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Abstract

Helical cell shape of the gastric pathogen Helicobacter pylori has been suggested to promote virulence through viscosity-
dependent enhancement of swimming velocity. However, H. pylori csd1 mutants, which are curved but lack helical twist,
show normal velocity in viscous polymer solutions and the reason for their deficiency in stomach colonization has remained
unclear. Characterization of new rod shaped mutants identified Csd4, a DL-carboxypeptidase of peptidoglycan (PG)
tripeptide monomers and Csd5, a putative scaffolding protein. Morphological and biochemical studies indicated Csd4
tripeptide cleavage and Csd1 crosslinking relaxation modify the PG sacculus through independent networks that
coordinately generate helical shape. csd4 mutants show attenuation of stomach colonization, but no change in
proinflammatory cytokine induction, despite four-fold higher levels of Nod1-agonist tripeptides in the PG sacculus. Motility
analysis of similarly shaped mutants bearing distinct alterations in PG modifications revealed deficits associated with shape,
but only in gel-like media and not viscous solutions. As gastric mucus displays viscoelastic gel-like properties, our results
suggest enhanced penetration of the mucus barrier underlies the fitness advantage conferred by H. pylori’s characteristic
shape.
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Introduction

Helicobacter pylori is a helical rod shaped Gram(-) Proteobacter-

ium with only one known niche, the viscous epithelial mucus layer

of the human stomach [1]. Infection with H. pylori generally occurs

during infancy or childhood, persists through adulthood unless

treated, and leads to serious clinical pathologies including peptic

ulcer and gastric cancer in 10–20% of those infected [2].

Pathologic examination of gastric biopsy specimens reveals H.

pylori dispersed within the gastric mucus layer and in direct contact

with the gastric epithelial cells [3]. It is believed the bacteria

localize to these areas to escape the low pH of the stomach lumen,

which they can survive only for a matter of minutes [4], and to

avoid elimination by peristalsis.

H. pylori requires flagella-mediated and chemosensory-directed

motility to access and maintain itself in the mucus layer [5–8]. H.

pylori’s helical cell shape may contribute to this process by enabling

the bacteria to bore into the mucus layer via a cork-screwing

mechanism [9]. More specifically, the turning helical cell body is

thought to interact with large polymers to generate torque that

enhances translational movement and reduces circumferential slip

[10]. Mathematical modeling has predicted helical shape improves

propulsion efficiency in the form of speed in viscous polymer

solutions [11]. H. pylori and Campylobacter jejuni have been shown to

swim faster at higher viscosities than certain rod-shaped species

(e.g. Escherichia coli) in solutions of methylcellulose [3,12].

The cell envelope-embedded peptidoglycan (PG) layer is

essential to maintain osmotic stability and cell shape in most

bacteria including H. pylori [13,14]. Gram(-) bacteria have a thin

layer of PG meshwork in their periplasm [15]. This PG sacculus

consists of glycan chains of repeating N-acetylglucosamine-N-

acetylmuramic acid (GlcNAc-MurNAc) units that are crosslinked

by short peptides attached to MurNAc. During enlargement of

the PG sacculus, the disaccharide-pentapeptide precursor lipid II

is polymerized and inserted into the sacculus by the coordinated

action of PG synthases and hydrolases [16]. Penicillin binding

protein 1 (PBP1) is the only PG synthase in H. pylori and is

predicted to serve as both glycan-polymerizing glycosyltransferase

and peptide-crosslinking DD-transpeptidase [17]. The other two

high molecular weight PBPs encoded by H. pylori, PBP2 and
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PBP3, are both predicted to act as monofunctional DD-

transpeptidases.

Pentapeptides that do not participate in crosslinking can be

trimmed by DD-, LD-, and DL-carboxypeptidases (CPases) that

successively trim pentapeptides to tetra-, tri-, and dipeptides,

respectively. No low molecular weight PBP homologues have been

identified in the H. pylori genome, but the existence of trimmed

peptides in the PG sacculus suggests the existence of these

peptidase activities [18]. PG derived tripeptide is an agonist for the

intracellular pathogen-associated molecular pattern recognition

molecule Nod1 which becomes activated during engagement of

the H. pylori Cag type IV secretion system. Thus increased

tripeptide content of the sacculus could potentially increase

proinflammatory activity during H. pylori infection [19–21].

Bacteria also possess DD-endopeptidases (EPases) for cleavage

of peptide crosslinks. We previously identified three genes, csd1-3,

that encode putative DD-EPases and contribute to H. pylori’s

helical cell shape through alterations in PG crosslinking [13].

Upon deletion of each of these genes individually or in tandem, H.

pylori assumes various curved rod morphologies. Overexpression of

csd3 (hdpA) also alters normal helical shape [22]. Here we identify

two additional genes, csd4 and csd5, that promote helical cell shape.

One, csd4, encodes a zinc metallopeptidase that functions as a

CPase on PG tripeptide. H. pylori loses nearly all curvature in its

absence yielding a straight rod. Csd4 proteins are found

throughout the Epsilonproteobacteria and the Campylobacter jejuni

homologue Pgp1 also promotes helical cell shape [23]. Genetic

analyses of cell shape and cell wall composition suggest distinct

peptidoglycan modifications cooperatively produce helical mor-

phology. We demonstrate straight rod mutants of H. pylori are

attenuated in stomach colonization without apparent changes in

proinflammatory activity. Finally, in our motility analyses of

straight, curved and helical rod shaped H. pylori strains, we

genetically uncouple specific cell wall modifications from shape

phenotypes to identify a role for normal helical shape in

directional motility through gel-like media.

Results

Loss of helical cell shape results from the disruption of
two genes, csd4 and csd5

As previously reported, we discovered the cell shape determi-

nant Csd1, a LytM EPase homologue, in a visual screen of an H.

pylori transposon mutant library [13]. While the csd1 mutant has

curved rod morphology, two additional mutants with straight rod

morphology were also identified in this screen of 2000 random

clones. Both transposon insertion sites mapped to HPG27_353

(Figure 1A), a gene encoding a hypothetical protein conserved in

Helicobacter and other select species in the Delta/Epsilonproteo-

bacteria, all of which are curved or helical (Figure S1A in Text S1).

Targeted deletion of HPG27_353 reproduced the rod shape of the

transposon mutants (Figure 1D–E) and was complemented by re-

expression from the rdxA locus (Figure S1C–D in Text S1). Having

confirmed HPG27_353 is required for helical curvature and twist

in H. pylori, we designated this gene csd4.

We identified five other transposon mutant clones that display

only slightly helical morphology easily distinguishable from wild-

type. Each of these mutants contained an insertion in one of two

neighboring genes, HPG27_1197 or HPG27_1196, encoding the

OppA/OppB members of the oligopeptide ABC transporter that

transports small peptides, including PG recycling products, into

the cell (Figure 1F) [24]. However, as deletion of each of these

genes resulted in cells with normal helical morphology (data not

shown), we suspected the transposons affect another gene in the

operon. Upon deleting the gene immediately downstream,

HPG27_1195, we obtained cells with largely straight rod

morphology, though unlike csd4 mutants, some cells have slight

irregular bends and curves (Figure 1G–H). Helical cell shape was

restored with complementation (Figure S1C–D in Text S1).

HPG27_1195 encodes a hypothetical protein well-conserved in H.

pylori and the closely related species H. acinonychis, but not other

Epsilonproteobacteria (Figure S1B in Text S1). We named this

gene csd5.

csd4 and csd5 mutants grow normally and show minimal
alterations in cell length and width

Despite their dramatically altered morphology, csd4 and csd5

mutants grew as well as wild-type through log and into stationary

phase in broth culture (Figure S2A in Text S1). Neither mutant

showed growth deficiency in 72 hrs of log-phase co-culture with

wild-type (Figure S2B–C in Text S1). Aside from loss of helical rod

shape, neither mutant had any other deformity; formation of cell

poles and division septa appeared normal for both mutants, as did

polar flagellation (Figure 1E, H, and data not shown). Each

mutant is slightly longer than wild-type and the csd5 mutant is also

slightly wider than wild-type, but these differences represent

changes of less than 10% (mean length/width in microns: wild-

type 2.39/0.58; csd4: 2.62/0.58; csd5: 2.62/0.62). Both mutant

strains underwent coccoid transformation in late stationary phase

with similar kinetics to wild-type, showing 100% transformation at

72 hrs (data not shown).

Csd4 exhibits DL-carboxypeptidase activity required for
its shape-determining function

Csd4 contains a putative N-terminal signal sequence and an

M14 peptidase domain, the latter placing it in the zinc-dependent

carboxypeptidase superfamily [25]. One of the few well-charac-

terized bacterial M14 peptidases is Bacillus sphaericus endopeptidase

I, which cleaves the D-glutamic acid-meso-diaminopimelic acid (D-

Glu-mDap) peptide linkage of PG tetrapeptides (EPase activity)

Author Summary

The only habitat of Helicobacter pylori is the human
stomach, where it can promote stomach ulcers and cancer.
Cells lining the stomach are protected from luminal acid by
a thick layer of gastric mucus composed of polymerized
gastric mucins. Gastric mucin undergoes a physical
transition between a viscoelastic solution at neutral pH
to a viscoelastic gel-like state at low pH. Helical rod shape
in bacteria has been suggested to enhance swimming
velocity in viscous solutions by a cork-screw mechanism,
but H. pylori mutants lacking helical twist show normal
swimming velocity in viscous polymer solutions used in
prior studies comparing motility across bacterial species.
These same mutants, however, show diminished coloni-
zation suggesting helical shape promotes stomach infec-
tion by another mechanism. Here we identified Csd4, a
protease of cell wall tripeptides, which induces curvature
in the cell body independently from the changes in cell
wall crosslinking previously shown to promote helical
twist. Cells lacking Csd4 form straight rods that also show
colonization defects but normal velocity in several viscous
polymer solutions. Upon examination of motility in gel-like
media, however, we discovered that elimination or
exaggeration of cell curvature perturbs motility. Thus H.
pylori’s helical shape may aid penetration of gel-like
stomach mucus.

Cell Wall Control of H. pylori Shape and Motility
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and tripeptides (CPase activity) [26,27]. Due to its involvement in

cell shape determination, we hypothesized Csd4 may also exhibit

endo- or carboxypeptidase activity on PG substrates. We over

expressed His-tagged Csd4 protein in E. coli (Figure 2A) and tested

enzymatic activity of the purified protein in vitro using sacculi from

a csd4 mutant strain as substrate. In the presence of Zn2+, Csd4

Figure 1. H. pylori cell shape mutant morphologies and associated loci identified in a visual screen. The transposon insertion site and
orientation (indicated by the spelling of the transposon’s selectable marker, chloramphenicol acetyltransferase (cat)), is shown for each straight rod
shape mutant identified in the screen. A) HPG27_353 (csd4) shape locus. B–E) Phase contrast (B, D) and transmission electron microscopy (TEM) (C, E)
images of wild-type (B–C) and csd4 mutant cells (D–E). F) HPG27_1195 (csd5) shape locus. G–H) Phase contrast (G) and TEM (H) images of csd5 mutant
cells. Strains used: NSH57, LSH18, LSH31, LSH36.
doi:10.1371/journal.ppat.1002603.g001
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Figure 2. Functional analyses of Csd4 enzymatic activity and its role in shape determination. A) SDS-PAGE depicting steps in the
purification of His-tagged H. pylori Csd4 protein from E. coli cells. Induced protein was purified using a Ni-NTA agarose column as described in Text
S1. WC, whole cell lysate; CL, cleared lysate; MW, molecular weight; FT, flow through. Positions of the 20 kDa and 50 kDa molecular weight markers
are indicated. B) HPLC analysis of muropeptides released from purified csd4 mutant (LSH122) PG treated with purified His-tagged Csd4 protein in the
presence of Zn2+ or EDTA, or without protein. In the presence of Zn2+ but not EDTA, Csd4 trimmed the monomeric tripeptides to dipeptides,
indicative of the protein having DL-carboxypeptidase activity. C–D) Muropeptides detected before and after incubation of Csd4 with purified

Cell Wall Control of H. pylori Shape and Motility
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removed virtually all monomeric (uncrosslinked) tripeptides,

yielding dipeptides (Figure 2B). No reaction was observed in the

buffer control or when the enzyme sample contained EDTA,

confirming its dependency on divalent cations such as Zn2+. No

other muropeptide species showed significant change (Table S1 in

Text S1), indicating Csd4 is a DL-CPase that trims monomeric

tripeptides to dipeptides. Further confirmation of Csd4’s substrate

specificity was obtained using purified disaccharide tripeptide and

disaccharide tetrapeptide monomers; Csd4 was enzymatically

active against the tripeptide, but not the tetrapeptide species

(Figure 2C–D).

Structural threading of the Csd4 protein sequence revealed

several strong matches to M14 peptidases with solved crystal

structures, including human carboxypeptidase M (E-value

1.8E26) [28,29]. Positional mapping of residues involved in zinc

binding and catalysis on the carboxypeptidase M crystal structure

enabled the deduction of corresponding residues on the threaded

Csd4 structure (Figure S3 in Text S1). We identified Csd4 E222

as a candidate for the catalytic glutamate and targeted this

residue using site-directed mutagenesis. A single nucleotide

substitution in the csd4 gene, A665C, resulted in an E222A

substitution in the protein. Allelic exchange was used to introduce

the mutant allele at the endogenous locus [30]. The csd4E222A

mutant strain had straight rod morphology (Figure 2E–F),

suggesting Csd4 CPase activity is vital for generating helical cell

shape.

PG of rod-shaped mutants is altered in the abundance of
monomeric muropeptides and in peptide crosslinking

We sought further evidence of Csd4 DL-CPase activity in vivo by

comparing the PG sacculus muropeptide composition of the csd4

and csd4E222A mutants to wild-type and a complemented strain

(Table 1 and Table S2 in Text S1). The point mutant and null

mutant strains showed identical muropeptide profiles. The most

striking differences in the PG of both mutants was a .400%

increase in monomeric tripeptide and the absence of virtually all

monomeric dipeptide (Table 1), suggesting Csd4 catalyzes the

trimming of tripeptides to dipeptides via its DL-CPase activity, as

we observed in vitro. Both csd4 mutants also showed changes in

other muropeptides, most notably a .400% decrease in

tetrapeptide and increases and decreases in various crosslinked

species. csd4 mutants showed an approximately 300% increase in

tetra–tripeptide crosslinking while tetra–tetrapeptide and tetra–

pentapeptide crosslinked dimers were both reduced (by 51% and

12%, respectively). Since tetra–tripeptide crosslinks are not very

abundant in the wild-type cells and the other more abundant

crosslinked species were decreased, the overall degree of cross-

linking was unchanged in the mutants.

We found a markedly different PG profile for the csd5 mutant

compared to the morphologically similar csd4 mutants (Table 1).

The csd5 mutant exhibited very modest increases in tetra–

tripeptide crosslinks and monomeric tripeptides compared to

wild-type (increased by 4% and 13%, respectively). The csd5

disaccharide tripeptide (C) and disaccharide tetrapeptide substrates (D). Data indicate Csd4 cleaves tripeptide, but not tetrapeptide. E–F) Scatter plot
arraying the wild-type, csd4 deletion, csd4 point, and csd5 deletion mutant populations by length (x-axis, mm) and cell curvature (y-axis, arbitrary
units). Each contour depicts the morphology of a single cell captured from a 10006phase contrast image using CellTool software [13]. The software
algorithmically determines each cell’s length along its two-dimensional central axis as well as the degree of cell body curvature (excluding the poles).
200–300 cells were analyzed for each strain. E) Smooth histograms displaying kernel density estimates of each strain’s cell curvature (x-axis).
Bootstrapped Kolmogorov–Smirnov statistical comparisons of population cell curvature distributions yielded p-values,0.001 for all pairwise
comparisons with the exception of csd4 vs. csd4E222A, p = 0.19. Strains used: NSH57, LSH18, LSH31, LSH146.
doi:10.1371/journal.ppat.1002603.g002

Table 1. Summary of muropeptide composition of PG in mutant strains.

Area - % of Each Muropeptidea

Wild-Type (Avg ± SD)b csd1c csd3c csd4 csd4E222A csd5
csd4
csd5

csd1
csd4

csd1
csd5

csd3
csd4

csd3
csd5

hd cd vd sd s s s c c c s

Monomers (total) 58.761.7 54.7 54.8 60.9 60.0 59.3 57.6 55.3 53.2 59.6 56.2

Dipeptide 2.860.4 1.7 2.3 0.0 0.0 2.8 0.0 0.4 1.9 0.0 2.5

Tripeptide 4.060.4 4.7 3.6 17.3 16.1 4.5 17.8 12.8 3.4 11.7 3.6

Tetrapeptide 10.060.6 7.4 6.8 2.3 2.1 8.9 1.4 2.3 7.5 3.2 7.0

Pentapeptide 41.861.1 40.9 42.0 41.3 41.8 43.2 38.4 39.8 40.5 44.7 43.2

Dimers (total) 41.361.7 45.3 45.2 39.1 40.0 40.7 42.4 44.7 46.8 40.4 43.8

Tetra–tri 4.560.3 4.0 3.4 12.8 13.2 4.7 14.5 9.3 3.7 7.5 3.3

Tetra–tetra 15.860.3 14.5 9.9 7.8 7.5 14.3 7.8 9.6 15.5 5.7 8.4

Tetra–penta 21.161.3 26.9 31.8 18.5 19.3 21.7 20.1 25.8 27.6 27.2 32.1

Chain ends (anh) 10.360.6 8.4 9.5 8.6 9.0 9.3 10.5 9.2 10.4 9.1 8.9

Avg Chain Length 9.760.6 12.0 10.6 11.7 11.1 10.8 9.6 10.9 9.6 11.0 11.3

% Peptides in Crosslinks 41.361.7 45.3 45.2 39.1 40.0 40.7 42.4 42.5 44.7 46.8 43.7

aPercentages calculated as per [54]. Underlined values differ by more than 2 standard deviations from that of wild-type; underlined and bold values differ by more than
5 standard deviations from that of wild-type.
bCalculated from 6 independent samples.
cAs previously reported [13].
dShape of each strain: h-helical rod, c-curved rod, s-straight rod, v-variable (‘‘c’’ shape, curved rod, straight rod).
doi:10.1371/journal.ppat.1002603.t001
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mutant strain also showed modest decreases in tetra–tetrapeptide

crosslinks (9%) and monomeric tetrapeptides (11%). Similar

decreases in tetrapeptide-containing species occurred in the LytM

homologue mutants (csd1, csd3), as well as csd4 mutants (Table 1).

Csd5 does not contain any known enzymatic domains, but does

contain a bacterial SH3 motif, which could play a role in protein-

protein interactions or PG binding [31–33]. A csd4csd5 double

mutant strain has a straight rod shape and displays a more severe

loss of curvature than the csd5 mutant and overlaps the csd4

mutant profile (Figure S4A–B in Text S1). Furthermore, the global

PG profile of the csd4csd5 strain mirrors that of csd4 mutants

(Table 1). Altogether these findings indicate that perturbation of

monomeric and/or crosslinked PG species influences H. pylori cell

shape, but global cell wall perturbations are not necessary for loss

of helical cell shape, as the csd5 mutant PG profile remains similar

to wild-type.

Genetic interactions among csd genes reveal two distinct
PG modification networks that promote helical cell shape

Our earlier work revealed that mutation of csd1, csd2, or ccmA

individually or in combination results in curved rod morphology

and increased tetra–pentapeptide crosslinking [13]. We employed

genetic interaction studies to determine the relationship between

the csd1 network and csd4 and csd5. We found that csd1csd4 and

csd1csd5 double mutants are both curved like the csd1 mutant

(Figure 3A, B, E, S4C in Text S1). Both double mutants also

accumulated excess tetra–pentapeptide crosslinks in the PG

sacculus similar to csd1 (Table 1).

Csd3 is a predicted homologue of Csd1 and Csd2, but csd3

mutants show a distinct cell shape profile comprised of specific

ratios of straight rods, curved rods, and highly curved ‘‘c’’ shapes

[13]. Combined mutation of csd3 along with csd1csd2ccmA gave rise

to a population morphologically indistinguishable from the csd3

mutant, indicating csd3 is epistatic to and perhaps upstream of

these other shape-generating genes [13]. However, the csd3 cell

shape phenotype was not epistatic to csd4 or csd5. The csd3csd4

mutant displayed a curved rod shape distinct from csd3 and the

straight rod phenotype of csd4 (Figure 3C–D), while the csd3csd5

mutant retained a side curvature profile very similar to that of csd5

(Figure 3F, S4D in Text S1). PG analysis of these double mutants

again showed increases in tetra–pentapeptide crosslinked dimers

(Table 1).

In summary, the shape phenotypes of double mutants of csd1

and csd3 with either csd4 or csd5 showed evidence of epistasis

(Figure 3G), whereas their PG profiles were largely additive

(Table 1). For example, both Csd1-dependent increases in tetra–

pentapeptide crosslinked species and Csd4-dependent increases in

tripeptide monomer were present in the csd1csd4 mutant. As the

exception, tetra–tripeptide crosslinking was increased in the csd4

mutant, decreased in the csd3 mutant, and at an intermediate level

in the double mutant. Together these findings suggest that Csd4

DL-CPase activity does not depend on LytM EPase activity and

vice versa. However, Csd3 and Csd4 have opposing influences on

the abundance of tetra–tripeptide crosslinks in the sacculus.

Straight rod mutants show impaired stomach
colonization but no disruption of cell wall integrity

Previous work revealed csd1 curved rod mutants and csd3

variably curved rod mutants are attenuated in stomach coloniza-

tion [13,22]. As csd4 mutants are the straightest of the two rod-

shaped mutants, we focused further characterization on this

mutant to understand the impact of its dramatic cell shape change

on stomach colonization. The csd4 mutant was strongly outcom-

peted by wild-type and the csd4 complemented strain in the

C57BL/6 mouse model (Figure 4A). In contrast, during co-culture

in broth no competitive defect was observed (Figure S2B in Text

S1), suggesting the cell shape and/or cell wall changes present in

this mutant are uniquely required during stomach colonization.

PG is both a stress-bearing structure responsible for withstand-

ing turgor pressure and a dynamic part of the assembly and

function of many cell wall protein complexes. We thus tested

whether alterations in its chemical content might alter the function

of the wall so as to render the cells less able to survive

environmental stresses H. pylori encounters in the stomach: acid,

antimicrobial peptides, and osmotic stress. The csd4 mutant

survived exposure to low pH, an antimicrobial peptide similar to

those found in the stomach (polymyxin), and high salt as well as

wild-type (Figure 4B–D). These results show that the cell wall

changes produced by the loss of csd4 do not appreciably alter cell

wall integrity and further support a direct role for normal shape in

efficient stomach colonization.

Elevated PG tripeptide content or crosslinking of the PG
sacculus does not alter innate immune detection of live
H. pylori

Successful stomach colonization by H. pylori requires penetra-

tion of the gastric mucus and intimate association with the

epithelium. Once contact with the host epithelium is established,

the Cag type IV secretion system (T4SS) engages host cells and

exposes them to toxins that are associated with more serious

disease outcomes [2]. The Cag T4SS induces pro-inflammatory

cytokine secretion by introducing PG fragments into the host cell,

which activates the mammalian intracytoplasmic pathogen

recognition molecule Nod1 and ultimately NFkB [20,34,35]. All

our cell shape mutants show changes in global PG composition

and several have increased overall crosslinking of the cell wall

(Table 1). Of particular interest, the csd4 mutants showed

profound accumulation of mDap-containing tripeptide monomers,

which are Nod1 agonists [19,21,36]. The wild-type strains used in

our studies contain the cag pathogenicity island (PAI) that encodes

the Cag T4SS and thus induce robust secretion of IL-8 upon co-

culture with the AGS gastric epithelial cell line [37,38]. We

wondered whether the increased crosslinking of the csd1 mutant

sacculus interferes with periplasmic assembly of the Cag T4SS or if

the csd4 mutant would elicit higher IL-8 induction due to the

higher tripeptide content of the sacculus. As shown in Figure 4E,

neither mutant showed increased or decreased IL-8 secretion

relative to wild-type. Thus altered PG crosslinking in several cell

shape mutants likely does not impair Cag T4SS assembly and the

extra tripeptide in the csd4 mutant PG sacculus may not be

available for host cell delivery by the Cag T4SS.

Shape-dependent motility phenotypes are confined to
gel-like media

As neither cell wall integrity nor innate immune detection

appear to explain the colonization defects of the csd4 mutant we

investigated motility. The csd4 and csd5 mutants were highly motile

in broth culture, but were deficient in a soft agar motility assay,

generating halos that were ,20% smaller than wild-type on day

four (Figure 5A, D). The mutant phenotype of csd4 was reversed by

reintroduction of the gene at a distal locus. Motility in soft agar

depends on many aspects of swimming behavior including

velocity, switching of flagellar rotation in response to chemosen-

sory cues, and ability to bore through the pores of the gel. The

cork-screw premise predicts helical-shaped cells will swim more

rapidly than rod-shaped cells at high viscosities [9], so we

Cell Wall Control of H. pylori Shape and Motility
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Figure 3. Morphological characterization of single and cross-shape class double mutants. A, C) Scatter plots arraying wild-type and
mutant populations by cell length (x-axis, mm) and cell curvature (y-axis, arbitrary units). B, D–F) Smooth histograms displaying population cell
curvature (x-axis) as a density function (y-axis). Bootstrapped Kolmogorov–Smirnov statistics of population cell curvature distributions: B) csd1csd4 vs.
csd1 p = 0.31, csd1csd4 vs. csd4 p,0.00001; D) csd3csd4 vs. csd4 p,0.00001, csd3csd4 vs. csd3 p,0.00001, csd3csd4 vs. csd1 = 0.0055; E) csd1csd5 vs.
csd1 p = 0.25, csd1csd5 vs. csd5 p,0.00001; F) csd3csd5 vs. csd5 p = 0.37, csd3csd5 vs. csd3 p,0.00001, csd3csd5 vs. csd1 p,0.00001. All mutant
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compared the swimming velocity of the csd4 mutant to wild-type.

csd4 mutants swam at the same velocity as wild-type in broth and

in three different viscous polymer solutions: crude porcine mucin,

methylcellulose, and Ficoll (Figures 5B–C, Videos S1, S2, and data

not shown). However, even the highest polymer concentrations

used in this experiment do not mimic the viscoelastic gel-like

properties of gastric mucus [39].

We thus returned to our gel-like soft agar assay to further

explore the relationship between motility and shape under gel-like

conditions. We previously reported that mutants lacking helical

twist but retaining curvature (csd1, csd2, ccmA) formed halos in soft

agar gel similar to wild-type bacteria while the variably shaped

csd3 mutant was significantly deficient in soft agar halo formation

[13]. As shown in Figure 5D, csd1 mutants made halos 11%

smaller than wild-type (p = 0.02), whereas both csd3 and csd4

mutants show more significant reductions in halo size (25% and

17%, p,0.001). We then examined the motility phenotype of the

csd3csd4 double mutant, which is morphologically similar to the

csd1 mutant (Figure 3D), but has a significantly different PG profile

(Table 1). The csd3csd4 double mutant’s motility in soft agar is

similar to the csd1 mutant (9% reduction compared to wild-type,

p = 0.05, Figure 5D). The csd1csd4 mutant (another strain

morphologically similar to csd1, but with a different PG profile)

also showed enhanced motility relative to the csd4 mutant with a

halo formation phenotype indistinguishable from the csd3csd4

mutant (p = 1.0, Figure 5D). Partial suppression of the soft agar

motility phenotypes of the csd3 and csd4 mutants suggests a

relationship between shape and motility whereby more severe

perturbations of shape, including large increases (‘‘c’’ shape) or

decreases (straight rod) of curvature lead to more severe

attenuation of directional motility in gel-like media compared to

strains that have curvatures profiles closer to those of wild-type

(csd1, csd3csd4, csd1csd4, Figures 3, 5D).

Discussion

Our collection of genetically defined and morphologically

diverse cell shape mutants enabled us to establish a connection

between cell shape and motility in H. pylori, but exclusively in gel-

like media. H. pylori motility in gel-like media decreases with

increasing perturbation of cell shape such that the straight rod csd4

mutant shows greater defects than the curved rod csd1 mutant.

The motility defect of the csd4 mutant is partially suppressed by

csd3 or csd1 mutation and since the PG peptide changes in the

sacculus were largely preserved in the double mutants, the partial

suppression of the motility phenotype correlates most strongly with

the reintroduction of cell curvature. We were unable to detect

shape-dependent velocity changes in viscous polymer solutions,

but future experiments in purified gastric mucin that retains gel-

like properties may reveal velocity defects of the straight and/or

curved rod mutants. In addition to velocity, altered cell shape may

affect chemotaxis, particularly since H. pylori does not tumble but

relies on Brownian forces for redirection. Shape may also alter the

cells’ ability to swim straight, as is the case for some of the ‘‘c’’-

shaped cells in the csd3 mutant population, which swim in circles

[13]. Altogether our findings provide evidence that H. pylori’s tight

control of cell shape is critical for optimal motility in the stomach

environment.

While our in vitro experiments showed only subtle perturbations

of motility, particularly for curved rod shaped mutants, all H. pylori

mutants with non-helical morphology tested to date (curved rod

csd1, variably shaped csd3, and straight rod csd4) are deficient in a

mouse colonization assay [13,22]. We explored whether loss of cell

wall integrity might underlie the observed colonization defects, but

our mutants do not show increased sensitivity to pH, high

osmolarity or the antimicrobial peptide polymyxin. We also

investigated the possibility that altered colonization is secondary to

changes in innate immune detection of H. pylori-derived PG, but

found no evidence for alteration of proinflammatory cytokine

induction by mutants with increased PG crosslinking or mono-

meric tripeptides. The cag PAI-encoding strain of H. pylori used in

our infection experiments induces a Nod1-mediated proinflam-

matory response capable of affecting Helicobacter loads in the mouse

[40,41], but the source of PG fragments delivered to host cells by

the Cag T4SS is not clear. In contrast to previous work showing

enhanced Nod1 activation when cultured HEK293 cells were

treated with digested purified H. pylori sacculi containing elevated

tripeptide [20], our results suggest that the tripeptide content of

the sacculus does not correlate with Nod1 activation in gastric

epithelial cells during infection with live bacteria. Efficient

directional motility is required for robust stomach colonization

[5,7,8,42], suggesting the colonization defect of csd4 (and csd1 and

csd3) mutants relates to altered motility. As we could only measure

motility defects in gel-like media and gastric mucin attains gel-like

properties only at low pH [39], helical shape may be particularly

required for penetration of the more luminal (and acidic) mucus

layer of the stomach to gain access to its extracellular niche within

the more neutral, cell proximal gastric mucus.

In addition to helical morphology, another defining character-

istic of Helicobacter pylori is its highly plastic genome. As described

here and in a previous study [13], microscopic analysis of 2000

randomly mutagenized clones yielded nine mutants with altered

cell shape. This rather limited screen led to the discovery of six

genes required for helical cell shape but not cell growth, cell

polarity (as measured by normal polar flagellar assembly), or the

coccoid cell shape transformation that occurs in late stationary

phase. Each of these genes is conserved in all H. pylori genomes

that have been sequenced to date, suggesting H. pylori maintains a

complex molecular program dedicated to promoting helical rod

shape during log phase growth. In contrast, the recently described

H. pylori coiled coil rich proteins (Ccrp), which form cytosolic

filaments and may influence cell shape, are variably present across

strains [43].

Unlike E. coli, H. pylori contains high levels of uncrosslinked

pentapeptide in the PG sacculus [18] and does not encode low

molecular weight penicillin binding protein homologues. Howev-

er, three cell shape-determining genes encode DD-EPases/CPases

(Csd1-3) [13,22], and here we show csd4 encodes a DL-CPase

(Csd4). Thus remodeling of PG peptides does occur in this

organism (Figure 6). Our PG analysis and in vitro assay of protein

activity show that Csd4 has DL-CPase activity on tripeptide

monomers, cleaving the terminal mDap residue to produce

dipeptide monomers. Additional enzymes must convert uncros-

slinked pentapeptides into tetrapeptides and tetrapeptides into the

tripeptide substrate of Csd4. Csd3 was shown to have in vitro DD-

CPase activity on a monomeric pentapeptide substrate in addition

comparisons to wild-type had p,0.00001 (B, D–F). G) Summary of morphological epistasis relationships. The average cell contour model generated
by CellTool is shown for each strain. Two contours are shown for the morphologically variable csd3 mutant representing two distinct aspects of the
shape distribution of this mutant (curvature values of 3 (mode) and 6 (right-hand tail)). Strains used: LSH100, LSH123, LSH134, LSH146, MLH3, MLH4,
NSH152a, NSH153a, NSH160a, NSH161.
doi:10.1371/journal.ppat.1002603.g003
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Figure 4. Assessment of the straight rod H. pylori’s colonization and pro-inflammatory potential. A) One week C57BL/6 mouse
competition data compiled from three independent experiments. Data are plotted as a competitive index: [CFU/mLMUT:CFU/mLWT/Complement stomach
output]/[CFU/mLMUT:CFU/mLWT/Complement inoculum] with each data point representing a single mouse. Black points indicate mice from which only
one strain was recovered. Strains used: LSH100, LSH122, LSH124. B–D) Survival at low pH (B), in the presence of polymyxin B (C), or in high salt (D).
Data comprise two independent experiments of four replicates per strain and condition (mean 6 SD). Strains used: NSH57, LSH18. E) IL-8 production
during infection of AGS gastric epithelial cells. Culture supernatants of triplicate wells were assayed for IL-8 using a commercial ELISA assay after
infection at a multiplicity of infection of 10 (mean 6 SD). Shown are data from one of three independent experiments with similar results. Strains
used: NSH57, LSH13, LSH18.
doi:10.1371/journal.ppat.1002603.g004
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to DD-EPase activity on tetra–pentapeptide dimers [22] and thus

may initiate a trimming cascade on uncrosslinked muropeptides in

H. pylori. However, csd3 PG changes are not epistatic to csd4, which

suggests Csd3 is not required to generate Csd4 tripeptide substrate

and insinuates the existence of another peptidase with redundant

DD-CPase activity.

How trimming of uncrosslinked muropeptides by Csd3, Csd4,

and likely other proteins contributes to cell shape remains to be

determined. H. pylori may control the availability of specific

monomeric species to limit or localize the formation of crosslinks.

We and others have proposed models of cell curvature and twist

based on the overall and/or localized extent of PG crosslinking

[13,44]. Since the transpeptidation reaction requires both donor

pentapeptides and mDap-containing acceptors (penta-, tetra-, or

tripeptides), the dipeptide-generating function of Csd4 may

prevent crosslinking in certain regions of the sacculus. As such,

the increase in tetra–tripeptide crosslinking observed in csd4

mutants could simply result from the overabundance of cross-

linking-active tripeptide in the sacculus. This scenario seems likely

since purified Csd4 only shows activity on monomeric species.

Alternatively, the occurrence of shorter monomeric species,

namely dipeptides, in the sacculus is thought to signify ‘‘old’’ PG

and may serve as a signal for the synthesis machinery to assemble

and insert new PG [16,45]. Localized differences in the rate of PG

synthesis have been shown to drive cell curvature in Caulobacter

crescentus [46].

Surprisingly, the csd5 mutant shows negligible perturbations of

global PG composition indicating Csd5 is not required for Csd4

enzymatic activity. The observations that csd1 is epistatic to both

csd4 and csd5, and that csd3 is epistatic to neither csd4 nor csd5,

suggest that csd4 and csd5 act at a similar stage of helical cell shape

specification. The csd4csd5 double mutant resembled the csd4

mutant both in global PG changes and by having a straighter

shape than the csd5 mutant. Csd5 bears a probable transmem-

brane domain or signal sequence allowing localization to the inner

membrane and/or periplasm, as well as a bacterial SH3 domain in

the C-terminus, which could allow for interactions with other PG

peptidases and/or PG. The epistasis of csd4 on csd5 could suggest

Figure 5. Motility of H. pylori cell shape mutants in soft agar and viscous polymer solutions. A, D) Motility phenotype of indicated strains
in soft agar (mean halo diameter 6 SD in 0.3% soft agar after four days). Data shown are from one experiment of 17–22 stabs/strain and are
consistent with the findings from replicate experiments. Contours representative of each strain’s average cell shape (see Figure 3 legend) are shown
below panel D and are superimposed on a grid to highlight the slight differences in cell curvature that correlate with motility. p-values were
generated using one-way ANOVA with the Bonferroni correction for multiple comparisons. B–C) Velocity of wild-type and the csd4 mutant in broth
containing porcine mucus (B) and methylcellulose (C). Data shown are the mean 6 SD from measurements of 9–30 cells/strain/condition. No
statistically significant differences between wild-type and the csd4 mutant were observed in any condition (p.0.2, Student’s t-test with equal
variances). Strains used: A) LSH100, LSH122, LSH123; B–C) NSH57, LSH18; D) LSH100, LSH134, NSH152a, LSH146, NSH153a, NSH160a.
doi:10.1371/journal.ppat.1002603.g005
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Csd5 acts downstream of Csd4. Csd5 might recognize dipeptides

generated by Csd4 enzymatic activity and provide an activating

signal for cell shape modulation, perhaps through recruitment of

PG synthesis enzymes. Alternatively, Csd5 may localize Csd4

activity in a particular pattern conducive for helical cell shape

generation. In this model, absence of Csd5 would lead to

randomly located Csd4 activity which could alter cell shape

without altering the global PG composition. Recently two

lipoprotein activators of the major PG synthases in E. coli have

been identified, providing a paradigm for localized activation of

PG modifying enzymes [47,48].

The PG modifications caused by the straight and curved rod

classes of shape genes appear largely independent. There is no

epistasis in the PG phenotypes of the double mutants we tested;

each double mutant shows changes that are additive or

intermediate compared to the single mutant phenotypes. More-

over, we do not observe a genetic hierarchy of shape phenotypes;

straight rod shape is not epistatic to the seemingly more complex

curved and helical rod shapes. Instead, the curved rod shape of

csd1 is epistatic to the straight rod shape of csd4 and csd5. Our

genetic interaction studies suggest a minimum of two distinct

networks that alter PG and cell shape in H. pylori: a network

containing Csd1, Csd2, and CcmA that generates helical twist

through relaxation of tetra–pentapeptide crosslinking and a

network containing Csd4 and Csd5 that generates curvature

through some consequence of monomeric muropeptide trimming.

While straight rod csd4 and csd5 mutants appear to lack curvature

and twist, we cannot be certain whether their protein activities

contribute to twist or whether the activities of Csd1, Csd2, and

CcmA are generating twist in the absence of Csd4/5, but in a

manner that is not apparent in the absence of curvature. Csd3

appears to play a role in both networks, as it has activity on both

crosslinked and uncrosslinked muropeptides. Further refinement

of a model incorporating these complex modifications of cross-

linked and uncrosslinked muropeptide species in the generation of

helical cell shape will require further characterization of Csd and

CcmA protein activities and spatial organization, as well as

identification of missing peptidases and other co-factors.

Some components of the H. pylori helical shape-generating

program are found throughout the Proteobacteria while others

appear subdivision- or even species-specific. Homologues of the

LytM peptidase Csd1 are the most widely conserved and found in

all subdivisions of the Proteobacteria, but not exclusively in

organisms with curved to helical shape [13]. Several species have

more than one Csd1 homologue (up to 9), including H. pylori (Csd1

and Csd2). The LytM peptidase Csd3 and the M14 peptidase

Csd4 are both conserved within the Delta/Epsilonproteobacteria

and Csd4 homologues showing .50% similarity to Csd4 are

found only in curved and helical rod shaped organisms. The

Campylobacter jejuni Csd4 homologue, Pgp1, also has LD-CPase

activity and promotes the helical rod shape of that organism [23].

Additionally, Csd1/3-encoding Epsilonproteobacterial species

with other morphologies, such as rod-shaped Campylobacter hominis

(ATCC BAA-381) and oval-shaped Sulfurovum (NBC37-1), do not

encode a Csd4 homologue (BLASTP E-values.0.1). Of the two

shape-generating proteins that do not encode putative enzymes,

CcmA-like bactofilins are found throughout the Proteobacteria as

well as other bacterial phyla. These proteins form cytoplasmic

filaments that in one case can bind a PG synthesis enzyme leading

to localized activity and have been shown to cause diverse cell

Figure 6. Current understanding of muropeptide modification in H. pylori. This schematic shows peptide modification activities that can
generate the muropeptides observed in the H. pylori sacculus. Known H. pylori proteins demonstrated (Csd3, Csd4) or predicted (Csd1, Csd2) to
perform these activities are indicated. CPase, carboxypeptidase; EPase, endopeptidase.
doi:10.1371/journal.ppat.1002603.g006
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shape phenotypes when over or under expressed [49–51]. In

contrast, Csd5 appears restricted to H. pylori and the closely related

species H. acinonychis. Differences in the genomic carriage of these

proteins may contribute to the diversity of species- and strain-

specific bacterial cell shapes.

In summary, we have discovered additional components of the

helical cell shape program in H. pylori, including a new PG

modification enzyme (Csd4) and a protein (Csd5) that may localize

or participate in sensing the activity of PG modification

machinery. We also provided evidence that the six shape-

determining proteins identified in our screen form two or more

networks that cooperatively shape the cell wall through two types

of cell wall modifications. For the first time we were able to

establish a pattern of association between H. pylori’s cell shape and

motility in gel-like media, bolstering the conclusion that the

stomach colonization defects of H. pylori cell shape mutants are

rooted in shape-dependent alterations of motility.

Materials and Methods

Ethics statement
Mouse infection studies were done under practices and

procedures of Animal Biosafety Level 2 and carried out in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institutes of

Health. The facility is fully accredited by the Association for

Assessment and Accreditation of Laboratory Animal Care and

complies with all United States Department of Agriculture, Public

Health Service, Washington State and local area animal welfare

regulations. All activities were approved by the FHCRC

Institutional Animal Care and Use Committee.

Bacterial strains and growth
Strains used in this work, as well as primers and plasmids used

in strain construction are described in Tables S3, S4 and S5 in

Text S1. H. pylori were grown on horse blood (HB) agar plates or

in Brucella broth (BD Biosciences) containing 10% fetal bovine

serum (Hyclone) but no antimicrobials (BB10) under microaerobic

conditions as previously described [13]. For resistance marker

selection, HB plates were supplemented with 15 mg/mL chloram-

phenicol, 25 mg/mL kanamycin, 36 mg/mL metronidazole, or

60 mg/mL sucrose. For culturing bacteria from mouse stomachs,

200 mg/mL bacitracin was added to eliminate contaminating

species of the normal mouse microbiota. For plasmid selection and

maintenance in E. coli, LB agar or broth was supplemented with

30 mg/mL kanamycin or 100 mg/mL ampicillin.

Phase contrast and TEM microscopy of H. pylori cells and
quantitative morphology analyses

Phase contrast microscopy and TEM were performed as

described [13]. Quantitative analysis of phase contrast images of

bacteria were performed with the CellTool software package as

described [13]. A detailed description of Kolmogorov–Smirnov

statistical comparisons is provided in Text S1. Cell length was

estimated using the central axis length calculated by CellTool for

300–350 cells/strain. Cell width was measured manually using

ImageJ from TEM images (http://rsbweb.nih.gov/ij/) of 25–50

cells/strain.

Bioinformatic analyses
Signal peptide predictions were obtained from the Compre-

hensive Microbial Resource web database (http://cmr.jcvi.org/

tigr-scripts/CMR/CmrHomePage.cgi), structural threading was

performed with Phyre [52], and 3D molecular structures were

visualized using PyMOL [53]. Further detail is provided in Figure

S3 in Text S1.

PG analyses and Csd4 enzyme assay
PG was prepared from H. pylori cells (100–500 ODs) grown on

HB plates as described [13]. Purified PG (0.5 mg/mL) was

incubated with His-tagged Csd4 (5 mM) purified from E. coli (as

described in Text S1) in 20 mM sodium phosphate, 5 mM ZnCl2,

100 mM NaCl, pH 4.8 for 4 hrs at 37uC on a Thermomixer at

750 rpm. A control sample received no enzyme, and another

enzyme sample contained 10 mM EDTA and no ZnCl2. The

samples were incubated with 10 mg of cellosyl (Hoechst, Frankfurt

am Main, Germany) for 1 hr, boiled for 10 min and centrifuged at

room temperature for 15 min at 16,0006g. The muropeptides

present in the supernatant were reduced with sodium borohydride

as described [54]. HPLC analysis was performed as described

[13,55]. Eluted muropeptides were detected by their absorbance at

205 nm. The muropeptide profile of the wild-type was similar to

the published profile of Helicobacter muropeptides [18] allowing the

unambiguous assignment of known muropeptide structures to the

peaks detected [13]. To study the specificity of Csd4, the above

assay was conducted with pure, unreduced muropeptides, the

disaccharide tripeptide (0.02 mg/mL) and disaccharide tetrapep-

tide (0.07 mg/mL), obtained from the laboratory of J.-V. Höltje

(Max-Planck-Institute, Tübingen, Germany) in lieu of PG.

Motility, growth, and stress testing
Soft agar motility experiments were performed as described [56].

Growth and stress testing was accomplished using 100–200 mL

BB10 mini-cultures grown in a 96-well plate as described [13]. For

analysis of live motile cells, fresh liquid cultures were grown to an

optical density of 0.5–0.7 at 600 nm (OD600), concentrated 106,

and kept warm at 37uC in a CO2 incubator. Just prior to imaging,

5–10 mL of cell concentrate was added to 100 mL of pre-warmed

test solution: Brucella broth (BD Biosciences) supplemented with

5% fetal bovine serum (Hyclone, BB5), or BB5 containing 0.25–

1.0% methylcellulose, 2.5–10% Ficoll PM 400, or 0.1–2.5% crude

porcine mucin (all Sigma). Each cell suspension was mixed by gentle

pipetting and immediately applied to a depression slide. Movies

were captured using a 606ELWD Plan Fluor (NA 0.7) objective

mounted on a Nikon TE 200 microscope at a frame rate of 100

millisecond intervals with a Nikon CoolSNAP HQ CCD camera

controlled by MetaMorph software (MDS Analytical Technologies).

Cells were tracked using the ImageJ Manual Tracker (http://

rsbweb.nih.gov/ij/) and velocity calculations performed with

Intercooled Stata 8.0 (StataCorp).

Mouse colonization experiments
Female C57BL/6 mice 24–28 days old were obtained from

Charles River Laboratories and certified free of endogenous

Helicobacter infection by the vendor. Mice were housed and infected

as described [57] using 56107 cells/strain in the inocula for

competition experiments. After 1 week the mice were euthanized by

inhalation of CO2 and the glandular stomach removed and opened

to remove any food. The whole stomach was homogenized in 1 mL

BB10. Dilutions of homogenate were plated to non-selective and

selective HB plates to enumerate bacteria of each genotype. If no

bacteria were recovered we set the number of colonies on the lowest

dilution plated to 1 to calculate the competitive index.

Co-culture experiments
The human gastric adenocarcinoma cell line AGS (ATCC

CRL-1739) was co-cultured with H. pylori strains at a multiplicity
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of infection of 10 for analysis of IL-8 release at 6 and 24 hrs as

described previously [58].

Supporting Information

Text S1 Supporting information. This file contains supple-

mental materials and methods, four supplemental figures, five

supplemental tables, and references for the supporting informa-

tion. Supplemental materials and methods describe genetic

manipulations, Csd4 purification, statistical analysis of cell shape

distributions, and bioinformatics analyses. Supplemental figures

include Figure S1 Phylogenetic relatedness of Csd4 and Csd5

homologues and morphological complementation of their respec-

tive mutant strains, Figure S2 Growth of wild-type, csd4, and csd5

mutant strains independently and in co-culture, Figure S3

Prediction of Csd4 functional residues through structural thread-

ing analysis, and Figure S4 Morphological characterization of

cross-shape class and straight rod double mutants. Supplemental

tables include Table S1 Muropeptide composition of Csd4 treated

Dcsd4 mutant sacculi, Table S2 Muropeptide composition of wild-

type, mutant, and complemented mutant strains, Table S3

Bacterial strains, Table S4 Primers, and Table S5 Plasmids.

(PDF)

Video S1 Video depicting motile helical wild-type and
straight rod csd4 mutant H. pylori in broth media. Five

second video with a frame rate of 0.1 seconds taken at 6006. The

csd4 mutant is on the left, wild-type on the right. Note that

although cell morphology differences are not readily apparent at

this magnification, both strains exhibit similar motility.

(MOV)

Video S2 Video depicting motile helical wild-type and
straight rod csd4 mutant H. pylori in 0.5% methylcellu-
lose. Five second video with a frame rate of 0.1 seconds taken at

6006. The csd4 mutant is on the left, wild-type on the right. Note

that although cell morphology differences are not readily apparent

at this magnification, both strains exhibit similar motility.

(MOV)
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