is color-coded yellow, weak neutralization (10-50 μ g/ml) is color-coded green.

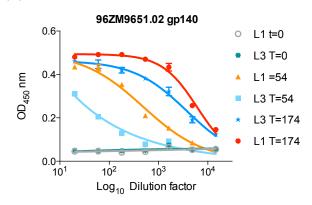
<u>Virus</u>	Clade	В9	S54W	Fold increase
T266-60	AG	0.039	0.056	0.704
236-8	AG	0.056	0.079	0.710
RHPA4259.7	В	0.063	0.159	0.400
TRO.11	В	0.245	0.162	1.509
Du156.12	С	0.559	0.413	1.355
DU172	С	0.829	0.331	2.505
CH181.12	ВС	1.532	0.811	1.889
CH110.2	AG	2.142	2.398	0.893
Bal26	В	2.993	0.200	14.995
SS1196	В	13.881	3.796	3.656
WITO4160c	В	30.301	7.487	4.047
TRJO4551.58	В	>50	37.289	
CH038	ВС	>50	32.90	

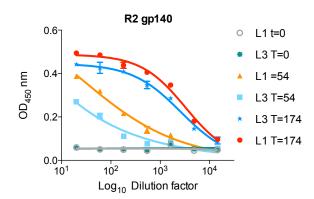
Supplementary Table 4: Statistical analysis of sequence variation between immunized and naïve llamas.

The mean cluster size was found to be significantly larger for naive than immunized llamas. When considering only non-singleton clusters (i.e. clusters of sequences with 2 or more members) the average cluster size was also considerably larger for the naive llamas. The mean number of reads per unique sequence was also higher in the naive compared to the immunized samples highlighting the greater sequence diversity in the immunized samples. This was despite the total number of reads not varying significantly between either set of samples and further reinforced by the immunized animals generating significantly higher numbers of unique sequences per sample.

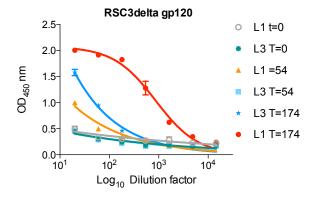
	Naïve llamas	Immunized Ilamas	p (Student's t-test)
Total mean cluster size	1.25*	1.05	<0.005
Mean cluster size for	5.3	2.7	<0.005
clusters of ≥2			
Mean number of reads	1.52	1.25	<0.005
per unique sequence			
Total numbers of unique	1.8 x10 ⁵	1.5x10 ⁵	<0.005
sequences per sample*			
Total number of reads	2.3x10⁵	2.1x10 ⁵	0.6

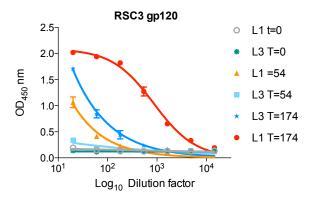
^{*}Normalized for total reads in each sample

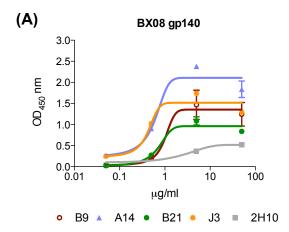

Supplementary Figure 1: Post-immune sera anti-HIV activity.

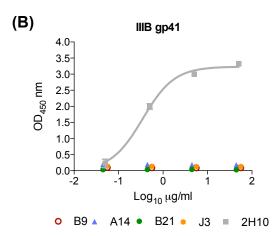

- (A) Threefold serial dilutions of llama sera were tested against the indicated pseudoviruses, starting at a 1:5 dilution in the 96-well plate the TZM-bl cell-based assay as described in the materials and methods.
- (B) Threefold serial dilutions of llama sera were tested against the indicated immunogens, starting at a 1:20 dilution. Binding was detected with HRP-conujugated anti-llama antibody. Serum samples were heat-inactivated to destroy complement by incubation at 56°C for 1 h before use.

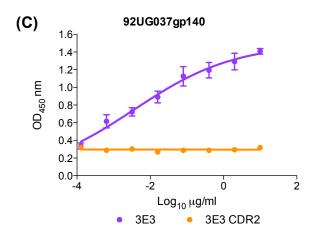
(A)


	92UG037	Bal26	96ZM0651.02	<u>R2</u>
	A (2)	B (1)	C (2)	B(nd)
Llama 1	1: 106	1: 20	1: 147	1:100
Llama 3	1: 25	1: 8	1: 100	1:27


(B)


(C)





Supplementary Figure 2: VHH binding to HIV Env proteins.

VHH binding to **(A)** clade B gp140 BX08, **(B)** clade B gp41 IIIB and **(C)** clade A gp140 92UG037 was assessed by ELISA as described in the Materials and Methods. The positive control for gp140 binding was J3 [26] and that for gp41 binding 2H10 [32].

Supplementary Figure 3. VHH sequence alignments. Alignment of A14, B9, B21, 3E3, their germ line V genes and human V gene VH3-23*04 and VH1-2*02.

	FR1-IMGT (1-26)	CDR1-IMGT (27-38)	FR2-IMGT (39-55)	CDR2-IM0 (56-6	
B9 A14	EVQLVESGGGLVQAGGSLRLSCE EVOLVESGGGLVOAGGSLRLSCA		-		
Vq	EVOLVESGGGLVQAGGSLRLSCA EVOLVESGGGLVOAGGSLRLSCA		-		60
3E3	EVQLVESGGGLVQPGGSLRLSCA		~		57
Ve	QVQLVESGGGLVQPGGSLRLSCA	ASGFTLDYYAIGWF	RQAPGKEREGVSC	ISSSDGSTYY	60
Vu	QVQLVESGGGLVQAGGSLRLSCA		~		
B21	EVQLVESGGGLVQAGGSLRLSCE				
VH3-23*04 VH1-2*02	EVQLVESGGGLVQPGGSLRLSCA QVQLVQSGAEVKKPGASVKVSCK		-		60 60
	772 TVG				
	FR3-IMGT (66-104)				
	(00-104)				
В9	GDSVKGRFTISSDNAKNTVYLQM	NSLKPEDTGLYYCA	TTPFRCGNWRTTM	GSWGQGTQVTV	SS 122
A14	ADSVKGRFTIAYDNAKNTVYLQM	NSLKPEDTAVYHCA	THPFRCGNWRTVM	GSWGQGTQVTV	SS 122
Vg	ADSVKGRFTISSDNAKNTVYLQM	NSLKPEDTAVYYCA	A		98
3E3	ADSVKGRFTISRDNAKNTVYLQM	ESLKPEDTAVYHCA	TSGAGSYCTLRAF	GSWGQGTQVTV	SS 120
Ve	ADSVKGRFTISRDNAKNTVYLQM				
Vu	ADSVKGRFTISRDNAKNTVYLQM				
B21	SDSVKGRFTISRDNTKKTVYLQM				
VH3-23*04	ADSVKGRFTISRDNSKNTLYLQM				
VH1-2*02	AQKFQGRVTMTRDTSISTAYMEL	SRLRSDDTAVYYCA	R		98

Supplementary Figure 4. Shared sequence identity with J3 relative to divergence from germ line for all naïve and immunized llamas.

Shared percentage identities with neutralizing VHH J3 and divergence from its inferred V gene Vt were calculated for all unique sequences from the seven control naïve llamas, and the four immunized llama including the J3-source llama 8. Each panel shows percentage identity for all sequences from the indicated llama plotted against divergence from Vt.

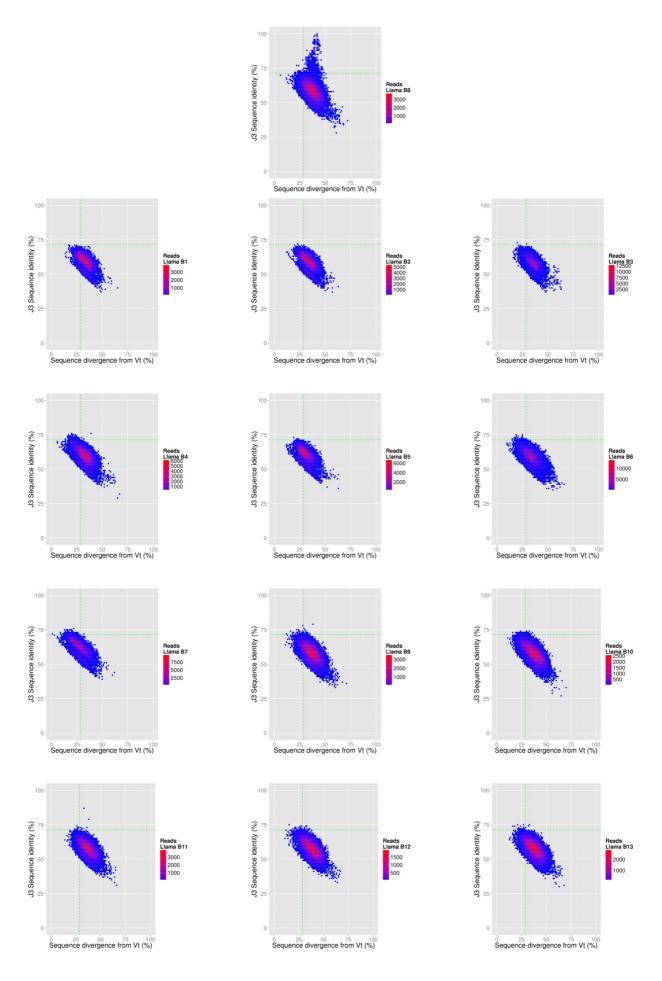


Figure S4. J3 identity of VHH repertoires of naïve llama and non-llama 8 immunized llamas.