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1 Full Mathematical Model 
We generalize the model we presented in Andrade et al.1, by including the effect of 
protease inhibitors (generation of non-infectious viruses) and a compartment of long-
lived infected cells. The purpose of the model is to study the characteristics of the second 
phase of viral load decay in the presence or absence of InSTI. In the model, we assume 
that target cells remain at an approximately constant level, T , during the first month of 
infection, an approximation that is commonly used1–3. Target cells are infected by 
infectious virus, Vi, at rate βTVi . The infection can be blocked by the activity of RTIs 
with effectiveness η, where η=1 corresponds to complete blocking of infection. These 
infected cells, I1, can be lost at rate δ1 (by degradation of HIV DNA intermediates or 
death) or can progress with provirus integration at rate k. We include the effect of an 
InSTI in blocking integration with efficacy ω. Cells with integrated provirus are assumed 
to be productively infected cells, I2, that die at rate δ2. Virions are produced by these cells 
at rate p per cell and are cleared from the circulation at rate c per virion. Protease 
inhibitors block the production of infectious virus VIi, and lead to production of non-
infectious virus VIni, with efficacy ε. Thus, we consider two classes of infected cells: I1, 
cells in which reverse transcription has occurred, and I2, cells after provirus integration, 
which are productively infected. 

The dynamics of long-lived cells are similar. Uninfected cells, M , are infected at rate 
β1MVi , then enter a stage with unintegrated provirus M1. These cells are lost at a rate δM1 
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and become productively infected cells, M2, at a rate k1. Finally, productively infected 
long-lived cells die at a rate δM2.  The effects of RTIs and InSTIs are modelled in a 
similar way to those in short-lived infected cells, with efficacy η1 and ω1, respectively. 
Protease inhibitors block production of infectious virus VMi, and lead to production of 
non-infectious virus VMni, with efficacy ε1. Thus, the total infectious virus Vi is given by 
VIi + VMi. Note that for clarity we separate the virus contributions from short- and long-
lived cells, VI = VIi+VIni and VM = VMi+VMni, respectively, although our results do not 
depend on this. In principle virus released from different cell types may be 
distinguishable based on the cell surface proteins the virions carry. The following system 
of differential equations describes these dynamics 

dI1
dt

= (1−η)βTVi −δ1I1 − k(1−ω)I1

dI2
dt

= k(1−ω)I1 −δ2I2

dM1

dt
= (1−η1)β1MVi −δM1M1 − k1(1−ω1)M1

dM2

dt
= k1(1−ω1)M1 −δM 2M2

dVIi
dt

= p(1−ε)I2 − cVIi

dVIni
dt

= εpI2 − cVIni

dVMi
dt

= (1−ε1)p1M2 − cVMi

dVMni
dt

= ε1p1M2 − cVMni    

(S.1) 

Redefining the variables so that Î1 = pI1 , Î2 = pI2 , M̂1 = p1M1 , M̂2 = p1M2 , T̂ = pβT  and
M̂ = p1β1M , we can re-write, without loss of generality, the previous system as

 

dÎ1
dt

= (1−η)T̂Vi −δ1Î1 − k(1−ω)Î1

dÎ2
dt

= k(1−ω)Î1 −δ2 Î2

dM̂1

dt
= (1−η1)M̂Vi −δM1M̂1 − k1(1−ω1)M̂1

dM̂2

dt
= k1(1−ω1)M̂1 −δM 2M̂2

dVIi
dt

= (1−ε)Î2 − cVIi

dVIni
dt

= ε Î2 − cVIni

dVMi
dt

= (1−ε1)M̂2 − cVMi

dVMni
dt

= ε1M̂2 − cVMni
  

(S.2) 
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Note that this redefinition of variables does not change the predicted dynamics of the 
system, but it allows the reduction of the number of parameters (in particular p and β), 
which are absorbed into the steady state conditions (see below). It is expected that these 
rates are different in short- and long-lived cells, but they do not contribute to the observed 
behavior of the viral load. 

Further, making the common assumption of quasi-steady state of the free virus, i.e., that 
the dynamics of free virus is much faster than that of Î2  and M̂2 , we have
Î2 ≈ c(VIi +VIni ) = cVI and M̂2 ≈ c(VMi +VMni ) = cVM , respectively. Moreover, with the same 
assumption and by adding VIi+VMi and VIni+VMni, we also have that 
Î2 (1−ε)+ M̂2 (1−ε1) ≈ c(VIi +VMi ) = cVi and Î2ε + M̂2ε1 ≈ c(VIni +VMni ) = cVni , respectively. Finally, we 
assume that ω=ω1, ε=ε1 and η=η1, which has been used in multiple previous studies 1–6 
(but see below for other assumptions). Putting all this together, one obtains 

Vi ≈
(Î2 + M̂2 )

c
(1−ε) = (VI +VM )(1−ε) . Thus, by defining V=VI+VM, we get the simplified 

system  

dÎ1
dt

= (1−η)(1−ε)T̂V −δ1Î1 − k(1−ω)Î1

dM̂1

dt
= (1−η)(1−ε)M̂V −δM1M̂1 − k1(1−ω)M̂1

dVI
dt

=
k
c
(1−ω)Î1 −δ2VI

dVM
dt

=
k1
c
(1−ω)M̂1 −δM 2VM

  

(S.3) 

The steady state of Eq. (S.3) before therapy, i.e., when ε=η=ω=0, with V =VI +VM , the 
pre-therapy viral load steady state, is 

 
T̂ = cδ2 (k +δ1)VI

kV
       &     M̂ =

cδM 2 (k1 +δM1)VM
k1V

Î1 =
cδ2

k
VI                   &      M̂1 =

cδM 2

k1

VM
  (S.4) 

 

2 Mathematical model without long-lived cells  
To study short term dynamics of viruses, say within the first 10-12 days, we can 
disregard long-lived cells 1. In this case, V=VI. The model in Eq. (S.3) simplifies to, 

dÎ1
dt

= (1−η)(1−ε)T̂V −δ1Î1 − k(1−ω)Î1

dV
dt

=
k
c
(1−ω)Î1 −δ2V   

(S. 5) 
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And the steady state before treatment is Î1 =
δ2cV
k

 and T̂ = δ2c(δ1 + k)
k

. Equation (S.5) with 

T̂  replaced by its steady-state value defines a linear system with characteristic equation 

π (λ) = −δ1 − k(1−ω)−λ( ) −δ2 −λ( )−δ2 (k +δ1)(1−η)(1−ε).   (S.6) 

Defining α=k(1-ω)+δ1 and θ = (δ2 −α)
2 + 4δ2 (k +δ1)(1−η)(1−ε)(1−ω) , we have, solving Eq. 

(S.6), the eigenvalues λ1,2= ½ (α + δ2 ± θ) associated with the eigenvectors: 

s1 =
−2cδ2 (k +δ1)(1−η)(1−ε)

k −α1 +δ2 +θ( )
1

"

#

$
$
$

%

&

'
'
'
, s2 =

−2cδ2 (k +δ1)(1−η)(1−ε)
k −α1 +δ2 −θ( )

1

"

#

$
$
$

%

&

'
'
'
.  

Thus, with V (0) =V =V0 , the solution of the system for V(t) after the start of treatment 
(t=0) has the form  

 V (t) = V0
2θ

Ae−λ1t

V1(t )
!"# $#

+
V0
2θ

Be−λ2t

V2 (t )
!"# $#

,    (S.7) 

where A=θ-α-δ2+2δ2ω and B= θ+α+δ2-2δ2ω  thus A+B=2θ, as it should be.  

With this solution, we can analyze the profile of viral load decay with and without InSTI. 
We first analyze under what conditions the A and B terms are positive. For the 
biologically relevant situation, θ will always be positive, and thus if A and B are both 
positive, we can observe two early phases of viral decay (phase 1a and 1b), if only one of 
them is positive, we will only observe one phase of decay (phase 1). 

The coefficient A
2θ

 will be positive if A>0 or, what is the same, θ>α+δ2(1-2ω). Defining 

the total drug effectiveness of a protease inhibitor and reverse transcriptase inhibitor as  
ξ, such that (1-ξ) = (1-ε)(1-η), we have that if A >0 then 

θ 2 > (α +δ2 − 2δ2ω)
2

(δ2 −α)
2 + 4δ2 (δ1 + k)(1−ξ )(1−ω) > (α +δ2 )

2 − 4(α +δ2 )δ2ω + 4δ
2
2ω

2

−2αδ2 + 4δ2 (δ1 + k)(1−ξ )(1−ω) > 2αδ2 − 4αδ2ω − 4δ
2
2ω(1−ω)

4δ2 (δ1 + k)(1−ξ )(1−ω) > 4αδ2 (1−ω)− 4δ
2
2ω(1−ω)

4δ2 (1−ω) (δ1 + k)(1−ξ )−α +δ2ω[ ] > 0

4δ2 (1−ω) ωδ2 − ξδ1 + k(ξ −ω){ }"# $% > 0
  

(S.8) 

Therefore, to have the value of A
2θ

 greater than zero, we need that ωδ2>ξδ1+k(ξ−ω) or

ω > ξ
(δ1 + k)
(δ2 + k)

. Moreover, as the parameter ω varies between 0 and 1, this condition implies 
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that 0≤ξ(δ1+k)≤δ2+k. On the other hand, to have B
2θ

 greater than zero, we need 

θ>2δ2ω-(α+δ2). But since (α +δ2 − 2δ2ω)2 = (2δ2ω −α −δ2 )2 , from the calculations above, we 

see that the condition ω > ξ
(δ1 + k)
(δ2 + k)

 is a lower bound on ω to have both, A
2θ

 and B
2θ

, 

greater than zero. However, B
2θ

 can be greater than zero even if that condition is not 

fulfilled. For example in the case when the parameter ξ goes to one, the value of B
2θ

 has 

two possible cases depending on the values of δ2 and α. If δ2>α, θ will asymptotically go 
to δ2-α; and then, B

2θ
→
δ2 −δ2ω
δ2 −α

. In the opposite case, i.e., when δ2<α, θ will go to α-δ2, 

and B
2θ

 will go to α −δ2ω
α −δ2

. These expressions are positive for any value of ω in 

0≤ω<1, regardless of the values for the parameters δ2 and α. Thus, when ξ approaches 1, 
B/(2θ) will be positive for any value of ω. 

 

In the scenario when w approaches one, the positivity of A
2θ

 and B
2θ

 will also depend on 

the values of δ2 and α. As before, if δ2>α, θ will go to δ2-α; then, the coefficient A
2θ

 goes 

to one and B
2θ

 goes to zero. In the opposite case θ approaches α-δ2; therefore, A
2θ

 will go 

to zero and B
2θ

 will go to one. Hence, to have both coefficients A
2θ

 and B
2θ

 greater than 

zero, besides the condition presented above as the lower bound on ω, we also need ω to 
be smaller than one. Otherwise, as the effectiveness ω approaches 1, phases 1a and 1b 
become just one observable phase.  

 

We can now turn our attention to the two cases of interest, namely therapy with and 
without the integrase strand transfer inhibitor, RAL. 

 

2.1 Raltegravir-containing therapy 

Based on the analysis of the previous section, in the case of RAL-combination therapy 

with RTIs, i.e., ε=0  and ξ=η , if η δ1 + k
δ2 + k
!

"
#

$

%
&<ω <1  the model predicts two early phases of 

decay in the viral load, with rates λ1 and λ2 (defined after S.6) after initiation of therapy 
(we call them phases 1a and 1b). Notice that in the case of RAL monotherapy, we have 
ξ=η=0. Therefore, the condition to have two phases of decay in the plasma viral load, 
0<ω<1, is always fulfilled. We notice also that as the effectiveness of RAL in the 
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combination is close to 1 (but still less than 1), the viral load decay rates λ1 and λ2 
approach δ2 and δ1, respectively. Therefore, if the effectiveness of RAL is very high, the 
model predicts that phase 1b of the viral load will be due to the loss of infected cells 
without integrated provirus at rate δ1. 

 
2.2 Therapy without raltegravir (i.e., just RTI and PI) 

In the case of an RTI-PI combination regimen without InSTI, i.e., ω=0, the coefficients A 
and B are A=θ-α-δ2 and B= θ+α+δ2. In this case B is always positive, but A is positive 
only if θ>a+d2. Using the same procedure as in (S.8), θ>α+δ2 if and only if ξ(δ1+k)<0. 
However, the parameters ξ,  k and δ1 are always positive, which implies that A is always 
negative. Notice, however, that even though B is always positive, θ has two asymptotic 
values as ξ approaches one. If δ2>(δ1+k), θ will asymptotically go to δ2-(d1+k) as ξ goes 
to one. In the opposite case θ will go (δ1+k)-δ2. Therefore, B

2θ
→

δ2
δ2 − (δ1 + k)

 and 

λ2 → (δ1 + k)
 
if δ2>(δ1+k), or B

2θ
→

(δ1 + k)
(δ1 + k)−δ2

with λ2 →δ2  in the opposite case, giving two 

possible scenarios for the rate of decay of the viral load during the first phase in the 
absence of RAL. That is, in the absence of RAL, the first phase decay rate could 
correspond to the loss of pre-integration infected cells or to the loss of productively 
infected cells, respectively. In any case, in the absence of raltegravir, we can’t observe  
an early second phase in the kinetics of viral load decline unless there is another source of 
virus, such as long-lived infected cells. Thus, phase 1b can only be seen in RAL-based 
regimens. 
 

3 Mathematical model with long-lived cells  
We now study the full initial model (Eq. S.3) with long-lived cells, which can generate 
the long-term slower decay (phase 2) observed in the data. We are interested in finding 
conditions to observe 2 or 3 phases of decay during the first 30 days of treatment. 

Using the steady state values for T̂  and M̂ , and using the fraction of virus produced by 

short-lived cells and long-lived cell, fI =
VI
V

   and fM =
VM
V

  , respectively, the 

characteristic equation of the linear system in Eq. (S.3) has the form 

π (λ) = (−α1 −λ)(−α2 −λ)(−δ2 −λ)(−δM 2 −λ)
−(1−η)(1−ε)(1−ω)(−α1 −λ)(−δ2 −λ)(k1 +δM1) fMδM 2
−(1−η)(1−ε)(1−ω)(−α2 −λ)(−δM 2 −λ)(k +δ1) fIδ2

,

  

(S.9) 

where α1=δ1+k(1-ω) and α2=δM1+k1(1- ω). Since the parameter fM should be very small 
(i.e., the second phase is only observed after the viral load has decayed more than 1 log10) 
we may assume that (-α2-λ)(-δM2-λ)(δM1+k)fIδ2>>(-α1-λ)(-δ2-λ)(δ1+k1)fMδM2. Using this 
assumption, we obtain an approximation of the characteristic equation (S.9) with the 
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form: π (λ) ≈ (−α1 −λ)(−α2 −λ)(−δ2 −λ)(−δM 2 −λ)− (1−η)(1−ε)(1−ω)(−α2 −λ)(−δM 2 −λ)(k +δ1) fIδ2 . 
This can be solved to obtain the following eigenvalues of the system in Eq. (S.3), 

λ1 =
α1 +δ2 +θ f

2

λ2 =
α1 +δ2 −θ f

2
λ3 = δM 2
λ4 =α2    

(S.10)
 

With θ f = (δ2 −α1)
2 + 4k T̂

c
(1−η)(1−ε)(1−ω) fI . These eigenvalues are associated with the 

eigenvectors, 

s1 =
−2T̂ (1−η )(1−ε )
−α1+δ2+θ f

0
1
0

"

#

$
$
$

%

&

'
'
'
, s2 =

−2T̂ (1−η )(1−ε )
−α1+δ2−θ f

0
1
0

"

#

$
$
$

%

&

'
'
'
, s3 =

T̂ (1−η )(1−ε )(δ2−δM 2 )

−kT̂
c
(1−η )(1−ε )(1−ω )+(α1−δM 2 )(δ2−δM 2 )

0

kT̂
c
(1−η )(1−ε )(1−ω )

−kT̂
c
(1−η )(1−ε )(1−ω )+(α1−δM 2 )(δ2−δM 2 )

1

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

, s4 =

T̂ (1−η )(1−ε )(α2−δ2 )

−kT̂
c
(1−η )(1−ε )(1−ω )+(α1−α2 )(α2−δ2 )

−
c(α2−δM 2 )
k (1−ω )

kT̂
c
(1−η )(1−ε )(1−ω )

−kT̂
c
(1−η )(1−ε )(1−ω )+(α1−α2 )(α2−δ2 )

1

"

#

$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'

 

Thus, with VM +VI =VM (0)+VI (0) =V0 , the approximate solution for V(t)=VI(t)+VM(t) in Eq. 
(S.3) has the form, 

V (t) ≈V0C1e
−λ1t

V1(t )
!"# $# +V0C2e

−λ2t

V2 (t )
!"# $# +V0C3e

−λ3t

V3 (t )
!"# $# +V0C4e

−λ4t

V4 (t )
!"# $# ,   (S.11) 

with coefficients, 

C1 =1− (C2 +C3 +C4 ),

C2 =
α1 −δ2 +θ f

2θ f

×

fI −
α1 −δ2 +θ f

2(δ1 + k)(1−η)(1−ε)
−
fM (δ2 −δM 2 )(α1 −δ2 −θ f )− 2δ2 (δ1 + k) fI (1−η)(1−ε)(1−ω)#$ %&
2 (α1 −δM 2 )(δ2 −δM 2 )+δ2 (δ1 + k) fI (1−η)(1−ε)(1−ω)[ ]

−
δ2 fM (1−ω) (δ2 −α2 )(δ2 −δM 2 )(α1 −δ2 −θ f )− 2δ2 (δ1 + k) fI (1−η)(1−ε)(1−ω)(α1 − 2α2 +3δ2 − 2δM 2 +θ f )#$ %&

2 (α1 −α2 )(δ2 −α2 )(α1 −δM 2 )(δ2 −δM 2 )+ δ2 (δ1 + k) fI (1−η)(1−ε)(1−ω)[ ]2#
$

%
&

#

$

'
'
'
'
'
'

%

&

(
(
(
(
(
(

,

C3 = fM
(α1 −δM 2 )(α2 −ωδM 2 )(δ2 −δM 2 )

(α2 −δM 2 ) (α1 −δM 2 )(δ2 −δM 2 )−δ2 (δ1 + k) fI (1−η)(1−ε)(1−ω)[ ]
,

C4 = fM
δM 2 (α1 −α2 )(δ2 −α2 )(1−ω)

(δM 2 −α2 ) (α1 −α2 )(δ2 −α2 )−δ2 (δ1 + k) fI (1−η)(1−ε)(1−ω)[ ]
.

(S.12) 

We found numerically that V1(t) and V2(t) in Eq. (S.11) have approximately the same 
decay pattern as predicted for the corresponding components in Eq. (S.7).  
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To analyze different scenarios for the virus produced by the long-lived cells, we assume 
that ε and η are close to one. In this case, the coefficients C3 and C4 approach 
asymptotically fM

α2 −ωδM 2
α2 −δM 2

 and fM
δM 2 (1−ω)
δM 2 −α2

, respectively. Notice that since VM(0)= V0fM, 

the asymptotic values of C3 and C4 are proportional to the total contribution of long-lived 
infected cells to viral load, VM(0). In the presence of RAL, i.e., ω>0, if α2>δM2, the 
asymptotic value for C3 is positive and C4 is negative. On the other hand, if α2<δM2, then 
C4 is positive and C3 is positive if ω >

δM1 + k1
δM 2 + k1

. Thus in the presence of RAL if δM1+k1(1- 

ω)>δM2 three phases of decay are possible: the first two phases with the same rates as in 
the simplified model without long-lived cells (S.7 above); and the third phase with a 
decay rate of δM2. On the other hand, if δM1+k1(1-ω)<ωδM2 four phases of decay are 
possible, where the first two are the same as before, and the other two have rates 
δM1+k1(1- ω) and δM2. Notice, however, that in this case, if δM2=δ2, only three phases of 
decay are seen, with the last decay rate equal to δM1+k1(1-ω) (see next section for details). 

In the absence of RAL, i.e., when ω=0, C1 is always negative and C2 is positive 
(equivalent to B

2θ
in section 1.2). This means that there is only a phase 1, which is not 

subdivided into phase 1a and 1b. In addition, for ω=0, only one of the coefficients C3 or 
C4 is greater than zero, and we will have only one phase of decay later in treatment. If 
δM1+k1>δM2, then C3 is positive and C4 is negative, and the second phase decay rate is δM2. 
If δM1+k1<δM2, then C3 is negative and C4 is positive, and the second phase decay rate is 
δM1+k1. Thus, in the absence of RAL only two phases of decay will be seen over the first 
30 days of treatment. 

 

3.1 Model assuming δM2 = δ2 

The results of our simulations and fits (see main text and section 4.4 below), indicated 
that a scenario with δM2 = δ2 is the most parsimonious to explain the data. In this case, we 
can add the equations for VI(t) and VM(t) in Eq. (S.3), obtaining the following system of 
differential equations 
 

dÎ1
dt

= (1−η)(1−ε)T̂V −δ1Î1 − k(1−ω) Î1

dM̂1

dt
= (1−η)(1−ε)M̂V −δM1M̂1 − k1(1−ω)M̂1

dV
dt

=
k
c
(1−ω) Î1 +

k1
c
(1−ω)M̂1 −δ2V   

(S.13)

 

One still expects that before therapy, the contribution to viral load from the long-lived 
infected cells ( M̂1 ) is a small fraction of the total virus. Indeed, at steady state before 

therapy VM
VI

=
k1M̂1

kÎ1
, and as before fI =

VI
V

 and fM =
VM
V

. We can then calculate the relative 
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fraction of infection events leading to short-lived productively infected cells as 
T̂V

T̂V + M̂V
=

δ1 + k

δ1 + k + (δM1 + k1)
kfM
k1 f I

, and the fraction of infection events leading to long-lived 

infected cells as 1− T̂V
T̂V + M̂V

. 

 
We now solve the system (S.13). With V0 the initial value of the viral load, and using the 
same assumptions and procedure of the previous section, the solution for V(t) in equation 
(S.13) has the form, 

V (t) ≈V0 C1ae
−
(α1+δ2−θ f )

2
t
+C1be

−
(α1+δ2+θ f )

2
t
+C2e

− δM 1+k1(1−ω )[ ]t
#

$
%
%

&

'
(
(
,

C1a =
α1 −δ2 +θ f

2θ f

1−
δ2 (1− fI )(1−ω)(α1 − 2α2 +δ2 +θ f )

2(α1 −α2 )(δ2 −α2 )− 2δ2 (δ1 + k) fI (1−η)(1−ε)(1−ω)
−

α1 −δ2 −θ f

2(δ1 + k)(1−η)(1−ε)
#

$
%

&

'
(,

C1b =1−C1a −C2,

C2 = (1− fI )
δ2 (α1 −α2 )(1−ω)

(α1 −α2 )(δ2 −α2 )−δ2 (δ1 + k) fI (1−η)(1−ε)(1−ω)
.

(S.14) 

In the case of InSTI-free therapy (w=0) we have that C1b is negative. In this scenario the 
first phase decay rate depends on the values of δ2 and α1. Phase two begins when the viral 
load, V(t), goes below V0C2 and its decay rate is δM1+k1(1-ω). Finally, we define this 

transition time as the time t12 when C1ae
−
(α1+δ2−θ f )

2
t12
=C2e

− δM 1+k1(1−ω )[ ]t12 , which leads to 

t12 =
log(C1a|{ω=0} )− log(C2|{ω=0} )
(δ1 + k +δ2 −θ f )

2
− (δM1 + k1)

.

   

(S.15) 

 

3.2 Model assuming δM2 = δ2 and η=ε=1 

To gain more insight into the model defined in S.13, we now assume η=ε=1, that is 
perfect efficacy of the non-InSTI drugs (the corresponding fits under this assumption did 
not present significant differences with the fits presented in the main text. Compare Table 
C and D). The model in equation (S.13) is simplified to the following ordinary 

differential equation system: dÎ1
dt

= −δ1Î1 − k(1−ω)Î1 , dM̂1

dt
= −δM1M̂1 − k1(1−ω)M̂1  and 

dV
dt

=
k
c
(1−ω)Î1 +

k1
c
(1−ω)M̂1 −δ2V . With V0 the initial value of the viral load when the 

treatment starts, the exact solution for V(t) has the form, 
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V (t) =V0 C1ae
−δ2t +C1be

− δ1+k (1−ω )[ ]t +C2e
− δM 1+k1(1−ω )[ ]t"

#
$
%,

C1a =1−C1b −C2,

C1b = fI
δ2 (1−ω)

δ2 − δ1 + k(1−ω)[ ]
,

C2 = (1− fI )
δ2 (1−ω)

δ2 − δM1 + k1(1−ω)[ ]
.

  

(S.16) 

The coefficients C1a, C1b and C2 represent the fraction of viral load at time 0 for phases 1a, 
1b and 2, coming from short-lived cells after integration, and short- and long-lived cells 
before integration, respectively. The rates of decay of these phases are δ2, δ1+k(1-ω) and 
δM1+k1(1-ω) day-1, respectively. We define the transition from one phase to the next as 
occurring when the viral load of the two phases are equal, that is the transition from 
phase 1a to phase 1b occurs when the viral load due to the decay of C1a is the same as the 
viral load due to the decay of C1b.  

The dynamics of the viral load second phase is defined by the term (1− fI )σe− δM 1+k1(1−ω )[ ]t  with

σ =
δ2 (1−ω)

δ2 − δM1 + k1(1−ω)[ ]
 according to equation S.16. With this model the ratio of the viral 

load in the combination treatment (with RAL) to the viral load in the quad treatment 

(without RAL) during the second phase has the form σω>0e
− δM 1+k1(1−ω )[ ]t

σω=0e
− δM 1+k1[ ]t

. In the case when 

δ2>>δM1+k1, we can simplify σ, and this ratio is simply (1−ω)eωk1t . 

 

4 Fitting Procedure 
Before fitting the data with the models described above, we explored the range of 
possible values for the parameters by simulation. 

4.1 Initial Simulations 

We first explored the possible range of values for the new parameters in our model, δM1, 
δM2 and k1, keeping fixed the remaining parameters based on estimates from previous 
studies1,7,8. Specifically we performed 64,000 (40 values for each parameter) simulations 
of the model in equation (S.3) for different values of these parameters. We looked for the 
number of cases out of those 64,000 where the viral load decay under RAL-based and 
RAL-free regimes fulfilled the following criteria (assuming that long-lived cells pre-
integration die slower than when they become productively infected, i.e., δM1<δM2): (1) 
the viral load level at the start of the second phase under RAL is decreased by 70%-95% 
in relation to the corresponding viral load without RAL; (2) the ratio of slopes of the 
second phase of the viral load under RAL over the case without RAL is in the range 0.5-
1; (3) slopes of the second phase in both treatment scenarios are between 0.02 day-1 and 
0.1 day-1; and (4) the viral load at 30 days is greater than 10 copies/mL for any type of 
treatment. These four criteria formalize the observations made by us and others regarding 
the decay of viral load in the presence of RAL. The fixed parameter values used were: 
VI(0)/V(0) = 0.98, k=2.6 day-1, c=23 day-1, δ1=0.15 day-1 and V(0)= 4.6 based on previous 
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studies1,7,8. For RAL-combination treatment we used η=0.95, ε=0 and ω=0.94, and for 
quad-based treatment η=ε=0.95 and ω=0. We simulated 40 different values each of k1, 
δM1 and δM2 in the ranges (0.005-1 day-1), (0.01-0.15 day-1) and (0.04-1 day-1), 
respectively. We found that these conditions are only satisfied for small values of δM1 
(<0.07 day-1) and k1 (<0.08 day-1), along with values of δM2 greater than 0.15 day-1 (Figure 
A). These results gave us starting guesses for these parameters in the viral load fits. 

4.2 Fixed Parameters 

As we have discussed before1, the viral load decay kinetics are not sensitive to the actual 
values of η and ε, when these are greater than ~90% (see section 4.4). Therefore, we kept 
the efficacy of RTIs and PIs in the model fixed at η=ε=0.95. To further simplify the 
fitting procedure and obtain convergence, we also fixed the efficacy of RAL at their 
estimated population values in our previous study, i.e., ω=0.94 for RAL-combination 
therapy and ω=0.997 for RAL-monotherapy1; and used a value of 2.6 day-1 for the 
integration rate, k, as before1. In our initial analyses of the two phases of decay in the 
quad-regimen, using a two-exponential function, we found that the coefficient for the first 
phase was 0.98×V(0). This should correspond to the fraction of total virus produced from 
activated-short-lived infected cells, VI(0)/V(0), and we used this value as an estimate of 
this initial condition. Finally, we fixed the value of virus clearance, c, at 23 day-1 (8). 

4.3 Fitting details 

We were interested in the case where M1 and M2 represent long-lived cells with loss rates 
smaller than those for I1 and I2. In addition, one expects that productively infected cells 
are lost faster than infected cells with unintegrated viral DNA. Therefore, we used initial 
guesses for the fitting procedure such that δM1<δM2<δ1<δ2. In addition, Sedaghat et. al. 
suggested based on theoretical analysis of this type of model that δM1+k1>δM2 4,6. Putting 
all this together, we used as initial guesses of the fitting procedure δM2= 0.05 day-1, 
assuming it corresponds to the slope of the second phase in the viral load decline 3, δM1 = 
0.03 day-1, so that δM1<δM2 and k1 =2.6 day-1, assuming the integration rate was similar in 
short- and long-lived infected cells. For the parameters δ1 and δ2 we used as initial 
guesses our previous estimates of 0.15 day-1 1 and 1 day-1 7. In all cases we used a value of 
0.01 as the initial guess for the variance of the random effects.  

The estimation procedure converged to one of two different scenarios, either δM2>δ1 or 
δM2<δ1 (see two first rows of Table A). Surprisingly, the case with δM2>δ1 had better 
statistical support (ΔAIC=19.3 Table A), contrary to our initial assumption used for the 
starting guess of the fitting procedure. In addition, in this case the estimate of δ1 was 
similar to our previous estimate analyzing the early viral load decay until day 10 1. 
Moreover we found that this case, also contrary to our initial assumptions, resulted in 
δM1+k1<δM2 (Table A), which implies that the model predicts three phases of viral decay 
(1a, 1b and 2), with a phase 2 rate of δM1+k1(1-ω). Still, it was difficult to estimate both 
δM1 and k1, since when one increased the other tended to decrease. Therefore, we next 
performed the fitting procedure for different fixed values of δM1. 

Based on these initial results, we re-did the fits fixing δM1 with values equal to 0.1, 0.05, 
0.02, 0.01 and 0.005 day-1. The best fits were obtained with δM1=0.01 day-1 or δM1=0.02 
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day-1 based on AIC (see Table B). The value of k1 estimated for all cases was small 
compared to k, with values smaller than 0.05 day-1. These estimates are consistent with 
the results of our exploration of parameter space by simulation (see above). Finally, the 
estimate of δM2 for the best model was ~0.90 day-1, very close to the estimated value of 
δ2=0.86 day-1. Thus, we refit the data with the hypothesis that the “long-lived cells” may 
have a slow decay/integration in the pre-integration state (M1), but after becoming 
productively infected (M2), they are lost at rates equal to activated-short-lived cells, i.e., 
assuming δM2=δ2 (see section 3.1 above). Under this assumption, again either δM1=0.01 or 
0.02 day-1 fit the data best (see Table C). In any case, the population estimates for δ1 and 
δ2 are 0.24 day-1 and 0.85 day-1, respectively. As expected, the estimate of the rate of 
integration for the “long-lived cells”, k1, depended on the value of δM1. For the case of 
δM1= 0.01 day-1, k1 was estimated to be 0.037 day-1, and for δM1= 0.02 day-1 k1 was 
estimated as 0.017 day-1. These values correspond to a pre-integration half-life for long-
lived cells between ~15 and ~19 days, respectively (See Figs. B-D). We also tested in our 
mixed effects model if the value of k1 depended on the type of treatment (RAL-free vs. 
RAL-containing) and found that it was not significantly different (p>0.26). We 
performed the same fitting procedure assuming 100% efficacy for RTIs and PIs (see 
section 3.2), and obtained very similar results (Table D). 

4.4 Testing additional assumptions 

We further tested three assumptions made in our analyses. First, we assumed that the 
efficacy of RTIs and PIs were high, with values of η and ε equal to 0.95. Second, we 
assumed that the efficacies of the drug regimen in blocking specific steps of the viral 
lifecycle were the same in short-lived (I1) and long-lived (M1) cells. Third, we assumed 
that the level of target cells remains constant at approximately the pre-therapy steady 
state during the time of analyses (~30 days). 

With respect to the first issue, we performed simulations of the model in equation S.13 
using the best estimates of the previous section but using lower values of η and ε equal to 
0.9 and 0.8. These changes resulted in minor differences in the viral load profiles, which 
are hardly noticeable (Fig. F). 

Regarding the second issue, we performed simulations of the following generalized 
model of equation S.3, with different drug efficacy for reverse transcriptase and integrase 
inhibitors for cells with short (η, ω) or long integration (η1, ω1): 

dÎ1
dt

= (1−η)(1−ε)T̂V −δ1Î1 − k(1−ω)Î1

dM̂1

dt
= (1−η1)(1−ε)M̂V −δM1M̂1 − k1(1−ω1)M̂1

dVI
dt

=
k
c
(1−ω)Î1 −δ2VI

dVM
dt

=
k1
c
(1−ω1)M̂1 −δM 2VM

  

(S.17) 

We used the best estimates of the previous section keeping η=0.95 but changing the value 
of η1 to 0.9 and 0.85. Fig. G(a) shows that the viral profile is not significantly different by 
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changing η1. We also repeated the procedure presented in section 4.1, to explore the 
parameter space by simulation under biologically observed constraints, but using 
equation S.17 and narrowing the set of values for the reduction of the second phase by 
raltegravir between 85-95% since the reduction of the viral load second phase is about 
90% in patients under RAL compared to those under treatment without RAL, fixing 
ω=0.94 and scanning the value of ω1 from 0.5 to 1. The purpose of the simulation was to 
see if it was possible to obtain values of δM2 smaller than δM1+k1 for some values of w1 for 
the criteria defined in section 4.1, i.e. if it was possible to find a different explanation for 
the rates of viral decay than the one presented in the main text. Fig. G(b) shows that that 
even allowing ω1 to vary, the values of δM2 have to be greater than δM1+k1 as obtained by 
our original analysis. Interestingly, the mode of ω1 was 0.93 as depicted in Fig. G(b), 
indicating that our assumption of ω~ω1 is good. 

In relation to the third issue, we used a generalized model of equation S.1 including the 
dynamics of target cells, T and M. We assume target cells T are produced at constant rate 
λ die at rate d, and become infected at rate β. We assume target cells M have the same 
dynamics but with production and infection rates λ1 and β1. For simplicity, we assumed 
the same d, but this has little influence on the dynamics over the short term studied. 
Therefore, we included the following two equations in the model presented in equation 
(S.1): 

dT
dt

= λ − dT − (1−η)βTVi

dM
dt

= λ1 − dM − (1−η)β1MVi

  

(S.18)

 

Redefining variables as before, so that T̂ = pβT , M̂ = p1β1M , λ̂ = pβλ  and λ̂1 = p1β1λ1 , we can 
re-write model S.13 adding two equations for the target cells, obtaining the following 
system: 

dT̂
dt

= λ̂ − dT̂ − (1−η)(1−ε)βT̂Vi

dM̂
dt

= λ̂1 − dM̂ − (1−η)(1−ε)β1M̂Vi

dÎ1
dt

= (1−η)(1−ε)T̂V −δ1Î1 − k(1−ω)Î1

dM̂1

dt
= (1−η)(1−ε)M̂V −δM1M̂1 − k1(1−ω)M̂1

dV
dt

=
k
c
(1−ω)Î1 +

k1
c
(1−ω)M̂1 −δ2V

  

(S.19) 

We simulated equations (S.19) with the values of the best fit in Table C, using the steady 
state in the absence of treatment as initial conditions, and choosing values for d equal to 
0.1, 0.01 and 0.001 day-1 and values for β and β1 equal to 10-8, 10-7, 10-6 and 10-5 ml day-1. 
In Fig. H, we plot the comparison of the viral load profiles predicted by model S.13, 
assuming constant target cells, with respect to the model in equation S.19, assuming 
variable target cells. The figure clearly shows that for the 48 cases (3 values of d × 4 
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values of β × 4 values of β) simulated there is no significant difference in the viral load 
profiles by assuming constant (solid lines) or variable (dashed lines) target cells during 
the initial 50 days of treatment.  

Each of the assumptions presented above are commonly made in analyzing viral 
dynamics, and our results here justify that indeed they do not lead to relevant changes in 
our fitting results.  
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5 Supplementary Figures 

 

Figure A. Distributions of the values of k1, δM1 and δM2 where the viral load under 
RAL-based and RAL-free regimes satisfy biological criteria. These criteria are 
(assuming δM1 < δM2): (1) the second phase under RAL starts at a viral load level that is 
lower than the start of the second phase in RAL-free regimens by 70%-95%; (2) the ratio 
of slopes for the second phase decay of the viral load under RAL over the case without 
RAL is in the range 0.5-1; (3) slopes of the second phase in both treatment scenarios are 
in the range 0.02 day-1 to 0.1 day-1; and (4) the viral load at 30 days is greater than 10 
copies/mL for any type of treatment. We fixed the values of the following parameters: 
VI(0)/V(0) = 0.98, k=2.6 day-1, c=23 day-1 δ1=0.15 day-1 and V(0) = 4.6 based on previous 
studies 1,7,8. For RAL-combination treatment we used η=0.95, ε=0 and ω=0.94, and for 
quad-based treatment η=ε=0.95 and ω=0. We simulated for 40 different values each of k1, 
δM1 and δM2 in the ranges (0.01-1 day-1), (0.005-0.15 day-1) and (0.04-1 day-1), 
respectively, for a total of 64,000 parameter sets. 
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Figure B. Individual fits for the quad-based therapy data assuming δ2=δM2 and δM1=0.02 
per day in equation (S.3) (rewritten in equation S.13). Circles represent HIV-RNA 
measurements; solid lines represent best fits from model. 
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Figure C. Individual fits to the ACTG5249s-RAL-combination therapy data assuming 
δ2=δM2 and δM1=0.02 per day in equation (S.3) (rewritten in equation S.13). Circles 
represent HIV-RNA measurements, solid lines represent best fits from model. 
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Figure D. Individual fits to RAL monotherapy data assuming δ2=δM2 and δM1=0.01 per day per day in equation (S.3) (rewritten in 
equation S.13). Circles represent HIV-RNA measurements, solid lines represent best fits from model. White circles denote censored 
data
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Figure E. Transition between phase 1 and phase 2 in the quad-therapy data. As the combined 
efficacy of RTI and PI (ξ) increases, the A. time of transition and B. viral load at the time of 
transition is reduced (see equation S.15).  
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Figure F. Viral Load decay for different values of η and ε. Solid lines, dashed lines and 
dotted lines present the cases of the model using estimates for the best fits of the model in 
equation S.13 to the data, but for the cases η=ε=0.95, η=ε=0.9 and η=ε=0.8, respectively. There 
was not significant difference in the viral load profiles. 
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Figure G. A. Viral load decline using best fits presented in section 4.4 but using the model in 
equation S.17, assuming η=0.95. Solid red and blue lines present simulations for RAL-
containing and RAL-free regimens, assuming η1=0.95. Dashed light red and light blue present 
the same respective simulations but assuming η1=0.9 and 0.8. No significant differences are 
observed by changing η1. B. Simulations using the same criteria and assumptions presented in 
Fig. A, but using the model in equation S.17 and narrowing the set of values for the reduction of 
the second phase by raltegravir between 85-95%, fixing ω=0.94 and changing the value of ω1 
from 0.5 to 1. The figure presents that to have curves similar to the data even by changing ω1, 
the values of δM2 still has to be greater than δM1+k1 as obtained by our analysis.  
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Figure H. Viral load decline assuming that target cells are not constant. Solid lines present 
the predicted viral load decline from the best fit parameters in model S.13 (constant target cells) 
to the data for each treatment case: RAL-free (blue) or RAL-containing regimens (red). Dashed 
light-blue and light-red lines present the 48 cases simulating equations S.19 (variable target 
cells) choosing values for d equal to 0.1, 0.01 and 0.001 day-1, and values for β and β2 equal to 
10-8, 10-7, 10-6 and 10-5 ml day-1. There is no significant difference in the viral load profiles by 
assuming constant or variable target cells during the initial 50 days of treatment.  
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6 Supplementary Tables 
 

Table A. Population parameter estimates of fitting the model in equation (S.3) to the three 
sets of data simultaneously. The following parameters were fixed: fI = 0.98, k=2.6 day-1 and 
c=23 day-1. For RAL+RTI we used η=0.95, ε=0 and ω=0.94; for RTI+PI, η=ε=0.95 and ω=0.  

Estimated Parameters 

-2log(L) AIC ΔAIC  k1 
[day-1] 

δ1 
[day-1] 

δ2 
[day-1] 

log10 V0 
[copies 

ml-1] 

δM1 
[day-1] 

δM2 
[day-1] 

0.023 
(0.02) 

0.25 
(0.04) 

0.85 
(0.04) 

4.81 
(0.07) 

0.01 
(0.006) 

0.99 
(1.4) 29.16 53.16 0 

0.02 
(0.01) 

0.99 
(3e-5) 

0.83 
(0.04) 

4.80 
(0.07) 

0.02 
(0.01) 

0.22 
(0.03) 48.46 72.46 19.3 
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Table B. Population parameter estimates of fitting the model in equation (S.3) to the three 

sets of data simultaneously, assuming δM1 fixed. The following parameters were fixed fI = 
0.98, k=2.6 day-1 and c=23 day-1. For RAL+RTI we used η=0.95, ε=0 and ω=0.94; for RTI+PI, 

η=ε=0.95 and ω=0.  
Estimated Parameters 

Fixed 
Parameters -2log(L) AIC ΔAIC k1 

[day-1] 
δ1 

[day-1] 
δ2 

[day-1] 

log10 V0 
[copies 

ml-1] 

δM2 
[day-1] 

6e-5 
(7e-5) 

1.46 
(1.4) 

0.84 
(0.04) 

4.81 
(0.07) 

0.2 
(0.03) δM1=0.1  63.98 85.98 36.64 

0.02 
(0.03) 

0.99 
(NaN) 

0.83 
(0.03) 

4.79 
(0.07) 

0.23 
(0.03) δM1=0.05 50.82 72.82 23.48 

0.01 
(0.01) 

0.23 
(0.04) 

0.86 
(0.04) 

4.81 
(0.07) 

0.98 
(1.4) δM1=0.02 28.45 50.45 1.11 

0.038 
(0.02) 

0.24 
(0.04) 

0.86 
(0.04) 

4.80 
(0.07) 

0.90 
(1.1) δM1=0.01 27.34 49.34 0 

0.05 
(0.02) 

0.27 
(0.04) 

0.85 
(0.04) 

4.80 
(0.07) 

0.99 
(1.4) δM1=0.005 35.48 57.48 8.14 
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Table C. Population parameter estimates of fitting the model in equation (S.3) to the three 
sets of data simultaneously, assuming δM1 fixed and δM2=δ2 (rewriten in equation S.13). The 

following parameters were fixed fI = 0.98, k=2.6 day-1 and c=23 day-1. For RAL+RTI we used 
η=0.95, ε=0 and ω=0.94; for RTI+PI, η=ε=0.95 and ω=0.  
Estimated Parameters 

Fixed 
Parameters -2log(L) AIC ΔAIC  k1 

[day-1] 
δ1 

[day-1] 
δ2 

[day-1] 

log10 V0 
[copies 

ml-1] 

δM1 
[day-1] 

5e-5 
(6e-5) 

0.23 
(0.04) 

0.85 
(0.03) 

4.8 
(0.07) 

0.0213 
(0.007)  24.75 46.75 2.47 

0.005 
(0.007) 

0.23 
(0.04) 

0.86 
(0.04) 

4.81 
(0.07) - δM1=0.05 73.76 91.76 47.48 

0.005 
(0.007) 

0.23 
(0.04) 

0.86 
(0.03) 

4.81 
(0.07) - δM1=0.03 36.97 54.97 10.69 

0.017 
(0.01) 

0.23 
(0.04) 

0.85 
(0.03) 

4.80 
(0.07) - δM1=0.02 26.28 44.28 0 

0.037 
(0.02) 

0.24 
(0.04) 

0.85 
(0.03) 

4.80 
(0.07) - δM1=0.01 26.87 44.87 0.59 

0.048 
(0.02) 

0.25 
(0.04) 

0.84 
(0.03) 

4.80 
(0.07) - δM1=0.005 28.23 46.23 1.95 
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Table D. Population parameter estimates of fitting the model in equation (S.3) to the three 
sets of data simultaneously, assuming δM1 fixed, δM2=δ2  and 100% efficacy for RTIs and 
PIs (with solution shown in equation S.16). The following parameters were fixed fI = 0.98, 
k=2.6 day-1 and c=23 day-1. For RAL+RTI we used η=1, ε=0 and ω=0.94; for RTI+PI, η=ε=1 

and ω=0.  
Estimated Parameters 

Fixed 
Parameters -2log(L) AIC ΔAIC  k1 

[day-1] 
δ1 

[day-1] 
δ2 

[day-1] 

log10 V0 
[copies 

ml-1] 

δM1 
[day-1] 

0.06 
(0.04) 

0.22 
(0.04) 

0.84 
(0.03) 

4.8 
(0.07) 

0.004 
(0.008)  26.74 46.74 3.54 

0.0004 
(0.0008) 

0.19 
(0.04) 

0.86 
(0.03) 

4.81 
(0.07) - δM1=0.05 72.39 90.39 47.19 

0.018 
(0.01) 

0.22 
(0.05) 

0.85 
(0.03) 

4.81 
(0.07) - δM1=0.03 39.68 57.68 14.48 

0.014 
(0.01) 

0.22 
(0.04) 

0.85 
(0.03) 

4.80 
(0.07) - δM1=0.02 25.20 43.20 0 

0.040 
(0.02) 

0.21 
(0.04) 

0.85 
(0.03) 

4.80 
(0.07) - δM1=0.01 25.53 43.53 0.33 

0.043 
(0.02) 

0.23 
(0.04) 

0.84 
(0.03) 

4.80 
(0.07)  δM1=0.005 28.00 46.00 2.8 

 
  



 27 

Table E. Individual parameter estimates. Rows with patient IDs from P202 to P212 present 
the best individual estimates for individuals under quad-regimen. Rows with patient IDs from 

Pat1 to Pat32 present the best individual estimates for individuals under RAL-combination 
therapy. Rows with patient IDs from M1 to M100 present the best individual estimates for 

individuals under RAL-monotherapy.  All fits assumed δ2= δM2 and δM1=0.02 day-1 (equation 
S.3, rewritten in S.13).  

 

Patient-
ID 

Mode Mean STD 

log10  
δ1 k1 δ2 

log10 
V0 

δ1 k1 δ2 
log10  

δ1 k1 δ2 V0 V0 

P202 4.98 0.23 0.052 0.79 4.98 0.35 0.05 0.81 0.07 0.34 0.02 0.1 

P204 4.4 0.22 0.052 1.14 4.39 0.27 0.045 1.13 0.07 0.2 0.02 0.11 

P205 5.83 0.23 0.034 0.99 5.8 0.3 0.024 0.96 0.08 0.26 0.02 0.13 

P206 5.99 0.26 0.092 0.93 5.96 0.34 0.085 0.9 0.07 0.31 0.01 0.12 

P207 4.66 0.25 0.003 1 4.66 0.34 0.004 1.01 0.06 0.46 0 0.12 

P210 5.31 0.24 0.005 0.63 5.33 0.38 0.006 0.67 0.08 0.36 0.01 0.11 

P211 4.91 0.21 0.114 0.94 4.88 0.28 0.107 0.91 0.07 0.26 0.02 0.1 

P212 4.46 0.28 0.006 0.93 4.46 0.47 0.006 0.92 0.07 0.79 0.01 0.15 

Pat1 4.92 0.11 0.012 0.75 4.93 0.11 0.021 0.77 0.06 0.04 0.03 0.1 

Pat2 4.5 0.15 0.017 0.8 4.51 0.15 0.076 0.81 0.06 0.04 0.13 0.1 

Pat5 4.73 0.18 0.013 1.2 4.73 0.19 0.031 1.21 0.07 0.05 0.06 0.16 

Pat6 6.02 0.34 1.498 0.96 6.01 0.45 1.41 0.92 0.07 0.33 0.27 0.12 

Pat13 4.72 0.25 0.019 0.64 4.72 0.33 0.053 0.63 0.06 0.22 0.09 0.08 

Pat15 5.07 0.11 0.012 0.88 5.07 0.11 0.027 0.88 0.07 0.04 0.04 0.12 

Pat16 4.5 0.11 0.022 0.78 4.5 0.11 0.074 0.78 0.06 0.04 0.12 0.1 

Pat26 4.57 0.12 0.015 0.86 4.56 0.12 0.048 0.86 0.07 0.04 0.08 0.12 

Pat27 4.51 0.2 0.017 0.86 4.53 0.22 0.127 0.89 0.07 0.06 0.32 0.12 

Pat28 4.89 0.37 0.017 0.84 4.87 0.54 0.03 0.81 0.06 0.41 0.05 0.09 

Pat32 5.05 0.18 0.016 0.75 5.03 0.21 0.074 0.72 0.07 0.12 0.22 0.11 

M1 4.01 0.31 0.017 1.03 3.99 0.46 0.1 1.01 0.09 0.4 0.36 0.12 

M2 4.43 0.61 0.017 0.78 4.41 0.8 0.084 0.77 0.08 0.43 0.21 0.07 

M4 3.9 0.3 0.017 0.83 3.89 0.42 0.097 0.82 0.09 0.39 0.27 0.11 

M6 4.32 0.31 0.017 0.95 4.31 0.43 0.154 0.95 0.09 0.44 0.7 0.11 

M7 4.78 0.15 0.017 0.73 4.78 0.17 0.113 0.74 0.1 0.14 0.36 0.1 

M8 4.39 0.18 0.017 0.66 4.39 0.25 0.082 0.67 0.09 0.27 0.2 0.08 

M10 4.4 0.74 0.017 1.13 4.39 1.02 0.074 1.13 0.09 0.67 0.18 0.1 

M11 3.73 0.22 0.017 0.88 3.73 0.33 0.127 0.85 0.1 0.43 0.44 0.13 
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M12 3.94 0.39 0.017 0.98 3.93 0.55 0.114 0.99 0.09 0.37 0.47 0.11 

M13 5.06 0.22 0.017 0.74 5.04 0.25 0.167 0.73 0.08 0.18 0.75 0.09 

M15 4.14 0.23 0.017 0.97 4.13 0.32 0.069 0.96 0.09 0.3 0.12 0.12 

M16 4.84 0.59 0.017 1.08 4.84 0.81 0.078 1.07 0.09 0.4 0.19 0.1 

M17 4.59 0.1 0.017 1.3 4.57 0.1 0.097 1.28 0.09 0.05 0.28 0.13 

M18 4.01 0.29 0.017 1.02 4.01 0.46 0.081 1.02 0.09 0.39 0.19 0.12 

M84 5.49 0.18 0.017 0.76 5.47 0.2 0.122 0.75 0.08 0.14 0.55 0.09 

M85 5.24 0.39 0.017 0.98 5.24 0.5 0.22 0.98 0.09 0.31 0.71 0.12 

M86 5.21 0.34 0.017 0.98 5.19 0.44 0.103 0.94 0.09 0.25 0.28 0.12 

M88 5.2 0.3 0.017 0.7 5.19 0.43 0.095 0.69 0.1 0.31 0.31 0.08 

M89 5.15 0.09 0.017 0.58 5.13 0.15 0.096 0.56 0.08 0.18 0.36 0.08 

M90 4.94 0.11 0.017 0.54 4.95 0.16 0.174 0.55 0.08 0.16 0.60644 0.083699 

M91 5.14 0.33 0.017 0.66 5.14 0.36 0.089 0.67 0.08 0.19 0.22589 0.075304 

M92 5.11 0.12 0.017 0.65 5.12 0.13 0.13 0.66 0.1 0.1 0.46749 0.097156 

M93 5.34 0.21 0.017 1.1 5.32 0.2 0.12 1.09 0.1 0.06 0.48711 0.12504 

M94 5.18 1.14 0.017 1.2 5.19 1.43 0.068 1.21 0.08 0.58 0.16883 0.084751 

M96 5.03 0.25 0.017 0.7 5.03 0.34 0.087 0.71 0.08 0.56 0.29619 0.087587 

M97 5.05 0.11 0.017 0.92 5.03 0.11 0.093 0.89 0.09 0.05 0.29416 0.12036 

M99 5.78 0.13 0.017 0.87 5.77 0.13 0.087 0.86 0.09 0.06 0.26825 0.10572 

M100 5.14 0.26 0.017 0.92 5.13 0.27 0.078 0.92 0.09 0.1 0.17597 0.10756 
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7 Supplementary Movie Legend 
 

Movie S1. Animation of the dynamics predicted by the model S.13 for the best fits to the 
RAL+RTI (red) and QUAD therapy (blue) data. The panels at the top show in block 
diagrams the decay of the pre-integration cell compartments I1 and M1, and the productively 
infected cells compartment I2 in both, RAL combination therapy (red) and QUAD therapy 
(blue). Horizontal arrows indicate the start of the second phase for each therapy in each 
compartment. The bottom panel shows the corresponding decay in (log10) viral load over time, 
where the vertical dashed lines indicate the start of the second phase (QUAD therapy in blue 
and RAL-combination therapy in red). 

Virus is produced by productively infected cells (I2). Initially they are lost quickly by death (rate 
d2), for both types of treatment. At the same time these cells (I2) are replenished by infected 
cells progressing through integration (I1 and M1). In the presence of RTIs and PIs without 
InSTIs, the pool of cells with fast integration (I1) decays quickly and the second phase starts 
when the main contribution to I2 comes from the conversion of slowly integrating cells (M1) at 
rate k1. The productively infected cells in the QUAD panel then have an effective decay rate 
given by (~δM1+k1), which is the rate limiting step. In the presence of an InSTI, the pool of cells 
that can integrate fast (I1) decreases more slowly, because integration is slowed down but not 
prevented completely. This results in phase 1b with slope (~δ1+k(1-ω)) equal to the slower 
decay of cells in I1. Together phases 1a and 1b last longer than phase 1, because it takes longer 
to lose cells in I1. The second phase for RAL combination therapy starts when the main 
contribution to productively infected cells comes from M1, which in the presence of an InSTI 
occurs later, because integration is slowed down in this compartment too. This explains the 
lower viral load level at the start of the second phase with an InSTI regimen. 

Fixed parameter values are: VI(0)/V(0) = 0.98,δM1=0.02 day-1, k=2.6 day-1 and c=23 day-1 based 
on previous studies 1,7,8. In addition, for RAL combination we used η=0.95, ε=0 and ω=0.94, for 
the quad therapy η=ε=0.95 and ω=0, and for RAL monotherapy η=ε=0 and ω=0.997 1. The 
estimated best-fit population parameters are (estimated standard deviation in parenthesis): 
δ1=0.23 (0.04) day- 1, k1=0.017 (0.01) day-1, δM2=δ2=0.85 (0.07) day-1 and V(0) = 4.8 (0.07). 
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