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Dissecting the WRKY Web of Plant Defense
Regulators
Thomas Eulgem

During the past ten years, a large body of
circumstantial evidence has accumulated,
implicating WRKY factors in transcriptional

reprogramming during plant immune responses [1–3].
Encoded by complex gene families in higher plants [4], these
transcription factors share a DNA-binding domain (WRKY
domain) comprising approximately 60 amino acids [5].
Additional conserved features of WRKYs are limited to
separate subgroups of this family and include putative
leucine zippers, nuclear localization signals, calmodulin
binding sites, and several domains of unknown function [5–7].
Multiple studies have demonstrated the ability of WRKYs to
bind to promoters of defense-associated genes via specific
interactions of their WRKY domains with pathogen response
elements termed W boxes (TTGACC/T) [8–11]. Both
activating and repressing effects of WRKYs and W boxes on
transcription have been observed [12–14]. It has also been
shown that stable and transient overexpression of several
WRKYs in the model plant Arabidopsis thaliana (Arabidopsis)
conveys enhanced resistance to various bacterial or fungal
pathogens [15–17].

The majority of the 74 Arabidopsis WRKY genes are
transcriptionally inducible upon pathogen infection and
other defense-related stimuli [18,19]. Interestingly, WRKY
promoters are typically enriched for W boxes, thereby
pointing to the existence of intricate regulatory circuits
wherein functionally interconnected members of this family
reside [19]. Indeed, multiple studies have revealed
interactions of WRKYs with either their own promoters or
those of other family members, suggesting that these
transcription factors extensively engage in auto- and cross-
regulation [9,12,13,20]. Such a WRKY web may ensure fast
and efficient signal amplification. It may also allow for a
tighter control in limiting the extent of defense responses via
negative feedback mechanisms.

A central component of the transcriptional network
activated during immune responses in Arabidopsis is
Nonexpresser of Pathogenesis-Related genes 1 (NPR1) [21].
This transcriptional cofactor is required for several different
types of plant immune responses, including basal defense and
systemic acquired resistance (SAR), which are dependent on
the defense hormone salicylic acid (SA) [22]. Upon induction
of basal defense or SAR, NPR1 is translocated from the
cytosol to the nucleus where it mediates the binding of TGA
basic leucine zipper protein transcription factors to their
cognate promoter elements, resulting in the upregulation of a
multitude of genes [23–28]. In addition, NPR1 is functionally
linked to WRKYs during plant immune responses.
Intriguingly, WRKYs control NPR1 expression on the one
hand, while on the other hand seem to operate downstream
from it [17,29,30]. Until now, the identity of WRKYs involved

in NPR1-dependent signaling branches has for the most part
remained a mystery.
In contrast to WRKYs, NPR1 and TGA basic leucine zipper

proteins are members of small families of only six and ten
members in Arabidopsis, respectively. While mutant analyses
have clearly proven the roles of NPR1 and several defined
TGA basic leucine zipper proteins in pathogen defense [31–
33], such direct genetic evidence is scarce for WRKYs. With
the exception of an atypical family member (AtWRKY52/
RRS1) [34], no WRKYs have been found to be involved in
plant immune responses by mutant screens or other forward
genetics approaches. In many cases, reverse genetics–based
strategies to reveal biological roles of individual WRKYs using
sequence-indexed Arabidopsis transferred DNA (T-DNA) or
transposon insertion mutants have also proved to be
unsuccessful in revealing defense-related phenotypes [2].
Functional redundancy among structurally related WRKY
family members has been partially blamed for these
experimental shortcomings [7]. In addition, in vivo roles of
individual WRKYs may be limited to defined branches or
nodes of the defense network. Hence, elimination of their
function by mutation may result in quite specific or subtle
phenotypes. Therefore, a major challenge in dissecting the
WRKY web appears to be accurately pinpointing each
WRKY’s sphere of activity prior to mutant analyses. This
would narrow the choice of defense phenotypes to examine
and may allow for the selection of appropriate candidates for
double or higher-order mutant analyses.
In a study published in this issue of PLoS Pathogens, Wang et

al. succeeded in applying such a strategic approach [35]. A
cleverly designed microarray experiment uncovered several
WRKY genes that are direct transcriptional targets of NPR1.
Wang and colleagues profiled transcriptome changes in
transgenic Arabidopsis plants overexpressing an NPR1-GR
(glucocorticoid receptor) fusion protein in an npr1 mutant
background. Combined application of SA and the synthetic
glucocorticoid dexamethasone activated the NPR1 pathway
and triggered translocation of NPR1-GR to nuclei. By
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simultaneously blocking protein biosynthesis with
cycloheximide, Wang and colleagues eliminated transcription
of indirect NPR1 targets (see also [36]). Among transcripts
that are directly upregulated by NPR1-dependent
mechanisms they found eight encoding WRKYs. Subsequent
analysis of known npr1 phenotypes using single and double T-
DNA mutants of most of these candidates confirmed their
roles in NPR1 signaling.

These experiments established AtWRKY18 as a positive
regulator of basal defense and SAR operating downstream
from NPR1. Two previous studies had already implicated this
family member in basal defense [7,16]. Overexpression of
AtWRKY18 in both studies supported its role as a positive
defense regulator. However, findings by Xu et al. using the
same wrky18 insertion allele as Wang and colleagues
(SALK_093916) suggest that it represses basal defense [7].
This discrepancy may have arisen from differences in
experimental conditions. Also, protein–protein interaction
studies have suggested that a complex interplay between
AtWRKY18 and two structurally related family members,
AtWRKY40 and AtWRKY60, modulates their function [7].
These three WRKYs can form homodimers or heterodimers
via N-terminal leucine zippers, a feature conserved among
them. Differential formation of different types of WRKY
dimers may widen the spectrum of AtWRKY18 functions and
may allow this regulator to act both as an activator and
repressor of defense reactions.

Additional direct targets of NPR1 examined by Wang et al.
are AtWRKY53, AtWRKY54, and AtWRKY70. These three
WRKYs are structurally closely related to each other and
distinct from AtWRKY18. While the AtWRKY54 and
AtWRKY70 proteins show the highest degree of sequence
similarity, the AtWRKY53 and AtWRKY70 genes exhibit
strongly correlated expression during SAR. None of the single
mutants of these three genes examined by Wang and
colleagues showed altered disease resistance. However,
combined insertions in the coexpressed AtWRKY53 and
AtWRKY70 genes resulted in a moderate but significant
reduction of basal defense to virulent Pseudomonas syringae
bacteria, suggesting partially overlapping functions of these
two genes. Consistent with this finding, recent studies by Li et
al. as well as Knoth et al. have demonstrated roles of
AtWRKY70 in SA-mediated basal defense to the biotrophic
fungus Erysiphe cichoracearum and the oomycete
Hyaloperonospora parasitica, respectively [37,38]. The study by
Knoth et al. extended roles of this WRKY to SA-dependent
gene-for-gene resistance [38]. In addition, AtWRKY70 was
also shown to be required for defense to the fungal
necrotroph Botrytis cinerea [39]. Although resistance to
necrotrophs is typically mediated by SA-independent
signaling mechanisms, AtWRKY70 appears to be
transcriptionally upregulated by an SA-dependent pathway
in response to B. cinerea infections. Hence, a common theme
regarding the function of AtWRKY70 seems to be its
requirement for SA-mediated defenses.

Furthermore, Wang and coworkers found that AtWRKY70
contributes to a second NPR1-mediated function, which is
suppression of SA accumulation [35]. In untreated Arabidopsis
tissues, SA concentrations are low but increase to high levels
after pathogen infection. NPR1 limits the extent of SA
accumulation. The tested wrky70 single mutant exhibited
markedly enhanced levels of SA in untreated plants. This

effect is more pronounced in a wrky70/wrky54 double mutant,
which also allowed SA to accumulate to an even higher level
after pathogen infection. Hence, the structurally closely
related AtWRKY70 and AtWRKY54 have overlapping roles in
counteracting accumulation of SA.
Finally, Wang et al. established a role of the so far elusive

AtWRKY58 as a negative regulator of SAR [35]. In summary,
the strategy applied by Wang and colleagues proved to be
extremely successful in providing a deeper insight into the
roles of WRKYs operating directly downstream from NPR1 in
SA-dependent transcriptional cascades. This strategy can be
modified and reiterated for a stepwise dissection of
additional layers in the plant defense signaling network.
Intriguingly, members of the Xinnian Dong lab have already
initiated experiments to identify direct transcriptional
targets of AtWRKY18 [35]. &
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