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Abstract

SARS-CoV-2 infection results in highly heterogeneous outcomes, from cure without symp-

toms to acute respiratory distress and death. Empirical evidence points to the prominent

roles of innate immune and CD8 T-cell responses in determining the outcomes. However,

how these immune arms act in concert to elicit the outcomes remains unclear. Here, we

developed a mathematical model of within-host SARS-CoV-2 infection that incorporates the

essential features of the innate immune and CD8 T-cell responses. Remarkably, by varying

the strengths and timings of the two immune arms, the model recapitulated the entire spec-

trum of outcomes realized. Furthermore, model predictions offered plausible explanations of

several confounding clinical observations, including the occurrence of multiple peaks in viral

load, viral recrudescence after symptom loss, and prolonged viral positivity. We applied the

model to analyze published datasets of longitudinal viral load measurements from patients

exhibiting diverse outcomes. The model provided excellent fits to the data. The best-fit

parameter estimates indicated a nearly 80-fold stronger innate immune response and an

over 200-fold more sensitive CD8 T-cell response in patients with mild compared to severe

infection. These estimates provide quantitative insights into the likely origins of the dramatic

inter-patient variability in the outcomes of SARS-CoV-2 infection. The insights have implica-

tions for interventions aimed at preventing severe disease and for understanding the differ-

ences between viral variants.

Author summary

Understanding the origins of the highly diverse outcomes of SARS-CoV-2 infection, rang-

ing from clearance without symptoms to death, is an important challenge. Growing
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evidence points to the crucial roles of innate immune and CD8 T-cell responses in deter-

mining the outcomes. Delineating and quantifying the roles of these two immune arms

would help better understand the origins of the diverse outcomes and inform intervention

strategies aimed at preventing severe disease. Here, we developed a mathematical model

of within-host SARS-CoV-2 dynamics and applied it to analyze clinical datasets compris-

ing longitudinal viral load measurements from patients experiencing different severities

of infection. Model predictions showed how a dynamical interplay between the strengths

and the timings of innate and CD8 T-cell responses could recapitulate the diverse out-

comes observed. Furthermore, the model provided excellent fits to the data and estimated

that the innate immune and CD8 T-cell responses were nearly 80-fold and 200-fold stron-

ger, respectively, in mildly versus severely infected patients. These estimates offer quanti-

tative insights into the likely origins of the diverse outcomes of SARS-CoV-2 infection.

We highlight potential implications for interventions and for understanding the differ-

ences between viral variants.

Introduction

Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to

remarkably heterogeneous clinical outcomes: Some individuals are cured without any symp-

toms, others experience mild to moderate symptoms, and yet others suffer severe disease,

requiring hospitalization and intensive care, with a sizeable fraction of the latter suffering

death [1–3]. While viral factors including mutations [4] may affect the outcomes, the heteroge-

neity in the outcomes has been observed from the early days of the pandemic [1, 3], before the

different variants of SARS-CoV-2 emerged [5], suggesting that it potentially originates from

the variability in host factors across individuals [6]. Indeed, several demographic correlates of

disease severity, including gender, comorbidities, and age, have been identified [7]. The causes

of the heterogeneous outcomes, however, are yet to be fully understood.

Accumulating evidence suggests that the variability in the immune responses across indi-

viduals, particularly innate and CD8 T-cell responses, may underlie the heterogeneous out-

comes realized. Innate immune responses, involving type I and III interferons, are mounted

soon after infection [8]. Patients with mild disease had higher levels of interferon responses

early in infection in their upper respiratory airways than those with more severe disease [9,10].

A few days into the infection, the effector CD8 T-cell response is triggered and appears to play

a critical role in the clearance of the infection [11]: The earlier the first detectable CD8 T-cell

response, the shorter is the duration of the infection [12]. CD8 T-cell numbers were higher in

the bronchoalveolar lavage fluids of individuals with mild/moderate symptoms than in those

with severe infection [13]. Clonal expansion of CD8 T-cells was compromised in patients with

severe symptoms [13,14]. The severity of the symptoms was also proportional to the level of

exhaustion of CD8 T-cells [15,16].

If the disease is resolved in time, typically in 2–3 weeks, the cytokines and activated CD8 T-

cell populations decline and eventually fade away, leaving behind memory CD8 T-cells [11]. If

the disease is not resolved in a timely manner, uncontrolled cytokine secretion may result, trig-

gering immunopathology and severe disease [6]. Elevated interferon responses were detected

in severely infected and deceased patients late in infection [9,17,18], with the lung suffering the

most damage [19]. With prolonged disease, where viral load could be detected in patients over

extended durations–up to 66 days on average in some cohorts [20–22]–proliferation and dif-

ferentiation of CD8 T-cells were compromised [20].
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Other arms of the immune system appear to contribute much less to the clearance of the

infection. Antibodies arise late, a couple of weeks into the infection [11,23], and, while impor-

tant in vaccine-mediated protection [24–26], appear to play a minor role in clearing the infec-

tion in unvaccinated individuals [11]. Antibody titers are higher in severely infected than in

mildly infected individuals, suggesting that antibody production trails virus growth [11].

Whereas a subset of antibodies may aid viral clearance [27], autoantibodies, targeting cyto-

kines and cell surface and structural proteins of the host, may worsen disease [28]. Innate

immune cells, such as neutrophils, macrophages, and natural killer cells, too are thought not to

contribute significantly to clearance, but may nonetheless enhance immunopathology [6,29].

Taken together, current evidence points to the crucial roles of the innate immune and CD8

T-cell responses in determining the outcomes of the infection. Delineating and quantifying

their roles would help better understand the origins of the heterogeneous outcomes and have

implications for interventions. Here, we developed a mathematical model of within-host

SARS-CoV-2 dynamics that incorporates the key features of the innate and the CD8 T-cell

responses, tested its ability to recapitulate the heterogeneous outcomes realized, and employed

it to analyze multiple patient datasets, representative of the heterogeneous outcomes.

Results

Mathematical model of within-host SARS-CoV-2 dynamics

We modeled disease progression in an individual infected by SARS-CoV-2 by following the

time-evolution of the population of infected cells (I), the strength of the effector CD8 T-cell

response (E), the strength of the cytokine-mediated innate immune response (X), and tissue

damage (D) (Fig 1). Following previous studies [30–32], we considered the essential interac-

tions between these entities and constructed the following equations to describe their time-

evolution:

dI
dt
¼ k1 1 � εIXð ÞI 1 �

I
Imax

� �

� k2IE ð1Þ

dE
dt
¼ k3

IE
kp þ I

 !

� k4

IE
ke þ I

� �

ð2Þ

dX
dt
¼ k5I � k6X ð3Þ

dD
dt
¼ aIEþ bX � gD ð4Þ

Here, the infected cell population follows logistic growth [30] with the per capita growth

rate k1 and carrying capacity Imax. (The list of all model parameters is in Table 1.) This growth

arises from the infection of target cells by virions produced by infected cells [30]. Imax is the

maximum number of cells that can get infected, due to target cell or other limitations. The

growth rate k1 is assumed to be reduced by the innate immune response, X, with the efficacy

εIX, due to interferon-mediated protection of target cells and/or lowering of viral production

from infected cells [8]. Effector cell-mediated killing of infected cells is captured by a mass

action term with the second-order rate constant k2. The proliferation and exhaustion of CD8

T-cells are both triggered by infected cells at maximal per capita rates k3 and k4, respectively.

kp and ke are the levels of infected cells at which the proliferation and exhaustion rates are half-
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maximal, respectively. Following previous studies, we let k3<k4 and kp<ke, so that prolifera-

tion dominates at low antigen levels and exhaustion at high antigen levels [30,31,33], consis-

tent with the delayed onset of exhaustion relative to proliferation [34]. Alternative forms have

been employed to describe exhaustion, which allow cumulative antigenic stimulation to trigger

exhaustion, but have been shown to yield similar outcomes to the present form [30,35]. We

explore these alternative forms below. The innate response, X, is triggered by infected cells at

the per capita rate k5 and is depleted with the first-order rate constant k6.

To assess the severity of infection, we employed D, which represents the instantaneous tis-

sue damage, with contributions from CD8 T-cell mediated killing of infected cells, determined

by αIE, and from proinflammatory cytokines, represented by βX. Inflamed tissue is assumed

to recover with the first order rate constant γ. Using D, we quantified the extent of immunopa-

thology, P, as follows. In our model, D typically rose as the infection progressed and declined

as it got resolved (see below). We reasoned that the severity of infection would be determined

by the maximum tissue damage suffered as well as the duration of such damage. Significant

Fig 1. Schematic of the mathematical model of within-host SARS-CoV-2 infection. The key quantities and their interactions contained in our model (Eqs 1–

4) are illustrated. Arrows and blunt-head arrows depict positive and negative regulation, respectively. The parameters and rate expressions shown next to the

arrows are described in the text.

https://doi.org/10.1371/journal.ppat.1010630.g001
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damage that is short-lived or minimal damage that is long-lived may both be tolerable and

lead to mild symptoms. We, therefore, calculated the area under the curve (AUC) of D as a

measure of immunopathology. To aid comparison across individuals, we set the scale for

immunopathology by the AUC of D calculated using the population parameters for mildly

infected individuals (see below), starting from when D ascended above its half-maximal level

to the time when it descended below that level (S1 Fig). For any individual, we computed the

AUC of D between the same threshold levels (half-maximal levels corresponding to the popu-

lation parameters). We reported the ratio of the AUC of the individual to that of the popula-

tion parameters as a measure of relative immunopathology, P, of the individual and the

associated disease severity. P>1 would thus imply more severe disease than the typical mildly

infected individual, whereas P<1 would indicate less severe disease. We explored alternative

ways of estimating P from the predictions of D and found that they all yielded similar qualita-

tive conclusions (S1 Text and S2 Fig).

Eqs 1–4 along with the above formalism for estimating immunopathology presented a

model of within-host SARS-CoV-2 dynamics that incorporated the essential features of innate

immune and CD8-T cell responses. To test whether the model was representative of the

dynamics in vivo and to estimate model parameters, we fit the model to patient data.

Model was consistent with in vivo dynamics

To test our model, we sought datasets that included accurate estimates of the time of contract-

ing the disease because the initial phases of the immune response were likely to be important

in determining disease outcome; in asymptomatic individuals, this early response clears the

infection [36]. We found such data in a study of one of the first SARS-CoV-2 transmission

chains in Germany in early 2020 [37,38]. The study traced the dates of first exposure to the

virus of each patient in the transmission chain [37] (S2 Text and S1 Table). Further, daily viral

load data, measured in nasopharyngeal swab and sputum samples, from all patients starting

from the onset of symptoms or earlier were reported [38]. We employed data from the sputum

samples first. We considered data from day zero to day 15 of the infection (S2 Text and S1–S3

Tables) to avoid any possible confounding effects from the humoral response, which is

mounted after 2 weeks in most patients [11,23].

Table 1. Model parameters and their description.

Parameter Description Units

k1 Per capita growth rate of infected cells day-1

k2 Second-order rate constant for effector cell-mediated killing of infected cells cells-1 day-1

k3 Per capita proliferation rate of CD8 T-cells day-1

k4 Per capita exhaustion rate of CD8 T-cells day-1

k5 Per capita triggering rate of innate immune response by infected cells cells-1 day -1

k6 Per capita depletion rate of innate immune response day-1

εI Per capita reduction in infected cell growth rate by the innate immune response dimensionless

Imax Carrying capacity of infected cells cells

kp Half maximal constant for proliferation rate of effector cells cells

ke Half maximal constant for exhaustion rate of effector cells cells

α Rate of tissue damage caused by CD8 cells cells-1 day -1

β Rate of tissue damage caused by innate immune response day-1

γ Rate of recovery of the damaged tissue day-1

τ Viral incubation period day

z Time period from the start of viral growth to symptom onset day

https://doi.org/10.1371/journal.ppat.1010630.t001
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All patients in this dataset had mild symptoms, which waned by day 7 after the first virolog-

ical test. The patients were of working age and otherwise healthy. In such patients, markers of

T-cell exhaustion are not significantly higher than healthy individuals and are markedly lower

than severely infected patients [15]. Therefore, to facilitate more robust parameter estimation,

we ignored CD8 T-cell exhaustion in the present fits (by fixing k4 = 0). Furthermore, we

assumed that the viral population, V, is in a pseudo-steady state with the infected cell popula-

tion, so that V/I. The assumption is supported by the large burst size of SARS-CoV-2 (~105

virions/cell) [39], which is comparable to that of HIV [40] and much larger than influenza

(~103 virions/cell) [41]. Because the dynamics of tissue damage (D) is dependent on but does

not affect disease dynamics in our model, we ignored D for the present fitting. This was further

justified because the patients considered for fitting were mildly/moderately infected and were

expected to have suffered minimal tissue damage. Because the patients were all similar, we

assumed that Imax would be similar in them and proportional to Vmax, the highest viral load

reported across the patients. We thus fit log10(I/Imax), i.e., log10(I�), calculated with our model

to the normalized data of log10(V/Vmax) (Methods). Our fits were not sensitive to Imax; best fit

parameter estimates were similar and/or had overlapping error ranges (S4A and S4B Table).

We allowed a delay following exposure to account for the incubation period before viral repli-

cation can begin. This delay, denoted τ, was introduced using Heaviside functions in our

model (see Eqs 5–7 in Methods). We used a nonlinear mixed-effects modeling approach for

parameter estimation [42]. Our model provided good fits to the data (Fig 2A) and yielded esti-

mates of the parameters at the population-level (Table 2) and for the individual patients

(Table 3). Visual predictive check and shrinkage of parameters estimated indicated the reliabil-

ity of our fits (S3 Fig). The fits indicated that our model was consistent with the dynamics in
vivo. We quantified the uncertainties in our individual patient fits and parameter estimates

using multiple realizations of the predictions with parameter combinations sampled from dis-

tributions conditioned on the individual patient data (S4 Fig and S5 Table).

To ascertain the robustness of our model and fits, we tested several variants of our model.

We fit variants without the adaptive response; without the innate response; with a logistic

growth formulation of the innate immune response; with the innate response amplifying the

adaptive response; or combinations thereof; to the same data (S3 Text and S6 Table). The fits

were all poorer than the present model as indicated by the AICc and BICc values (Fig 2 and S7

Table). We also examined a model that allowed effector cell proliferation to depend on the rate

of antigen increase and found it to be structurally similar to the present model (S3 Text). We

therefore employed the present model for further analysis.

Model elucidated plausible origins of distinct patterns of viral clearance

The best-fits above yielded important insights into the underlying dynamics of disease pro-

gression and clearance. First, our model offered a plausible explanation of the two distinct pat-

terns of clearance observed in the patients. Patients 1, 2, 4, and 14 had a single peak in their

viral load data followed by a decline leading to clearance (Fig 2A, open circles). Patients 7 and

10, in contrast, had a second peak following the first before clearance. The origins of these mul-

tiple peaks have been elusive [43]. For patients 7, 8, and 10, our best-fits predicted an early

innate immune response and a delayed CD8 T-cell response (Fig 2B and 2C). The second peak

was thus likely to arise from the interactions between the virus and the innate immune

response, before the CD8 T-cell response was mounted. To test this, we examined model pre-

dictions in the absence of the CD8 T-cell response.

In our model, the innate immune response, X, and infected cells, I, showed signatures of

the classic predator-prey interactions [44], with I the prey and X the predator: I grows in the
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absence of X, whereas X declines in the absence of I. I triggers the growth of X, which in turn

suppresses I. These interactions, as with the predator-prey system [44,45], result in oscillatory

dynamics (Fig 3A). Thus, following infection, I grows, causing a rise of X in its wake. When X
rises sufficiently, it suppresses I. When I declines substantially, the production of X is dimin-

ished and X declines. This allows I to rise again, and the cycle repeats. For the parameter values

chosen, the oscillations were damped and settled to a persistent infection state with non-zero I
and X (Fig 3B). Using stability analysis, we found that clearance was not a stable steady state of

the system (S4 Text). Thus, viral clearance was not possible in our model without the CD8 T-

cell response (E).

Fig 2. Model predictions are consistent with in vivo dynamics. (A) Best-fits of our model (lines) to patient data (symbols)

of normalized sputum viral load as a function of time from viral exposure [38]. The corresponding (B) innate immune

responses and (C) CD8 T-cell responses predicted by our model. The asterisks represent rescaled variables (see Methods).

Patient IDs, as provided in Böhmer et al. [37], are in the top-left corner of each subplot in (A).

https://doi.org/10.1371/journal.ppat.1010630.g002
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We next reintroduced CD8 T-cells in our simulations (Fig 3C and 3D). Our results indi-

cated that CD8 T-cells broke the oscillatory predator-prey cycles and facilitated clearance.

When E rises, it can suppress I independently of X. By lowering I, it creates the opportunity for

X to dominate I. Together, X and E can then clear the infection (Fig 3C and 3D). Note that pre-

vious modeling studies have shown that CD8 T-cells alone can drive viral clearance, but the

associated immunopathology (or disease severity) may depend on the innate immune

response [30].

It followed from the above analysis that the second peak in viremia seen in patients 7, 8 and

10 was likely to be a manifestation of the underlying predator-prey oscillations that occurred

before the CD8 T-cell response was mounted. Indeed, when we fit the data in the absence of

an effector response (E = 0), the fits were similar until the late stages of infection, when the

effector response is expected to be mounted, and yielded prolonged predator-prey like oscilla-

tions (S5 Fig). (We note that values of X�>1 imply that the innate immune response not only

prevents new infections but also reduces the population of infected cells, which could occur

either by the triggering of inflammatory cell death [46] or by driving infected cells to an antivi-

ral state [47].) In patients 3, 4, and 14, a relatively early CD8 T-cell response was predicted,

which precluded the second peak. In patients 1 and 2, both the innate and CD8 T-cell

responses were delayed, leaving little time for the oscillations to arise in the 15 day period of

our study.

Second, the post-exposure delay in viral replication varied from τ = 0.6 d to 6.5 d in the

patients analyzed (Table 3), with a mean±SEM of 2.5±0.8 days, reflecting the variability in the

time of the establishment of systemic infection following exposure, and consistent with the

variable prodromal period observed [48]. (Note that the mean mentioned is of the individual

patient parameters in Table 3 and is thus different from the population mean in Table 2.) The

initial, possibly stochastic [49], events during the establishment of infection might be

Table 2. Estimated population parameters of the model fit to the sputum viral load dataset [38] (Fig 2).

Parameter Unit Fixed effect (SD) Random effect (SD)

k1 day-1 4.49 (0.20) 0.28 (0.14)

k3 ×101 day-1 7.4 (1.19) 0.05 (0.17)

k�5 day-1 2.83 (0.83) 0.32 (0.31)

E�0 ×103 §day-1 6.65 (5.97) 0.25 (0.99)

k�p ×106 dimensionless 249.67 (284.22) 2.37 (0.86)

τ day 1.51 (0.60) 1.22 (0.25)

§ E� = k2. E (see Methods).

https://doi.org/10.1371/journal.ppat.1010630.t002

Table 3. Estimated individual parameters of the model fit to the sputum viral load dataset [38] (Fig 2). Units are the same as in Table 2.

Patient ID k1 k3×101 k�5 E�0 � 103 k�p � 106 τ

1 4.43 7.43 2.46 6.91 79.65 5.14

2 4.44 7.36 2.93 6.57 320.76 6.54

3 4.65 7.45 3.34 7.16 130.39 0.53

4 4.37 7.38 2.49 6.57 35.05 3.78

7 4.48 7.33 2.99 6.51 1216.12 1.31

8 4.72 7.35 3.04 6.42 1078.61 0.55

10 4.41 7.34 2.64 6.42 893.37 0.88

14 4.45 7.35 2.53 6.39 30.38 1.00

https://doi.org/10.1371/journal.ppat.1010630.t003
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associated with the variability in the delay in viral replication. Third, the transient but robust

innate immune response predicted (Fig 2B) is consistent with observations in mildly/moder-

ately infected patients [50]. In the latter study [50], the type I interferon level was elevated early

in moderately infected patients compared to severely infected patients and was also resolved

sooner. Fourth, the prediction of the dynamics of the CD8 T-cell response, where a gradual

build-up is followed by a stationary phase (Fig 2C), is also consistent with observations: In

mildly infected patients, SARS-CoV-2 specific T-cells were detected as early as 2–5 days post

symptom onset [12]. This effector population remained stable or increased for several months

after clinical recovery [51,52].

Our model thus fit the dynamics of infection in individuals and offered explanations of dis-

ease progression patterns that had remained confounding. This gave us confidence in our

model. We applied it next to assess whether the variability in innate and CD8 T-cell responses

could capture the heterogeneity of the outcomes realized.

The interplay between innate and CD8 T-cell responses can explain the

heterogeneous outcomes

To delineate the roles of the innate and CD8 T-cell responses in determining the outcomes, we

performed a comprehensive scan of the parameter space, spanning wide ranges of the

strengths and timings of the two immune arms. We present the dynamics of I, E, X and D, and

hence P, over a range of values of k3 and k5 (Fig 4). We recall that k3 is the proliferation rate

Fig 3. Predator-prey-like oscillations may underlie multiple viral load peaks. (A) The dynamics of infected cells (I) and innate immune response

(X) in the absence of CD8 T-cells (E). The asterisk represents rescaled variables (see Methods). (B) Corresponding trajectory on a phase plane plot of

infected cells and innate response. (C) and (D) Predictions as in (A) and (B) but in the presence of E. Inset shows the dynamics of E over time (in

days). The individual parameters for patient id 10 (Table 3) were used. Parameter values used are as the following: k1 = 4.41/day, k3 = 0.73/day,

k�
5
¼ 2:64/day, k�p ¼ 8:93� 10� 4; τ = 0.88 day, k6 = 0.2/day, k4 = 1.5/day, k�e ¼ 0:7; α = 1.0×104, β = 2.0×104/day, γ = 0.5/day. In (A) and (B), we set

E�
0
¼ 0 whereas in (C) and (D), we let E�

0
= 6.42×10−3/day.

https://doi.org/10.1371/journal.ppat.1010630.g003
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Fig 4. Variations in innate and CD8 T-cell responses capture disease heterogeneity. (A) Effect of variation of parameters

determining the strengths of innate and CD8 T cell responses on the trajectory of the infection. The black annotated triangles at the
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constant of CD8 T-cells and k5 is the growth rate constant of the innate immune response. The

other parameters were held constant unless indicated otherwise. When both k3 and k5 were

high, indicating strong innate and CD8 T-cell responses, I rose following the infection,

attained a peak, and then declined to low levels and vanished, marking rapid clearance of the

infection (Fig 4A, bottom left). X correspondingly rose and declined following the rise and fall

of I. E too rose swiftly following the infection and remained high after the infection was

cleared, mimicking the existence of effector cells well past the clearance of infection [51,52].

(In our model, an explicit decay of CD8 T-cells is not incorporated for simplicity [30].) These

overall dynamics are representative of mild or asymptomatic infections.

Decreasing k5 weakened the innate response and resulted in an increase in the peak of

infected cells (Fig 4A, bottom row, left to right). The slower induction of the innate response

allowed an increased number of infected cells to accumulate (S6A and S6B Fig). Peak viral

load thus rose. The latter trends have parallels to infected patients with impaired innate

responses, such as those harboring mutations in the genes associated with the activation of the

antiviral resistance in host cells [53]. Clearance was still achieved without substantial variation

in the infection duration and with limited immunopathology because of a strong CD8 T-cell

response. This behavior is consistent with observations where an early and robust effector T-

cell response has been associated with mild infections [12,51,52].

Decreasing k3 weakened and delayed the CD8 T-cell response and increased the duration

of the infection (Fig 4A, left column, bottom to top). Furthermore, with a decrease in k3, the

duration of tissue damage, D, increased, increasing immunopathology, P (Fig 4A and 4B, left

columns, bottom to top). When k3 was low and k5 was high (Fig 4A, four subplots at the top-

left), the efficient innate response controlled the initial peak of the infection. However, the

slow proliferation of the effector cells delayed clearance. This scenario has parallels to the

reported cases of prolonged RT-PCR positivity [20–22]. Restrained CD8 T-cell differentiation

was associated with such cases [20]. Delayed clearance was also realized when the parameter kp
was increased, which increased the threshold antigen level required for significant effector

CD8 T-cell proliferation (Fig 4C). These latter predictions were consistent with observations

of defects in T-cell proliferation delaying the clearance of infection [21].

CD8 T-cell responses could also be weakened by exhaustion. Indeed, exhausted CD8 T-

cells were associated with prolonged infection in some patients [54]. Interestingly, low proin-

flammatory cytokine and monocyte levels and high regulatory T cell levels appeared to limit

immunopathology in the latter cohort [54]. In our model, a higher rate of T-cell exhaustion

(increasing k4 and/or decreasing ke) and a weaker innate response (increasing k5) together

resulted in prolonged infection (S7A and S7B Fig). Further, a lower rate of cytokine-mediated

tissue damage (β) limited immunopathology despite prolonged SARS-CoV-2 positivity, reca-

pitulating the latter clinical observations (S8A and S8B Fig).

top and right indicate the nature and the direction of the variation of the indicated parameters. Individual subplots show the

dynamics of infected cells, cytokine mediated innate immune response, and effector CD8 T-cell response. In each subplot, the left

Y-axis shows the normalized infected cell dynamics and the right Y-axis shows the other two species. The rectangular, colored

patch at the top of each subplot represents the extent of immunopathology. The range of immunopathology is given by the color

scale at the bottom. On the left-side of the color scale, a separate legend denotes the texture used for depicting unbounded

immunopathology. Unity on the colorscale indicates the immunopathology quantified in the central subplot (subplot with an

arrowhead), calculated using the population parameters estimated from Fig 2. (B) The tissue damage (D) associated with each

subplot in (A) is shown. The area shaded light orange in each panel is used to calculate immunopathology (see S1 Fig), and is also

depicted by the colored patches in the subplots of (A). (C) The effect of varying the sensitivity of CD8 T-cell response to antigen,

kp. The presentation is similar to (A). The scale for immunopathology is in (A). The population estimates (fixed effects) of the

parameters estimated in Table 2 were used. Other parameter values used are: k6 = 0.2/day, k4 = 1.5/day, k�e ¼ 0:7; α = 104, β =

2.0×104/day, γ = 0.5/day. Variations in k3 are obtained as the following fold-changes to the above value: 0.35, 0.75, 1, 2, 3. The fold-

changes for variation in k�
5

are: 0.5, 0.75, 1, 2, 5. Values of k�p used in (C) are: 1.0×10−5, 1.0×10−4, 2.497×10−4, 5.0×10−3, 5.0×10−2.

https://doi.org/10.1371/journal.ppat.1010630.g004
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When both k3 and k5 were low, indicating weak innate and CD8 T-cell response, (Fig 4A,

four subplots at the top-right), our model predicted severe immunopathology along with pro-

longed infection with high viral load and high cytokine levels. When k3 and k5 were the lowest

in the ranges we considered, clearance was not achieved in our predictions. To understand

this outcome, we performed a detailed dynamical systems analysis of our model (S5 Text and

S9 and S10 Figs). Although clearance was the predominant outcome and was associated with a

wide range of parameter values (Fig 4), parameter regimes could exist where clearance was not

realized and the infection could persist long-term in our model (S5 Text and S9 and S10 Figs).

Note that long-term persistence has been recognized as an alternative outcome of such dynam-

ical systems associated with different viral infections [30–32,55]. In our present predictions,

trajectories leading to persistence were typically associated with high cytokine and infected cell

levels and high levels of CD8 T-cell exhaustion and resulted in excessive immunopathology

(Fig 4A and 4B, top right corner). Such trajectories were likely to be terminated prematurely

by fatality [56]. These trends in the model mirrored clinical features of severe COVID-19 [50],

which include consistently high viral loads, heightened proinflammatory cytokines and inter-

ferons [50,56,57], and attenuated proliferation [13] and increased exhaustion of T-cells

[13,14,16].

The initial pool of CD8 T-cells, E0, was important in determining outcomes (S5 Text and

S10 Fig), with a large pool leading to rapid clearance, in agreement with observations of such

clearance facilitated by cross-reactive effector T cells [12,58]. The outcomes were less sensitive

to the viral inoculum size (S6 Text and S11 Fig), i.e., I0, consistent with studies on macaques

where different inoculum sizes led to comparable disease outcomes [59].

Our model thus successfully recapitulated the spectrum of outcomes observed following

primary SARS-CoV-2 infection. The variations in innate and CD8 T-cell responses in our

model allowed this recapitulation. To quantify the influence of the innate and CD8 T-cell

responses in determining the outcomes, we next fit our model to patient data from different

cohorts, experiencing mild and severe infections.

Model fits patient data and quantifies differences between mild and severe

infections

To our knowledge, datasets with frequent viral load measurements from sputum or saliva sam-

ples of severely infected patients do not exist. Measurements from nasopharyngeal (NP) swab

samples, however, have been reported [60]. We employed the latter datasets here. To compare

between severely and mildly infected patients, we also considered data of NP swab samples

from the mildly infected patients above [37,38]. This was necessary despite our fits to the spu-

tum samples above because the dynamics of viral load reported by sputum and NP swab mea-

surements can be distinct [37,38,56,61]. The reasons for this distinction remain poorly

understood. The distributions of CD8+ and CD4+ T cells in pulmonary and gastrointestinal

mucosa may be distinct [62]. Besides, the local environments, such as the nasal microbiota,

might play a role in establishing compartment specific effects [63]. Because both cohorts were

studied before the major SARS-CoV-2 variants had emerged [5], we expected the intrinsic

growth rate of the virus to be similar in the two cohorts. We, therefore, fixed the parameter k1

at the value estimated above (Table 2; fixed and random effect values of 4.49/day and 0.28/day,

respectively). We normalized the viral load measurements using the maximum viral load

across the cohorts.

We fit the model first to NP swab data from mildly infected patients up to 15 days post-

exposure, as described earlier (Fig 2). The model provided excellent fits to the data (Fig 5A and

Tables 4 and S8). Visual predictive check and shrinkage of parameters estimated indicated the
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reliability of our fits (S12 Fig). Expectedly, the best-fit parameters associated with the sputum

and NP swab datasets were different (Tables 2 and 4). For instance, the viral incubation period

(τ) estimated from the swab dataset was higher than that estimated from the sputum dataset,

in agreement with earlier observations that NP swabs might provide a delayed positive

RT-PCR result [61]. The trends in the parameter estimates and associated predictions

observed in the sputum data, however, were broadly maintained. For instance, the model fits

to data from patients who showed a rebound after the first peak indicated delayed and weak

CD8 T-cell responses, as was also observed above (S8 Table and S13 Fig). As we did above, we

quantified the uncertainties in our individual patient fits and parameter estimates using multi-

ple realizations of the predictions with parameter combinations sampled from distributions

conditioned on the individual patient data (S14 Fig and S9 Table).

Next, we fit our model to data from severely infected patients (Table 5 and Fig 5B). In this

dataset, day zero was reported as the time of symptom onset [60]. We, therefore, introduced a

parameter z, representing the time from the start of viral growth to symptom onset (Methods),

which we estimated from the fits (instead of τ). Our model again yielded excellent fits to the

data (Figs 5B and S15 and S10 Table). Visual predictive check and shrinkage of parameters

estimated again indicated the reliability of our fits (S16 Fig). We quantified the uncertainties in

our individual patient fits and parameter estimates as above (S17 Fig and S11 Table). Following

previous studies [30,31,35,55], we also considered a model that allowed exhaustion to depend

on the accumulation of antigenic stimulation and found that it had a higher BICc value (298.4)

compared to the present model (279) (S7 Text and S18 Fig and S12 Table).

We note that our population estimates of z showed a small fixed effect and a large random

effect (Table 5). This implied that in most patients symptom onset co-occured with the start of

viral replication, although large deviations were possible in some individuals. This was consis-

tent with observations from a recent study on human volunteers challenged with a small inoc-

ulum of SARS-CoV-2 and monitored closely [64]. In the study, 17 volunteers reported PCR-

confirmed infection and a symptom score >2 at any point in 18 days post-inoculation. We

estimated z for these individuals as the difference between the time of the onset of symptoms

and the time when the virus was first detected, the latter expected to be close to the start of

viral replication. We found that z had a mode of 0 days and mean of 0.5 days with a standard

deviation of 1.8 days. Specifically, 5 participants had z = 0 days, 2 had z = 0.5 days and one had

z = 5.5 days. These observations were consistent with our estimates of a small fixed effect and a

large random effect of z.

Fig 5. Fits of the model to viral load data from patients with mild and severe symptoms. Best-fits of our model

(lines) to data (symbols) of nasopharyngeal viral load from patients with (A) mild and (B) severe symptoms. Cross

marks represent data points below the limit of detection. Entries in the boxes show patient IDs as provided in [38] in

(A) and the location (row and column) of the subplot in the original figure in [60] from which the data was extracted

in (B).

https://doi.org/10.1371/journal.ppat.1010630.g005

Table 4. Population parameters estimated by fitting the model to NP swab viral load data from mildly infected patients [38] (Fig 5A).

Parameter Unit Fixed effect (SD) Random effect (SD)

k3 day-1 1.62 (0.078) 0.028 (0.035)

k�5 day-1 54.61 (3.04) 0.34 (0.92)

E�0 � 103 day-1 0.65 (0.36) 0.36 (0.26)

k�p ×106 dimensionless 18.11 (7.07) 1.35 (0.93)

τ day 2.44 (0.5) 0.66 (0.19)

https://doi.org/10.1371/journal.ppat.1010630.t004
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In the above fits, we used all the data available, including past 15 days of symptom onset,

where antibody responses may have arisen. Antibody responses are expected to exert only a

minimal influence in primary infection [11]. Nonetheless, we tested the robustness of our fits

to possible antibody responses as follows. We refit our model to the above data using data only

up to day 15 and, using the resulting best-fit parameter estimates, projected viral loads post

day 15. We found that the projected viral loads were in most cases (11 of 14 patients) higher,

but only marginally so, than viral loads in our best-fits obtained using all the data (S19 Fig),

suggesting a minor role for antibody responses. (In the remaining 3 patients (with IDs 1A, 2A,

6G), the projected viral loads were marginally lower.) Further, the best-fit population parame-

ters were similar to those obtained earlier (S13 Table). This comparison reinforces the notion

that antibody responses play only a minor role in primary infection, further justifying the

assumptions in our model.

We now compared the parameter estimates between mildly and severely infected patients

to identify the key differences between the patient groups. Among the fit parameters, k3, the

rate of CD8 T-cell expansion, was similar between the mild and severely infected patients

(Tables 4 and 5 and Fig 6A). Interestingly, k5, the strength of the innate response, was starkly

different between the two cohorts, with a value (54.6 d-1) nearly 80-fold higher in the mildly

infected cohort than the severely infected cohort (0.69 d-1) (Tables 4 and 5 and Fig 6B). The

initial level and/or activity of specific CD8 T-cells, i.e., E0, was higher in the mildly infected

patients (Tables 4 and 5) but the difference did not achieve statistical significance (Fig 6C).

Finally, kp, the antigen threshold for triggering CD8 T-cell proliferation, was remarkably dif-

ferent between the cohorts (Tables 4 and 5 and Fig 6D).

The threshold was>200-fold higher (3712 vs. 18) in the severely infected patients compared to

the mildly infected ones. The mounting of the CD8 T-cell response was thus delayed in severely

infected patients (see also Fig 4C); a>200-fold larger pool of infected cells had to accumulate

before a significant CD8 T-cell response could be mounted. The origins of the differences remain

poorly elucidated. It is possible that HLA polymorphisms, which could directly affect CD8 T-cell

activation, may underlie the differences. Indeed, specific HLA alleles have been argued to be sig-

nificantly more associated with severity and mortality in COVID-19 [65–67].

For confirmation, using the best-fit parameter values, we estimated the immunopathology

in the cohorts (Fig 6E). As expected, a markedly higher immunopathology was predicted in

the severely infected patients than the mildly infected patients. This was true of all the metrics

we used to estimate immunopathology (see S1 Text). Further, we considered variations in the

relative contribution of cytokines (or innate immune responses) versus CD8 T-cells to immu-

nopathology in calculation of tissue damage, D, by varying β (Eq 4). The higher the value of β,

the greater the relative contribution from cytokines. In all cases, the immunopathology in the

severely infected individuals was significantly higher than in the mildly infected individuals.

We also estimated the within-host basic reproductive ratio R0 using our model to assess

whether the difference in the severity of infection arose from the early stages of growth of the

Table 5. Population parameters estimated by fitting the model to NP swab viral load data set from severely infected patients [60] (Fig 5B).

Parameter Unit Fixed effect (SD) Random effect (SD)

k3 day-1 1.74 (0.063) 0.039 (0.02)

k�5 day-1 0.69 (0.053) 0.11 (0.13)

E�0 ×103 day-1 0.18 (0.07) 0.42 (0.15)

k�p ×106 dimensionless 3712.12 (145.66) 1.22 (0.33)

z day 0.0019 (0.014) 18.46 (15.09)

https://doi.org/10.1371/journal.ppat.1010630.t005
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infection. R0 is defined as the number of infected cells produced by one infected cell in a

wholly susceptible target cell population. We realized that in the early stages of infection, when

the effector response is yet to be mounted, virus induced cytopathy can be a significant con-

tributor to infected cell death. We recall that effector cell killing of infected cells occurs at the

rate of E�
0
� 10� 4 � 10� 3 day-1, whereas estimates of virus induced cytopathy from in vitro

studies [68,69] are δ~0.3−0.35 day-1. We obtained the latter estimates from two studies: In one

study, where fully differentiated primary human alveolar epithelial cell cultures were infected

by 0.1 MOI SARS-CoV-2, about 30 of 50 infected cells imaged were found to be apoptotic 72 h

after infection [68]. In the second study, cell lines with a vector containing SARS-CoV-2

ORF3a, the viral protein thought to trigger apoptosis in SARS-CoV-2 infected cells, 30% of the

transfected cells were apoptotic 24 h after transfection [69]. A first order death process would

Fig 6. Comparison of parameter estimates between mildly and severely infected patients. Best-fit estimate of (A) T cell proliferation rate (k3), (B) strength

of innate response (k�
5
), (C) initial population of virus-specific T cells (E�

0
), (D) antigen threshold for T cell proliferation (k�p) between mildly (M) and severely

(S) infected patients (see Fig 5). ns: not significant, ���: p< 0.0001. (E) The distributions of model-predicted immunopathology of the two patient cohorts

using different values of β, reflecting the relative contribution of cytokines to immunopathology. The solid lines in the violin plots are medians.

https://doi.org/10.1371/journal.ppat.1010630.g006
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yield δ~0.3−0.35 day-1 from these observations. Accounting for the latter process in our model

(by adding the term −δI� to right hand side of Eq 5) and using the next generation matrix

method [70], we derived R0 ¼ k1=ðE�0 þ dÞ. Using the above parameter values, we estimated

R0 �
k1

d
� 13 � 15, consistent with current estimates of R0�10 [71], and similar for both mildly

and severely infected patients we examined. Thus, the differences in severity appeared to arise

from the differences in the immune responses ‘after’ the initial stages of infection. (We note that

once the immune response is mounted, effector killing (E�~5 day-1; see Figs 2 and S13 and S15)

dominates viral cytopathicity (δ~0.3 day-1), justifying ignoring the −δI� in our model.)

In summary, mildly infected patients appeared to mount a nearly 80-fold swifter innate

immune responses and a CD8 T-cell response that was over 200-fold more sensitive to antigen.

These estimates quantified the underlying differences in the strength and the timing of the

innate and CD8 T-cell responses between individuals who readily cleared the infection and

those who suffered severe disease in the two cohorts we studied.

Discussion

The extreme heterogeneity in the outcomes of SARS-CoV-2 infection across infected individu-

als has been puzzling. Here, using mathematical modeling and analysis of patient data, we

argue that the heterogeneity could arise from the variations in the strength and the timing of

the innate and the CD8 T-cell responses across individuals. In our model, when the CD8 T-

cell arm was strong, clearance of the infection resulted. When the innate arm was also strong,

asymptomatic or mild infections resulted. If the innate arm was weak, the peak viral load was

large, resulting in higher immunopathology and moderate symptoms. When the CD8 T-cell

response was strong but delayed, a predator-prey type interaction between the innate arm and

the virus resulted, causing multiple peaks in the viral load. These oscillations ended when the

CD8 T-cell response was mounted, and clearance ensued. When the CD8 T-cell response was

weak but the innate arm was strong, prolonged infection could result before clearance. When

both the arms were weak, severe infection including mortality followed. These predictions

offer a plausible qualitative explanation of the heterogeneous outcomes of SARS-CoV-2 infec-

tion. The predictions also offer a synthesis of the numerous independent and seemingly dis-

connected clinical observations associated with the outcomes. Furthermore, our model

provided excellent fits to longitudinal viral load data from patients and quantified the differ-

ences in the strength and the timing of the innate and CD8 T-cell responses between mildly

and severely infected patients. The best-fits indicated that the innate immune response was

nearly 80-fold swifter and the CD8 T-cell response over 200-fold more sensitive to antigen in

mildly infected individuals than those who suffered severe disease. These estimates offer quan-

titative insights into the underlying within-host viral dynamics in patients suffering mild and

severe disease and may inform intervention strategies aimed at preventing severe disease.

Several mathematical models of within-host SAR-CoV-2 dynamics have been developed

and have offered valuable insights [72,73]. For instance, they have helped estimate the within-

host basic reproductive ratio [60,74,75] and assess the effects of drugs and vaccines [26,43,76–

80]. Attempts have been made to capture the role of the immune system in disease progression

and outcome [43,77,79,81–88]. Some models have also analysed the same datasets that we have

used here [38,43,60,75,77]. Available models, however, have either not been shown to fit longi-

tudinal patient data or to describe the entire range of outcomes realized. To our knowledge,

ours is the first study to describe the outcomes realized comprehensively using a mathematical

model that is consistent with patient data.

Our model predictions may help better understand known demographic correlates of dis-

ease severity and mortality, such as gender, age and comorbidities. Male patients trigger higher
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levels of peripheral cytokine expression and elicit weaker CD8 T-cell responses than female

patients [89], resulting in more frequent severity and mortality in males [45]. The increased

mortality in the elderly is caused by immunosenescence, which is associated with decreased

proliferative capacity of lymphocytes and impaired functionality of innate immune cells [90].

Increased mortality is also associated with comorbidities, such as type-2 diabetes [91], where

uncontrolled production of proinflammatory cytokines and inappropriate recruitment of lym-

phocytes is observed [92]. These observations are consistent with our predictions, where more

severe infections would result from weaker CD8 T-cell responses and/or unregulated innate

immune responses. Our model could be tested by analyzing longitudinal datasets categorized

by the above correlates to draw quantitative inferences of their influence on disease severity.

Factors other than the demographic correlates above could also contribute to variations in

the innate and the CD8 T-cell responses across individuals. For instance, certain mutations,

reported in a subset of severe COVID-19 patients, may preclude a potent interferon response

[53]. A section of severely infected patients is reported to harbor neutralizing autoantibodies

against interferons [28,93]. Overzealous production of antibodies against SARS-CoV-2 might

inhibit the pathway for interferon-mediated induction of antiviral genes [94]. Further, in vitro

studies suggest that different SARS-CoV-2 proteins can inhibit the TBK1-IRF3 pathway or the

JAK/STAT pathway at several signaling nodes, adversely affecting interferon production and/

or signaling [95]. Variability in the CD8 T-cell response may come from different precursor

populations, due for instance to variable prior exposure to circulating human coronaviruses

[96]. Patients pre-exposed to other coronaviruses or rhinoviruses harbor populations of effec-

tor T-cells that might cross-react with SARS-CoV-2 antigens and contribute to the early clear-

ance of the infection [96,97]. Population-level variations in effector cell frequencies [98] and

inter-individual heterogeneity in lymphocytic gene expression patterns [99] may also contrib-

ute to the variability in the CD8 T-cell response. Our model could also be tested by quantifying

the effects of the latter factors on disease severity and comparing the results to quantitative

experimental data.

CD8 T-cell exhaustion has been proposed as an evolutionary design to prevent mortality

due to immunopathology [30,100]. By preventing extensive tissue damage due to CD8 T-cell

killing of infected cells, exhaustion can avert mortality. The price of reduced CD8 T-cell effi-

ciency is often persistent infection, as seen with HIV and hepatitis C [30]. With severe SARS-

CoV-2 infection, although extensive CD8 T-cell exhaustion is seen, it appears inadequate to

prevent mortality; immunopathology caused by proinflammatory cytokines dominates. Potent

activation of the NF-κB pathway by components of the SARS-CoV-2 virion may trigger the

production of detrimental proinflammatory cytokines [101,102]. Heightened interferon

expression in the lung [9,17,18,103,104] impairs cell proliferation, impeding tissue repair after

proinflammatory cytokine-mediated immunopathology [105]. Moreover, interferons may

synergize with proinflammatory cytokines to fuel immunopathology by triggering cell death

pathways [106,107]. In contrast, immunopathology due to CD8 T-cells appears minimal. CD8

T-cells infiltrate the alveolar tissues of COVID-19 patients [104] and can kill infected cells. At

the peak of the infection, 104−106 cells are estimated to be infected out of the 1011 estimated

target cells in the respiratory tract [39]. Thus, direct CD8 T-cell killing of infected cells would

affect a small fraction of cells in the respiratory tract. This may also explain why long-term per-

sistence appears rare with SARS-CoV-2 infection: Inducing CD8 T-cell exhaustion, the com-

mon strategy underlying persistent infection, can only minimally affect immunopathology

dominated by cytokines. We speculate that the absence of persistence may be a general feature

of those viral infections where immunopathology is predominantly cytokine mediated. Indeed,

hypercytokinemia has been associated with the fatal outcomes following influenza A (H5N1)

infection [108]. Nonetheless, regardless of the relative contributions of CD8 T-cells and innate
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immune responses to immunopathology, which remain to be quantified, severely infected

patients consistently displayed elevated levels of immunopathology than mildly infected

patients in our analysis.

A strategy of great interest today for reinvigorating exhausted CD8 T-cells is the use of

immune checkpoint inhibitors [109]. The inhibitors are approved for use in certain cancers.

Because of their promise, five clinical trials are underway for testing their efficacy in treating

severe COVID-19, of which one (NCT04333914) is on cancer patients, and the remaining

(NCT04413838, NCT04343144, NCT04356508, and NCT04268537) are on non-cancer

patients infected by SARS-CoV-2 [110]. A major risk of checkpoint inhibitor therapy is

increased immunopathology due to a heightened CD8 T-cell response. Based on our model

predictions and arguments above, we speculate that with COVID-19, the risk of increased

immunopathology from immune checkpoint inhibitor therapy is likely to be small, given the

predominance of cytokine-mediated pathology. A retrospective analysis of melanoma patients

showed that checkpoint inhibitor therapy did not increase the risk of mortality due to

COVID-19 [111]. Rather, the beneficial effects of an improved CD8 T-cell response may out-

weigh any minimal enhancement in immunopathology. Indeed, a recent study reported that

immune checkpoint inhibitors can increase the T cell response in SARS-CoV-2 infected mela-

noma patients, without interfering with early interferon induction or aggravating inflamma-

tion [112].

Our model could be tested further by examining whether it can recapitulate the implica-

tions of different therapeutic interventions [113] and of emerging viral variants [114] on dis-

ease outcomes. Given the mechanisms of action of available drugs and drug candidates [113],

their effects on typical individuals in the mild or severe infection categories could be simulated

using the corresponding modal parameter estimates we identified for the respective categories

in this study. These could then be tested against measurements from patients administered the

interventions. Several recently identified circulating mutants are known to be more infectious/

transmissible than the original SARS-CoV-2 strain and to escape immune responses [115].

These characteristics could be incorporated in our model by suitably increasing the infectivity

(e.g., see [116]) and/or decreasing the strength of the immune response, to simulate how

emerging strains could alter the overall severity of the infection, which in turn could be tested

against data from patients infected by those strains. We recognize that to estimate the effects of

such variations at the population level, knowledge of how the parameter values in our model,

particularly those defining the innate and CD8 T-cell responses, are distributed across individ-

uals in a population would be required. With hepatitis C virus infection, for instance, the dis-

tribution of the strength of interferon responsiveness across individuals quantitatively

predicted the fraction of individuals that spontaneously cleared the infection [117,118] and

together with the distribution of the CD8 T-cell response captured the success of interferon-

based and other therapies [47,117–119]. With HIV, distributions of underlying parameters

predicted the distribution of viral breakthrough times following antibody therapy [120]. Such

predictions with SARS-CoV-2, once parameter distributions become available, may help refine

clinical and epidemiological projections of healthcare requirements.

Our study has limitations. First, we neglected the role that cytokines play in the expansion

of CD8 T-cells [121] because fits of our model incorporating such an effect to the available

data were poor (S3 Text). Perhaps, a larger patient cohort may improve the fits and allow

incorporating the latter effect. Second, our model did not incorporate any negative effect of

immunopathology on the immune response; for instance, lymphopenia [15,122], which is gen-

erally thought to be caused by immunopathology, could compromise the immune response.

Third, we employed a simplified model of CD8 T-cell exhaustion, following earlier studies

[30,31,33], which allows exhaustion to be reversed fully upon lowering antigen levels. Recent
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studies have demonstrated that exhaustion is reversible only in a subset of exhausted cells

[109]. CD8 T-cells can also exhibit more complex dynamics including collective effects [123].

Future studies may overcome the above limitations and yield more accurate predictions and

insights. Notwithstanding, given the ability of our model to fit multiple longitudinal patient

datasets as well as offer explanations of several confounding clinical observations, we expect

our key inferences regarding the roles of the innate and CD8 T-cell responses in determining

the heterogeneous outcomes of SARS-CoV-2 infection to hold.

Methods

Study data

Viral load data utilized for this study were digitized from previously published clinical

studies [38,60]. Data from infected individuals with at least three measurements above detec-

tion limits within 20 days of symptom onset were included in our analysis. Thus, we had 8

patients with mild symptoms [38] and 14 patients with severe symptoms [60]. In the former

cohort, all individuals were young and had no comorbidities. In the latter, 80% were hospital-

ized with symptoms of severe disease. They had different comorbidities, such as diabetes,

hypertension and obesity, and 7 were above 65 years of age. The clinical measurements were

digitized using a custom script in the MATLAB (version R2020a) image analysis

toolbox (www.mathworks.com).

Parameter estimation and model selection

The extracted datasets were used for fitting different models. Fitting was done following the

nonlinear mixed effects modeling approach. In this approach, model parameters are assumed

to be drawn for each individual from underlying population distributions. The objective of the

fitting exercise is to estimate the means and the variances of the distributions, termed ‘popula-

tion parameters’, by fitting data of all the individuals simultaneously. Values sampled from

these distributions, termed ‘individual parameters’, then recapitulate individual patient data.

Briefly, the measurement, yij, made on individual i at time point tij is expressed as

yij ¼ f ðtij; %iÞ þ eij

where the nonlinear dynamical model f evaluated at time tij and using the parameters %i repre-

senting individual i yields a prediction of the observation (or measurement) with the residual

error eij. The typical parameter % in the model is assumed to follow a lognormal distribution

across the individuals in the population so that its value %i for individual i can be written as

logð%iÞ ¼ logmþCi

where μ is the population mean of %, also known as the ‘fixed effect’ and Ci~N(0,σ) represents

the ‘random effect’, assumed to follow a normal distribution with mean zero and standard

deviation σ. The error eij is assumed to be a combination of constant (ai) and proportional (bi)
contributions, so that

eij ¼ ðai þ bif ðtij; %iÞÞ�ij

where �ij � N ð0; 1Þ is a standard normal random variable.

We performed fitting using the stochastic approximation expectation maximization

(SAEM) algorithm in Monolix 2020R1 (www.lixoft.com). The fitting yielded best-fit popula-

tion parameters, as their fixed and random effects, the latter characterized using σ, and individ-

ual parameters together with a characterization of the errors. To compare alternative models,

PLOS PATHOGENS Modeling the heterogeneous outcomes of SARS-CoV-2 infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010630 June 27, 2022 20 / 35

http://www.mathworks.com/
http://www.lixoft.com/
https://doi.org/10.1371/journal.ppat.1010630


we estimated the corrected Akaike information criterion (AICc) and the corrected Bayesian

information criterion (BICc) for each model. The model with the lowest AICc/BICc was

selected for further mathematical analysis (S3 Text).

To ensure that the fitting captured the basic trends of the viral dynamics, we right censored

the peaks in the data for each patient. This ensured that parameter combinations that under-

predicted the peaks were disfavored. For patients 1 and 2, where a relatively longer viral incu-

bation was evident from visual inspection of the data, we introduced left censored data points

of the infection load in the first few days so that the number of infected cells did not rise in

these early time points. (Note that left censoring a data point in Monolix implies that the data

point is below the lower limit of detection, and the fitting algorithm disfavors parameter com-

binations that overpredict the value at that data point. Similarly, the algorithm disfavors

parameter combinations that underpredict a right censored data point.) We fit the following

model equations to the data:

dI�

dt
¼ k1ð1 � X�ÞI�ð1 � I�Þ � I�E�½ �H t � tð Þ ð5Þ

dE�

dt
¼ k3

I�E�

k�p þ I�

 !

� k4

I�E�

k�e þ I�

� �" #

H t � tð Þ ð6Þ

dX�

dt
¼ k�

5
I� � k6X

�
� �

H t � tð Þ ð7Þ

These equations without the Heaviside functions (H(t−τ)) were derived by rescaling our

mathematical model (Results) using the following relations:

k�p ¼ kp=Imax; k�
5
¼ k5:Imax:εI; I� ¼ I=Imax; X� ¼ X:εI; k�e ¼ ke=Imax, and E� = E. k2. Next, we

introduced the Heaviside functions, H(t−τ), which equals 1 when t>τ and 0 otherwise, to

account for the delay in viral replication post exposure, τ. Visual inspection of the dataset indi-

cated that at least for some patients, the viral load did not start rising immediately after expo-

sure. The dynamical events of the infection were thus initiated after the duration τ, which we

estimated from the fits. Further, as elaborated in the results section, to fit the datasets from

mild patients, we fixed k4 = 0. We assumed the following initial conditions: I�
0
¼ 10� 6; X�

0
¼ 0.

The former initial condition was based on the estimate that the maximum number of infected

cells at the peak of the infection might be ~106 cells [39]. Further, we tested the sensitivity of

the fits to this assumption (S4 Table). The value of E�
0

was estimated from the fits. We fixed k6

to 0.2 day-1 following previous studies [124,125]. We carried out a formal structural identifia-

bility analysis of the rescaled model using SIAN in the Maple platform (www.maplesoft.com)

[126]. All the fit parameters of the model, k1; k3; k�5, and k�p, and the initial conditions: I(0), E
(0), and X(0) were structurally globally identifiable, when a continuous and noise-free input

for I was supplied.

We used lognormal distributions for all parameters except k1 and kp. Logit distributions

were used for the latter parameters along with biologically relevant ranges for their values. k1

and kp×106 were thus allowed to vary in the ranges 2–7 and 10–5000, respectively [30,74]. The

fitted population parameters (Tables 2 and 4 and 5) and individual parameters (Tables 2 and

S8 and S10) were obtained from Monolix, and further simulations were run in MATLAB. To

obtain uncertainties in the individual fits, we generated 50 realizations by sampling parameter

combinations from the conditional parameter distributions for each patient and estimated the

associated means and standard deviations (S4 and S14 and S17 Figs and S5 and S9 and S11

Tables). We also performed visual predictive checks and assessed the shrinkage of the

PLOS PATHOGENS Modeling the heterogeneous outcomes of SARS-CoV-2 infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010630 June 27, 2022 21 / 35

http://www.maplesoft.com/
https://doi.org/10.1371/journal.ppat.1010630


parameters within the Monolix environment to assess the reliability of our fits and parameter

estimates (S3 and S12 and S16 Figs).

For fitting the viral load dataset from severe patients, for which day 0 was the symptom

onset time, the model calculations started from the time point −z. We recognized that viral

propagation may start before symptom onset, at a time determined by z. We thus wrote:

dI�

dt
¼ k1ð1 � X�ÞI�ð1 � I�Þ � I�E�½ �H t þ zð Þ ð8Þ

dE�

dt
¼ k3

I�E�

k�p þ I�

 !

� k4

I�E�

k�e þ I�

� �" #

H t þ zð Þ ð9Þ

dX�

dt
¼ k�

5
I� � k6X

�
� �

H t þ zð Þ ð10Þ

We fixed the following parameters for these fits: k4 = 2 day-1; ke = 7×105 cells; k6 = 0.2 day-1.

Selection of parameters not estimated in the fitting

In our fitting exercise for the mildly infected patients, we ignored the parameters associated

with exhaustion and immunopathology. We obtained the latter parameters for subsequent fits

and calculations as follows. We chose k4 from a previously published analysis [30]. We then

chose ke such that no major effect of exhaustion was observed for the simulations correspond-

ing to the best-fits to the mildly infected patient data (S20 Fig). This ensured internal consis-

tency with our assumption and agreement with observations of minimal pathology in mildly

infected patients. The parameters for immunopathology were either taken from a previously

published source [30] or assumed. Variations in these parameters did not alter our inferences

(S21 Fig). The following values of the parameters were used in all simulations, unless stated

otherwise: k4 = 1.5 day-1; ke = 7×105 cells; α = 1×104 cells-1day-1; β = 2×104 day-1; and γ = 0.5

day-1. The parameters α, β and γ which describe the dynamics of tissue damage (Eq 4), are

unknown constants; our results were not sensitive to their values in predicting the relative

extents of immunopathology across different disease severity categories (S8 Text and S21 Fig).

Fixed points and linear stability analysis

We solved the model equations for steady state and obtained the following fixed points:

1. I ¼ 0; E � 0; X ¼ 0

2. I ¼ k6

k5
; E ¼ 0; X ¼ 1

3. I ¼ 1; E ¼ 0; X ¼ k5

k6

4. I ¼ kek3 � kpk4

k4 � k3
; E ¼ k1 1 �

k5

k6
I

� �
1 � Ið Þ; X ¼ k5

k6
I

MATLAB (version R2020a) was used to obtain the fixed points and to determine their sta-

bility. Individual fixed points and their corresponding Jacobian matrices were estimated using

the Symbolic Math Toolbox (www.mathworks.com). Calculation of the eigenvalues and eigen-

vectors for individual fixed points yielded the nature of their stability and facilitated determi-

nation of the phase portraits (S5 Text). For the steady-state analysis, estimated population

parameter values were used (Table 2).
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Supporting information

S1 Fig. The schema of calculation of immunopathology. The peak of the instantaneous

tissue damage (D) was detected for the simulation with the population parameters (left). A

line parallel to the X-axis was drawn at the half-maximal level of D. The two intercepts of the

curve of D with the horizontal line were identified. The area under the curve (AUC) was calcu-

lated within these half-maximal intercepts. The same threshold was used for parameters asso-

ciated with an individual (right) and the AUC was calculated. The ratio of the latter AUC and

the former was used as an estimate of the extent of immunopathology, P. Hence, immunopa-

thology for model simulations with any parameter set is: Immunopathologytest_parameters =

AUCtest_parameters/AUCpopulation_parameters.

(TIF)

S2 Fig. Comparison of the immunopathology estimated by different metrics. (A) The

dynamical profiles of tissue damage (D) are shown for the simulations in Fig 4A. The black

annotated triangles at the top and right indicate the nature and the direction of the variation of

the indicated parameters. Vertical dotted lines are peaks in D. The blue horizontal dashed line

represents the common threshold, as indicated in metric V (S1 Text), and the purple shaded

region is its AUC. The red dashed line represents the threshold calculated following metric III,

and the light orange shaded area its AUC. (B)-(G) Colour maps in 5×5 grids represent the

immunopathology scores calculated for the subplots shown in (A) following different metrics

(see S1 Text). The empty grid represents diverging immunopathology (see Fig 4).

(TIF)

S3 Fig. Shrinkage and visual predictive check of the fits to sputum viral load data from

mild patient cohort. (A) Parameter shrinkage. For each fit parameter (individual panels), the

distribution of the population parameter (black line) and values sampled from the conditional

distributions of the estimates of the individual parameters (histogram) are shown along with

estimates of the shrinkage. Shrinkage = 1−(var(η)/ω2), where ω is the standard deviation of the

random effect, and var(η) is the variance of the samples drawn from the conditional distribu-

tions of individual parameter estimates. (B) Visual predictive check. The blue segmented lines

represent the trends of the observed data, and the blue and pink patches represent the trends

of the model outputs generated via simulations. The lower, middle and upper blue lines repre-

sent the 10th, 50th and 90th percentile of the data, respectively. The patches indicated 90%

confidence intervals for the median (middle), the 10th percentile (top) and the 90th percentile

(bottom) of the simulations. Overall, the parameter shrinkages are low and the simulations

correctly capture the variability in the data, indicating that the fits are good.

(TIF)

S4 Fig. Quantifying uncertainties in individual fits in Fig 2. The thin grey curves in each

plot show model predictions using parameter combinations sampled from conditional distri-

butions based on individual patient data fits. 50 realizations are presented for each patient. The

error bars indicate standard deviations from these realizations. The bold curve in each plot is

the prediction using the mode of the conditional distribution, as shown in Fig 2 in the main

text. The open circles represent the data points. The patient IDs are the same as in Fig 2, and

shown in boxes with blue numbers. The means and standard errors of the parameter values

are listed in S5 Table.

(TIF)

S5 Fig. Model fits to data in the absence of effector response. Fits (solid lines in panel A) of

our model (Eqs 5–7) with E�
0
¼ 0 to data (symbols) from patients 7, 8, and 10. Fits from Fig 2

PLOS PATHOGENS Modeling the heterogeneous outcomes of SARS-CoV-2 infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010630 June 27, 2022 23 / 35

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010630.s001
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010630.s002
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010630.s003
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010630.s004
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010630.s005
https://doi.org/10.1371/journal.ppat.1010630


are reproduced for comparison (dashed lines). Corresponding predictions of the innate

immune response (panel C), and the associated phase plane plots indicating prolonged oscilla-

tions. Best-fit parameter estimates for the three patients were as follows. Patient 7: k1 = 4.49

days-1, k�
5
¼ 2:98 days-1 and τ = 1.58 days; Patient 8: k1 = 4.62 days-1, k�

5
¼ 3:17 days-1 and τ =

0.58 days; and Patient 10: k1 = 4.54 days-1, k�
5
¼ 3:11 days-1 and τ = 0.88 days.

(TIF)

S6 Fig. Sensitivity of the dynamics of innate response to k5. The width of the curves is pro-

portional to the strength of k5. (A) and (B) represent the dynamics of X and I, respectively. The

population estimates (fixed effects) of the parameters estimated in Fig 2 (Table 2) were used.

Parameter values used: k1 = 4.49/day, k3 = 0.74/day, k�
5
¼ 2:83/day, E�

0
¼ 6:65� 10� 3/day,

k�p ¼ 2:497� 10� 4; t ¼ 1:51 day, k6 = 0.2/day, k4 = 1.5/day, k�e ¼ 0:7, α = 1.0×104, β =

2.0×104/day, γ = 0.5/day. The fold-changes for variation in k�
5

are: 0.5, 0.75, 1, 2, 5.

(TIF)

S7 Fig. CD8 T-cell exhaustion plays an important role in prolonged SARS-CoV-2 infec-

tion. (A) Effect of simultaneous variation of parameters determining the strengths of innate

response and CD8 T-cell exhaustion on the trajectory of the infection is shown. The black

annotated triangles at the right and the top depict the nature and the direction of the variation

of the indicated parameters. For instance, k4 increases top to bottom and k5 is increases from

right to left. Individual subplots show the dynamics of infected cells, effector CD8 T-cell

response and innate immune response. Each subplot is a double Y-axis plot. The left Y-axis

shows the normalized infected cell dynamics. The right Y-axis shows the other two species.

The colored patches at the top of the subplots represent the extent of immunopathology. The

range of immunopathology is given by the color scale at the bottom. On the left-side of the

color scale, a separate legend denotes the texture used for depicting unbounded immunopa-

thology (see text). Unity on the colorscale indicates the immunopathology quantified in the

central subplot (subplot with an arrowhead), calculated using the population parameters esti-

mated from Fig 2. (Table 2, see text). The population estimates (fixed effects) of the parameters

estimated in Fig 2 (Table 2) were used. Parameter values used: k1 = 4.49/day, k3 = 0.74/day,

k�
5
¼ 2:83/day, E�

0
¼ 6:65� 10� 3/day, k�p ¼ 2:497� 10� 4; t ¼ 1:51 day, k6 = 0.2/day, k4 =

1.5/day, k�e ¼ 0:7; a ¼ 1:0� 104; b ¼ 2:0� 104/day, γ = 0.5/day. Variations in k4 are

obtained as the following fold-changes to the above value: 0.35, 0.75, 1, 2, 3. The fold-changes

for variation in k�
5

are: 0.5, 0.75, 1, 2, 5. Values of k�e used in (B) are: 0.01, 0.1, 0.3, 0.5, 0.7.

(TIF)

S8 Fig. Recapitulating dynamics in prolonged SARS-CoV-2 positive patients. (A) A model

simulation with long-duration infection is depicted. Tuning the parameters k5, ke, and k4

allowed realization of the long-duration infection scenarios. (B) Tissue damage profiles with

the nominal value of β (left) and a ten-fold lower value (right). Note that in the right panel, the

initial peak of tissue damage is 10% of that in the left panel.

(TIF)

S9 Fig. Flowchart depicting parameter regimes defining the stability of fixed point 2. See

S5 Text for a description of the parameter regimes and stability criteria.

(TIF)

S10 Fig. Monostability and bistability, sample trajectories and associated immunopathol-

ogy. (A) Trajectories in 3D space defined by infected cells, CD8 T-cells and cytokine-mediated

innate response for parameter combinations where clearance alone is a stable fixed point. Each
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trajectory uses different initial conditions. The colors of the trajectories represent the immuno-

pathology associated, defined in the scale bar at the top. Immunopathology corresponding to

population parameter estimates (Table 2) is represented by unity on the color scale. (B) Dashed

red line is a trajectory headed towards fixed point 2. For such trajectories, immunopathology

was typically unbounded in our model.

(TIF)

S11 Fig. Dependence of infection dynamics on viral inoculum size. (A) Infected cells

dynamics with varying initial infected cell pool sizes (1, 10, 50, 100 cells). (B) Immunopathol-

ogy of the 4 trajectories compared with the calculated immunopathology for parameters repre-

senting severely infected patients (Table 5).

(TIF)

S12 Fig. Shrinkage and visual predictive check of the fits to nasopharyngeal viral load data

from mild patient cohort. (A) Parameter shrinkage. For each fit parameter (individual pan-

els), the distribution of the population parameter (black line) and values sampled from the

conditional distributions of the estimates of the individual parameters (histogram) are shown

along with estimates of the shrinkage. Shrinkage = 1−(var(η)/ω2), where ω is the standard devi-

ation of the random effect, and var(η) is the variance of the samples drawn from the condi-

tional distributions of individual parameter estimates. (B) Visual predictive check. The blue

segmented lines represent the trends of the observed data, and the blue and pink patches repre-

sent the trends of the model outputs generated via simulations. The lower, middle and upper

blue lines represent the 10th, 50th and 90th percentile of the data, respectively. The patches indi-

cated 90% confidence intervals for the median (middle), the 10th percentile (top) and the 90th

percentile (bottom) of the simulations. Overall, the parameter shrinkages are low and the sim-

ulations correctly capture the variability in the data, indicating that the fits are good.

(TIF)

S13 Fig. The innate and adaptive response predicted from model fits to the Wölfel et al.

swab data. (A) The numbers in the boxes on the top of each plot represents the patient IDs as

provided in Böhmer et al. [37]. The blue area plots represent the predicted innate immune

response corresponding to the infection dynamics shown in Fig 5A in the main text. (B) The

green area plots show the predicted dynamics of CD8 T-cell mediated adaptive immune

response.

(TIF)

S14 Fig. Quantifying uncertainties in individual fits in Fig 5A. The thin grey curves in each

plot show model predictions using parameter combinations sampled from conditional distri-

butions based on individual patient data fits. 50 realizations are presented for each patient. The

error bars indicate standard deviations from these realizations. The bold curve in each plot is

the prediction using the mode of the conditional distribution, as shown in Fig 5A in the main

text. The open circles represent the data points, and crosses represent data points below detec-

tion limit. The patient IDs are the same as in Fig 5A, and shown in boxes with numbers in

blue. The means and standard errors of the parameter values are listed in S9 Table.

(TIF)

S15 Fig. The innate and adaptive response predicted from model fits to the Néant et al.

swab dataset. (A) The blue area plots represent the predicted innate immune response corre-

sponding to the infection dynamics shown in Fig 5B in the main text. The alpha numeric

entries in the boxes indicate the position of the plots in the original figure in Neant et al. [60]

(see Fig 5B). X-axes represent time in days, post symptom onset. (B) The green area plots show
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the predicted dynamics of CD8 T-cell mediated adaptive immune response.

(TIF)

S16 Fig. Shrinkage and visual predictive check of the fits to the nasopharyngeal viral load

data from severely infected patient cohort. (A) Parameter shrinkage. For each fit parameter

(individual panels), the distribution of the population parameter (black line) and values sam-

pled from the conditional distributions of the estimates of the individual parameters (histo-

gram) are shown along with estimates of the shrinkage. Shrinkage = 1−(var(η)/ω2), where ω is

the standard deviation of the random effect, and var(η) is the variance of the samples drawn

from the conditional distributions of individual parameter estimates. (B) Visual predictive

check. The blue segmented lines represent the trends of the observed data, and the blue and

pink patches represent the trends of the model outputs generated via simulations. The lower,

middle and upper blue lines represent the 10th, 50th and 90th percentile of the data, respec-

tively. The patches indicated 90% confidence intervals for the median (middle), the 10th per-

centile (top) and the 90th percentile (bottom) of the simulations. Overall, the parameter

shrinkages are low and the simulations correctly capture the variability in the data, indicating

that the fits are good.

(TIF)

S17 Fig. Quantifying uncertainties in individual fits in Fig 5B. The thin grey curves in each

plot show model predictions using parameter combinations sampled from conditional distri-

butions based on individual patient data fits. 50 realizations are presented for each patient. The

error bars indicate standard deviations from these realizations. The bold curve in each plot is

the prediction using the mode of the conditional distribution, as shown in Fig 5B in the main

text. The open circles represent the data points. The patient IDs are the same as in Fig 5B and

shown in boxes with numbers in purple fonts. The means and standard errors of the parameter

values are listed in S11 Table.

(TIF)

S18 Fig. Fits of the model with an alternative exhaustion formalism to viral load data from

patients with severe symptoms. Best-fits of the model (S7 Text) (solid lines) to data (symbols)

of nasopharyngeal viral load from patients with severe symptoms. Cross marks represent data

points below the limit of detection. Entries in the boxes in purple fonts show patient IDs as in

Fig 5B. The dashed lines reproduce the fits of the model in Fig 5B.

(TIF)

S19 Fig. Robustness of model to antibody responses. Fits of our model to the data in Fig 5B

(symbols) restricted to 15 days post symptom onset (solid lines) and projected to day 25 and

beyond (dashed lines) compared to the fits in Fig 5B (dotted lines). Patient IDs are the same as

in Fig 5B. The resulting population parameter estimates are in S13 Table.

(TIF)

S20 Fig. The fits are not majorly affected upon reintroducing CD8 T cell exhaustion. We

recalculated the dynamics in Fig 2 following the reintroduction of the CD8 T-cell exhaustion

term using best-fit parameters for each patient and the chosen values of k4 and ke (Methods).

The panels and the quantities depicted are same as in Fig 2.

(TIF)

S21 Fig. Sensitivity estimates of perturbations in the parameters associated with immuno-

pathology. The relative difference in immunopathology between that corresponding to the

population parameters estimated from mild and severe patient cohorts (see S8 Text), for differ-

ent values of (A) α, (B) β, and (C) γ. α and β were varied from 0.1x to 10x of their default
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values, as indicated, whereas γ was varied from 0.5x to 1.5x of its default value.

(TIF)

S1 Table. Events of exposure of the patients. Events of repeated exposure are indicated in the

third column. Here ’0,1’ indicates that the individual was exposed on day 0 and on day 1.

(XLSX)

S2 Table. Time of symptom onset in the patients.

(XLSX)

S3 Table. Dates of first measurements of viral loads in patients.

(XLSX)

S4 Table. Sensitivity of the fit parameters to different initial values of I�0.
(XLSX)

S5 Table. Uncertainties in individual parameter estimates for fits in Fig 2. Means of param-

eter values (M) and their standard errors (SEM) for the parameters estimated from fits to indi-

vidual patient data in Fig 2. 50 realizations of the model were used for these estimates of

standard errors (see S4 Fig). (Note that the estimates in Table 3 contain the modes and not

means of the parameter values.).

(XLSX)

S6 Table. Estimated values of the population parameters of the candidate models.

(XLSX)

S7 Table. Values of the corrected Akaike information criterion (AICc) and the corrected

Bayesian information criterion (BICc) for the candidate models.

(XLSX)

S8 Table. Individual model parameters estimated using the Wölfel et al. swab dataset.

(XLSX)

S9 Table. Uncertainties in individual parameter estimates for fits in Fig 5A. Means of

parameter values (M) and their standard errors (SEM) for the parameters estimated from fits

to individual patient data in Fig 5A. 50 realizations of the model were used for the SEM esti-

mates (see S14 Fig). (Note that the estimates in Table S8 contain the modes and not means of

the parameter values.).

(XLSX)

S10 Table. Individual model parameters estimated from fits to the Néant et al. swab data-

set.

(XLSX)

S11 Table. Uncertainties in individual parameter estimates for fits in Fig 5B. Means of

parameter values (M) and their standard errors (SEM) for the parameters estimated from fits

to individual patient data in Fig 5B. 50 realizations of the model were used for these estimates

(see S17 Fig). (Note that the estimates in S10 Table contain the modes and not means of the

parameter values.).

(XLSX)

S12 Table. Population parameter estimates obtained from the fits of the model with the

alternative exhaustion formalism (S18 Fig).

(XLSX)
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S13 Table. Robustness of population parameter estimates to antibody responses. Compari-

son of population parameter estimates obtained by fitting our model to the Neant et al. dataset

using data restricted to 15 days post symptom onset or using all the data.

(XLSX)
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