Supplementary Table S2 – Photophysical properties of selected 2-(thio)oxothiazolidin-4-ones (LJ001 and LJ025) and oxazolidine dithiones (JL102-122)

Name	Abs Max (nm)	^(a) AUC (400-750 nm)	¹ O ₂ QY		$^{(d)}k_{\rm T} \times 10^{-7}$
			^(b) 532 nm	^(c) 355 nm	$(M^{-1}s^{-1})$
LJ001	455	100	0	0.20 ± 0.02	0.189 ± 0.010
LJ025	405	< 100	NA	0	0.191 ± 0.010
JL102	500	134	0.31 ± 0.03	0.38 ± 0.03	0.607 ± 0.050
JL103	515	153	$\textbf{0.30} \pm \textbf{0.03}$	0.36 ± 0.02	0.636 ± 0.030
JL108	530	188	0.28 ± 0.02	0.40 ± 0.04	0.700 ± 0.045
JL109	550	178	0.38 ± 0.02	0.37 ± 0.02	2.000 ± 0.100
JL118	610	200	$\textbf{0.15} \pm \textbf{0.02}$	0.14 ± 0.01	4.600 ± 0.300
JL121	380	< 100	NA	0	2.500 ± 0.200
JL122	545	153	0.23 ± 0.02	0.43 ± 0.04	1.970 ± 0.050

^aIntegrated absorption between 400 and 750 nm, divided by the concentration of the compound, and normalized relative to LJ001 (LJ001 = 100). AUC: area under the curve.

^bMeasurements were made in CD_2Cl_2 . Reference compound: RB (0.79) at 532 or TPP (0.62) at 532 nm. Average of four measurements, error is one standard deviation. NA: not applicable, these compounds do not absorb at 532 nm.

^cMeasurements were made in CD_2Cl_2 . Reference compound C60 (1.00) at 355 nm. Average of four measurements, error is one standard deviation.

^dMeasurements done at 355 nm with C_{60} as external sensitizer. Average of four measurements, error is one standard deviation.

UV-visible spectra integration (AUC). We used UV-visible spectra integrated areas (visible region, 400 nm-750 nm) to estimate the number of photons absorbed by the samples in our antiviral experiments. Typically, solutions of known concentration with maximal absorption of approximately 0.5-1.0 in the visible region were prepared. The integrated absorption areas were obtained via UV-Vis software [Cary WinUV 3.10 (246)], after running each visible spectrum. The Vis integrated absorption ratios were obtained by dividing the integrated absorption areas by the concentration of the solution.

Analysis of JL compounds photophysical properties indicated that their absorption spectrum were red-shifted (LJ001 = 455 nm, JL103 = 515 nm, JL122 = 545 nm and JL118 = 610 nm), and that the total integrated absorption (AUC) within the optical spectrum (λ = 400 to 750 nm) was also increasing (JL103 and JL122 = 1.53 times and JL118 = 2 times that of LJ001). Measurements of ¹O₂ quantum yields (QY) also indicated an increase for the JL compounds: at 355 nm, JL103 and JL122 have a QY about 2 times higher than the one of LJ001, JL118 displays a slightly lower QY. However, whereas LJ001 doesn't absorb light at 532 nm (visible range), hence doesn't generate ¹O₂ after excitation at this wavelength, all JL compounds have a high ¹O₂ QY at 532 nm. These results confirm that all JL compounds are more efficient in generating ¹O₂ than LJ001. Of note, all these photosensitizers have relatively small rates of ¹O₂ removal (k_T) indicating that self-quenching of ¹O₂ they generate) is minor and is not significantly limiting their antiviral function.