
Empirical CDF of shedding suggests there are at most 3
plaques at any one time.

We have seen that the empirical cumulative distribtion function(CDF) for
the log of shedding for each of our subjects is linear. We will argue here that
this implies that there are only a small number of plaques at any point in time.
In brief, we argue as follows: A single instance of exponential growth observed
at a a random point in that growth produces a linear CDF for the log of the
size of that process (here shedding). This is consistent with the observed linear
CDFs. We will see that small numbers of plaques are also consistent with the
observed CDFs.

A linear CDF is also consistent with a process which undergoes exponential
growth for a random length of time, stabilizes and then is sampled during its
constant phase. In this interpretation the empirical linear CDF depends on our
not seeing the growth phase. We will see in Supplement Text S2 that small
numbers of plaques could act to hide the growth phase.

Suppose that the growth of a single plaque is exponential and that this is
sampled with a uniform distribution. The log of the resulting sample is uni-
formly distributed. Put differently, the log of this value has a linear cumulative
distribution function (CDF). After normalization, if X is the random variable
representing the log10 of shedding, its CDF has the form

fX(x) = p(X ≤ x) =


0 if x ≤ 0
x if 0 ≤ x ≤ 1
1 if 1 ≤ x

Suppose now that X1 and X2 are random variables for the log shedding of
two different plaques. Suppose that these are each distributed as above and are
independent. If Y is the random variable giving the log of total shedding, we
have

Y = log(10X1 + 10X2)

≤ log(2max(10X1 , 10X2)
= max(X1, X2) + log(2)

Since the shedding values in question are on the order of 10 to 107, we will use
the approximation Y = max(X1, X2). For 0 ≤ x ≤ 1 the CDF then has the
form

fY (x) = p(Y ≤ x)
= p(max(X1, X2) ≤ x)
= p(X1 ≤ x and X2 ≤ x)
= p(X1 ≤ x)p(X2 ≤ x)

= x2

1



An induction shows that if there are n plaques whose shedding is independent
and distributed as above, the CDF for the log of total shedding is

fn(x) =


0 if x ≤ 0
xn if 0 ≤ x ≤ 1
1 if 1 ≤ x

It is clear that the near-linear empirical CDFs shown in Figure 6 are consistent
with our model here for a single plaque. The question arises: Is a linear empirical
CDF consistent with this model for n > 1?

With large numbers of sample points, the empirical CDF closely approx-
imates the CDF. With smaller numbers of sample points, a non-linear CDF
can easily produce a near-linear empirical CDF in the following manner. The
CDF fn(x) = xn looks much like a line for a large portion of the region
0 ≤ y = fn(x) ≤ 1. Since the y-axis represents probability here, with some
probability, a randomly chosen set of 20 points will fail to detect the CDF’s
deviation from linearity for n > 1.

For each number n of simulated plaques, 1 ≤ n ≤ 10, we performed a Monte
Carlo simulation to determine how often we should expect to see a linear CDF
when drawing N = 20 points randomly from each of the above distributions.
For each sample of 20 points, we computed the adjusted R2 of the least-squares
linear fit to the sample CDF. Examples of these are shown in Supplement Figure
B. For each n we performed this simulation 100 times. Figure 7 shows the
resulting CDF for adjusted R2 at each value of n.

This allows us to compute the p-value for various choices of null hypothesis.
For example, having chosen n, we imagine that all subject data was drawn from
the distribution for n plaques. We may then enquire as to the probability of

1. Chosing 8 samples each of twenty points each of which has adjusted R2

greater than or equal to the least observed adjusted R2 in the subject
data.

2. Chosing 8 samples each of twenty points such that the highest four ad-
justed R2 values are at least as large as the median of the adjusted R2 for
the subject data.

3. Choosing 8 samples of twenty points such that seven of these have adjusted
R2 at least as large as that of the second lowest observed R2 for the subject
data.

We use fmin(n), fmedian(n) and f7/8(n) to denote the fraction of simulations
for n plaques required in these three null hypostheses. We can then compute
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corresponding p-values as

pmin(n) = fmin(n)8

pmedian(n) =
8∑

i=4

(
8
i

)
fmedian(n)i(1− fmedian(n))8−i

p7/8(n) =
8∑

i=7

(
8
i

)
f7/8(n)i(1− f7/8(n))8−i

Plaque numbers that gave p < 0.005 for each method are given in the text.
Note that we have considered here null hypotheses where the number of

plaques is fixed. For example, pmin(5) is the probability that all adjusted R2

are at least as good as the lowest observed values if there are always 5 plaques.
One could also ask what this p-value is if there are always 5 or more plaques.
In order to make this question precise, we must assign specific probabilities to
the different possible plaque numbers, n = 5, 6, . . . . However, fmin(n) et al., are
nearly monotone, i.e., increasing n produces little or increase in fmin(n). As a
consequence, allowing mixed numbers of plaques produces little or no increase
in the resulting p-values.
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