Table S5: The 10-loci microsatellite haplotype profiles of the dhps alleles in Cambodia | | Н | -11 | -7.5 | -2.9 | -1.5 | -0.13 | Genotype | 0.03 | 0.5 | 1.4 | 6.4 | 9 | N | |---|------------|------------|--------------|------------|------------|------------|--|------------|------------|------------|------------|------------------|--------| | | H1
H2 | 220
220 | 173
194 | 191
193 | 172
182 | 134
134 | SAKAA
SAKAA | 134
132 | 147
147 | 252
256 | 286
303 | 100
100 | 1 | | | H3 | 220 | 194 | 189 | 182 | 134 | SAKAA | 132 | 147 | 256 | 303 | 100 | į | | | H4
H5 | 220
220 | 175
173 | 189
189 | 164
166 | 132
134 | SAKAA
SAKAA | 160
126 | 150
140 | 258
269 | 292
288 | 123
109 | 1 | | | H6 | 220 | 167 | 178 | 168 | 134 | SAKAA | 147 | 143 | 266 | 288 | 120 | į | | | H7
H8 | 220
220 | 183
163 | 189
191 | 170
174 | 132
134 | SAKAA
SAKAA | 156
138 | 147
147 | 252
254 | 295
297 | 118
115 | 1 | | | H9 | 220 | 173 | 193 | 178 | 132 | SAKAA | 132 | 148 | 280 | 299 | 100 | į | | Α | H10
H11 | 224
220 | 181
 172 | 189
189 | 170
168 | 134
134 | SAKAA
SAKAA | 126
145 | 145
147 | 254
274 | 294
286 | 114
114 | 1 | | | H12 | 220 | 169 | 193 | 188 | 132 | SAKAA | 141 | 145 | 261 | 295 | 115 | i | | | H13
H14 | 228
220 | 181
 161 | 191
189 | 168
166 | 134
132 | SAKAA
SAKAA | 136
126 | 143
145 | 252
254 | 310
299 | 119
109 | 1 | | | H15 | 220 | 153 | 191 | 166 | 134 | SAKAA | 128 | 146 | 257 | 299 | 100 | i | | | H16
H17 | 220
220 | 165
169 | 191
193 | 168
172 | 134
134 | SAKAA
SAKAA | 130
136 | 145
146 | 273
254 | 297
286 | 122
106 | 1 | | | H18 | 220 | 183 | 189 | 172 | 134 | SAKAA | 128 | 150 | 255 | 286 | 113 | i | | | H19
H20 | 220
220 | 177
161 | 189
183 | 165
168 | 132
132 | SAKAA
SAKAA | 128
130 | 150
145 | 257
263 | 303
292 | 115
110 | 1 | | В | H21 | 220 | 163 | 183 | 168 | 132 | SGKAA | 126 | 145 | 277 | 292 | 111 | 2 | | | H22
H23 | 220
220 | 163
163 | 183
183 | 168
168 | 132
132 | S <mark>G</mark> KAA
S <mark>G</mark> KAA | 126
128 | 145
145 | 277
277 | 292
292 | 109
109 | 1 | | | H24 | 220 | 163 | 183 | 168 | 132 | SGKAA | 126 | 145 | 277 | 286 | 102 | i | | | H25
H26 | 220
220 | 195
173 | 183
193 | 168
168 | 132
132 | S <mark>G</mark> KAA
S <mark>G</mark> KAA | 126
126 | 145
145 | 277
268 | 292
292 | 109
109 | 1 | | | H27 | 220 | 165 | 189 | 168 | 134 | SGKAA | 126 | 150 | 248 | 295 | 91 | i | | | H28
H29 | 216
220 | 153
182 | 189
189 | 178
172 | 134
134 | S <mark>G</mark> KAA
S <mark>G</mark> KAA | 126
126 | 150
150 | 248
248 | 295
299 | 92
93 | 1 | | | H30 | 220 | 165 | 189 | 172 | 134 | SGKAA | 126 | 150 | 248 | 295 | 109 | i | | | H31
H32 | 220
224 | 175
179 | 189
189 | 172
166 | 134
132 | S <mark>G</mark> KAA
S <mark>G</mark> KAA | 132
143 | 150
145 | 248
275 | 292
292 | 109
110 | 1 | | | H33 | 220 | 169 | 189 | 196 | 132 | SGKAA | 138 | 139 | 266 | 297 | 100 | i | | | H34
H35 | 220
220 | 171
167 | 183
183 | 176
170 | 132
134 | S <mark>G</mark> KAA
S G KAA | 130
126 | 146
150 | 263
256 | 297
286 | 97
113 | 1 | | | H47 | 216 | 153 | 191 | 170 | 134 | SGKGA | 141 | 145 | 252 | 286 | 100 | 4 | | | H48 | 216 | 153 | 191 | 172 | 134 | SGKGA | 141 | 145 | 252 | 286 | 102 | 6 | | | H49
H50 | 216
216 | 153
152 | 189
191 | 172
172 | 134
134 | S <mark>G</mark> KGA
SGKGA | 141
141 | 145
146 | 252
251 | 286
285 | 100
100 | 1 | | | H47 | 216 | 153 | 191 | 172 | 134 | SGEGA | 141 | 145 | 252 | 286 | 100 | 5 | | | H48
H72 | 216
220 | 153
153 | 191
191 | 172
172 | 134
134 | SGEGA
SGEGA | 141
141 | 145
145 | 252
252 | 286
286 | 102 | 3
2 | | | H73 | 220 | 167 | 191 | 172 | 134 | SGEGA | 141 | 145 | 252 | 285 | 102 | 1 | | С | H47
H48 | 216
216 | 153
153 | 191
191 | 172
172 | 134
134 | SGNGA
SGNGA | 141
141 | 145
145 | 252
252 | 286
286 | 100
102 | 4 | | | H74 | 216 | 153 | 191 | 172 | 134 | SGNGA | 141 | 145 | 252 | 299 | 100 | 4 | | | H75
H76 | 216
216 | 153
153 | 191
191 | 172
172 | 134
134 | SGNGA
SGNGA | 141
141 | 145
145 | 252
252 | 299
299 | 102
109 | 5
3 | | | H77 | 216 | 153 | 191 | 174 | 134 | SGNGA | 141 | 145 | 252 | 286 | 102 | 2 | | | H78
H79 | 220
216 | 167
153 | 191
191 | 172
172 | 134
134 | SGNGA
SGNGA | 141
156 | 145
145 | 252
227 | 286
301 | 100
102 | 1 | | | H80 | 216 | 153 | 191 | 172 | 134 | SGNGA | 126 | 145 | 252 | 299 | 102 | 1 | | | H81
H82 | 216
216 | 153
153 | 195
180 | 172
172 | 134
134 | SGNGA
SGNGA | 141
141 | 145
145 | 252
250 | 286
299 | 102
100 | 1 | | | H37 | 220 | 167 | 183 | 172 | 134 | AGKAA | 126 | 145 | 250 | 299 | 109 | 2 | | | H38 | 216 | 173 | 189 | 172 | 134 | AGKAA | 126 | 145 | 250 | 299 | 109 | 1 | | | H39
H40 | 220
220 | 167
175 | 193
183 | 172
172 | 134
134 | AGKAA
AGKAA | 126
126 | 145
145 | 250
250 | 299
299 | 109
109 | i | | | H41
H42 | 220
220 | 167
167 | 183
183 | 170
172 | 132
134 | AGKAA
AGKAA | 126
126 | 145
145 | 250
250 | 299
292 | 109
126 | 1 | | D | H43 | 220 | 167 | 183 | 172 | 134 | AGKAA | 126 | 145 | 250 | 292 | 110 | i | | | H44
H45 | 220
220 | 175
153 | 183
191 | 169
170 | 132
134 | AGKAA
AGKAA | 126
126 | 150
145 | 279
227 | 292
292 | 111
123 | 1 | | | H59 | 216 | 153 | 183 | 172 | 134 | AGEAA | 126 | 145 | 250 | 299 | 109 | 3 | | | H60
H61 | 216
216 | 153
167 | 183
183 | 172
172 | 134
134 | AGEAA
AGEAA | 126
126 | 145
145 | 251
250 | 299
299 | 109
109 | 1 | | | H62 | 218 | 153 | 183 | 172 | 134 | AGEAA | 126 | 145 | 250 | 299 | 109 | i | | | H37
H63 | 220
220 | 167
167 | 183
191 | 172
172 | 134
134 | AGEAA
AGEAA | 126
126 | 145
145 | 250
250 | 299
299 | 109
109 | 9 | | | H64 | 220 | 178 | 189 | 172 | 134 | AGEAA | 126 | 145 | 252 | 299 | 109 | 1 | | | H65
H66 | 220
220 | 167
167 | 183
183 | 172
176 | 134
134 | AGEAA
AGEAA | 126
126 | 143
143 | 250
250 | 299
299 | 109
109 | 1 | | | H67 | 220 | 167 | 183 | 174 | 134 | AGEAA | 126 | 145 | 250 | 299 | 109 | i | | | H68
H69 | 220
220 | 177 | 183 | 166 | 134
134 | AGEAA
AGEAA | 126
126 | 145
145 | 250
250 | 299
299 | 109
110 | 1 | | | H70 | 220 | 167 | 183 | 172 | 134 | AGEAA | 126 | 145 | 227 | 299 | 109 | i | | | H71 | 220 | 153 | 183 | 172 | 134 | AGEAA | 127 | 145 | 227 | 286 | 109 | 1 | | | H51
H52 | 220
220 | 167
173 | 189
189 | 172
172 | 134
134 | SGEAA
SGEAA | 126
126 | 145
150 | 250
248 | 299
295 | 109
93 | 2
5 | | | H53 | 220 | 176 | 189 | 172 | 134 | SGEAA | 126 | 150 | 248 | 295 | 92 | 2 | | Е | H54
H55 | 216
220 | 153
167 | 191
189 | 172
172 | 134
134 | SGEAA
SGEAA | 141
126 | 145
150 | 272
248 | 286
295 | 100
93 | 1 | | | H56 | 220 | 194 | 189 | 172 | 134 | SGEAA | 126 | 150 | 248 | 295 | 93 | 1 | | | H57
H58 | 220
220 | 194
194 | 189
189 | 172
172 | 134
134 | SGEAA
SGEAA | 132
126 | 150
150 | 248
248 | 295
286 | 92
102 | 1 | | F | H84 | 216 | 153 | 183 | 172 | 134 | AGEAT | 126 | 150 | 272 | 292 | 111 | 1 | | | H85
H36 | 216
220 | 153
165 | 191
183 | 172
168 | 134
134 | FGEAT
AAKAA | 126
132 | 150
145 | 272
266 | 292
292 | 111
119 | 1 | | | H36
H83 | 220 | 167 | 183 | 172 | 134 | AGKAA
AGKAT | 132 | 145
145 | 248 | 292 | 109 | 1 | | | H46 | 220 | 175 | 183 | 169 | 132 | FGKAA | 126 | 150 | 252 | 295 | 110 | 1 | | | | | | | | | | | | | | | | **Note:** Identical colors (shaded boxes) in the haplotype column represent proposed common lineages. The wild type (SAKAA) in panel A and single mutant (SGKAA) in panel B have multiple unique haplotypes backgrounds (as indicated by scattered pink, gray and blue shading) and contain allele sizes present in the C, D, E and F panels. The single mutant SGKAA lineage gives rise to the double mutant SGKGA lineage (predominantly pink shaded haplotypes in panel C) which in turn gives rise to two triple mutants, SGEGA and SGNGA. Lineage B also gives rise to the double mutant AGKAA which is a precursor for the triple mutant AGEAA (predominantly gray shaded haplotypes in panel D). Lineage B also gives rise to the third double mutant, SGEAA which is shaded predominantly blue (Panel E). Panel F has limited and rare *dhps* alleles with different haplotype backgrounds. H, Haplotype; N, number of isolates sharing a particular haplotype. The list of haplotypes in panels C, D, E and F are not in any particular order.