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Helicobacter pylori infection and transmission routes

Helicobacter pylori is a gram-negative microaerophilic bacterium. The infection of H. pylori
can increase the risk of gastric cancer which is the second leading cause of cancer death world-

wide [1]. The World Health Organization’s International Agency for Research on Cancer

(IARC) has classified H. pylori as a type I (definite) carcinogen since 1994. H. pylori infection

is a global health problem. In developed countries, its infection rate is 20% to 50%, while in

developing countries, the infection rate of middle-aged people has reached 80% [2]. The fecal–

oral and the oral–oral routes are considered as the main transmission routes of H. pylori [3].

Nevertheless, only H. pylori genes have been detected in saliva and dental plaques, but cultur-

able H. pylori has not been isolated yet in large quantities [4], indicating that there may be

some new strategies of H. pylori to implement its transmission through oral cavity.

Candida albicans, a dimorphic fungus, is one of the most common fungi in the human

body [5]. It was noteworthy that C. albicans and H. pylori were abundant in certain human

niches, such as the root canal necrotic pulp, stomach, duodenum, and vagina [6], suggesting

that C. albicans may interact with H. pylori to promote the growth, spread, and infection of H.

pylori in some nonadaptive condition, such as the oral cavity and vagina.

The synergy between H. pylori and C. albicans in gastric diseases

H. pylori infection is positively correlated with yeast in gastric diseases [7]. A total of 36% gas-

tric ulcers patients, 2% non-ulcerative dyspepsia patients, and 56% large-scale gastric ulcers

(greater than 2 cm) patients with H. pylori have fungal co-colonization in the upper gastroin-

testinal tract, such as C. albicans and Candida krusei, indicating the strong relationship

between fungi and H. pylori in ulcerative lesions [8]. C. albicans is highly correlated with H.

pylori in gastric cancer, peptic ulcer, and chronic gastritis patients. The gastric ulcer patient

with C. albicans and H. pylori in the stomach developed even larger ulcers. The presence of C.

albicans was closely related to the prolongation of gastric diseases by the increase of healing

time and persistence of clinical symptoms [9,10]. The strong positive correlation between C.

albicans and H. pylori in the development of gastric diseases indicates their synergistic patho-

genesis [7]. C. albicans may enhance the colonization, toxicity, and pathogenicity of H. pylori
especially in gastrointestinal diseases through adhesion and the formation of a mixed species,

like that C. albicans promotes the pathogenicity of other bacteria [11].
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Potential for H. pylori residence within C. albicans vacuoles

H. pylori is an invading intracellular pathogen, and its entry into cells such as gastric epithelial

cells, dendritic cells, and macrophages is one of the reasons for the failure of antibiotics treat-

ment [12]. Interestingly, H. pylori was also found to enter C. albicans yeast cells. Moving “bacte-

rial-like bodies” in the vacuoles of the C. albicans yeast cells from the stomach were observed,

and these were identified as H. pylori by PCR and immunofluorescence [13–15]. These

“invaded” C. albicans cells were able to survive from the exposure of high temperature, dryness,

and antibiotics. The H. pylori in their vacuole showed an active state of motion under these con-

ditions [13], suggesting that the internalization of H. pylori into C. albicans can protect H. pylori
from strict conditions. Meanwhile, the invading H. pylori seems to be vertically transmitted to

the daughter cells of C. albicans and continue to express its own proteins through its prolifera-

tion within the yeast cells [16]. The C. albicans containing H. pylori in this fast-moving state can

also be observed from other body sites, such as the oral cavity and vagina [17]. The frequency of

H. pylori–invaded C. albicans in the oral cavity of the normally born babies is higher than that

of cesarean birth, indicating that C. albicans in the vagina may be the main reservoir for trans-

mitting H. pylori to the newborns through their oral cavity [17]. It’s possible that C. albicans can

act as a shelter and an oral transmission promoter for H. pylori [16,18,19]. Besides C. albicans,
clinical isolates of Candida dubliniensis, C. krusei, and Candida tropicalis have also found the H.

pylori internalization by amplifying the 16S rDNA of H. pylori [20,21], suggesting that this kind

of interaction manner between H. pylori and yeast can occur in different species.

H. pylori–invaded C. albicans is not only widely distributed in the human body, but also

abundantly in food, such as yogurt, grape juice, bread, preserves, fruits, and honey [22]. C.

albicans may protect H. pylori against the environmental stresses in these habitats. The inter-

nalization into C. albicans could be a crucial strategy for H. pylori to survive and transmit in a

variety of environments especially the nonadaptive conditions.

It’s still worthwhile to note that there are some moving volutin (polyphosphate) granules

known as “dancing bodies” in the vacuoles of the C. albicans cells [23], which do not depend

on the cell cycle phase, but on the growth stage, metabolic level, and stress responses [24]. The

presence of H. pylori may induce a stress response that activate the formation of volutin gran-

ules in the vacuoles of C. albicans. Therefore, more evidence is needed to distinguish the

“dancing bodies” in the vacuole and evaluate the cross-kingdom interaction mechanisms

between C. albicans and H. pylori.
The pores of C. albicans cell wall may act as the channel which the H. pylori can pass

through. The FITC-IgY-H. pylori can enter into C. albicans yeast cells through the cell wall and

eventually accumulated in the vacuoles [25]. However, the specific mechanism still needs fur-

ther investigation, such as the cell wall/membrane remodeling of C. albicans when cocultured

with H. pylori.
The internalization of H. pylori into C. albicans is highly influenced by pH stress as the percent-

age of yeasts harboring bacteria at an acidic pH was nearly twice than that observed in the neutral

environment [26]. But when the pH is lower than 4, the number of yeasts harbored bacteria falls

sharply. This may be due to the change in the cell wall structure and the surface electric charge of

C. albicans under acidic conditions, such as the significant loss of the fibrillar layer, the increased

exposure of chitin and β-glucans [26], and the change of zeta potential of C. albicans [27].

Possible relationship between the interaction of C. albicans and H. pylori
with gastrointestinal flora

The clinical outcomes of the H. pylori–infected patients were quite different due to the diver-

sity of the gastric and intestinal microbiota [28]. H. pylori infection can reduce the diversity of
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gastrointestinal flora. The Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria

showed a decreased abundance, while Spirochetes and Acidobacteria showed an increased

abundance [29]. The eradication of H. pylori can significantly increase the abundance of the

gastric and downstream intestinal flora [30], such as Clostridium, Bacillus, etc., while the abun-

dance of fungi such as yeast was significantly increased [31]. Disorders of the intestinal micro-

biota from H. pylori–infected patients may lead to the destruction of the intestinal barrier,

thereby increasing the susceptibility to inflammatory bowel diseases [28]. The colonization of

C. albicans in the gastrointestinal tract can also influence gastrointestinal flora. C. albicans cre-

ates a niche to increase the growth and survival of various microorganisms through the forma-

tion of the poly-species biofilms with bacteria, such as Bacteroides spp. and Firmicutes spp.

[32]. However, C. albicans can reduce intestinal colonization of Clostridium difficile, a patho-

genic agent of inflammatory bowel diseases [33].

The “standard triple treatment” of H. pylori infection recommended a composition of a

proton pump inhibitor plus clarithromycin, together with amoxicillin or metronidazole. How-

ever, the effectiveness of this treatment declined to unacceptably low levels due to the antibi-

otic resistance in less than a decade [34]. Moreover, the use of antibiotics from the “standard

triple treatment” significantly reduced the alpha and beta diversity of gastrointestinal flora,

mainly including Bifidobacterium bifidum, Lactobacillus acidophilus, and Escherichia coli. The

surviving bacteria, such as E. coli, increased the resistant capability to these antibiotics [35].

The antibiotics-affected gastrointestinal flora became more vulnerable to the colonization of

C. albicans [36]. C. albicans colonized in the gastrointestinal tract may protect H. pylori from

antibiotics killing through endosymbiosis or biofilm formation, then disrupt gastrointestinal

metabolism and immunity to increase the risk of other diseases.

Probiotics may serve as a potential treatment

Probiotics have some natural advantages, such as safety, immunomodulation, and anti-

pathogen abilities. They are usually used alone or in combination with drugs to treat gastro-

intestinal diseases. Lactobacillus spp. resided in the human stomach can inhibit H. pylori by

secreting antibacterial substances, competing for binding sites, or interfering with the adhe-

sion process to prevent H. pylori colonization, enhance the mucus barrier function, and

reduce the host’s inflammatory response [37]. The triple therapy supplied with probiotic,

including Saccharomyces boulardii, Limosilactobacillus reuteri, and Lactobacillus casei, for

the treatment of H. pylori infection has the best therapeutic effect with the least adverse

events [34]. Meanwhile, probiotics, such as Lactobacillus sp., can inhibit the adherence, bio-

films, hyphae formation, and virulence expression of C. albicans [38]. Lactobacillus rhamno-
sus L34 can attenuate local inflammation, severity of intestinal leakage, fecal malnutrition,

and systemic inflammation in mice infected with C. albicans [39]. Accordingly, the applica-

tion of probiotics may be served as a potential treatment to inhibit the synergistic infections

caused by H. pylori and C. albicans.
More than 50% of people were infected with H. pylori worldwide [2]. The triple or quadru-

ple therapy with different antibiotics in clinical has gradually failed to eradicate the H. pylori
infection mainly due to the increased drug resistance of H. pylori [40]. Moreover, these antibi-

otics disrupted the balance of the gastrointestinal flora, metabolism, and immunity and even

increased the risk of other diseases [28,36]. The investigation of the interaction between H.

pylori and other microorganisms can be one of the new ways to treat H. pylori infection. C.

albicans may increase the expression of virulence factors and the growth and colonization of

H. pylori in different environmental conditions to promote its pathogenicity and transmission

(Fig 1), since C. albicans synergized with H. pylori to resist its unsuitable living environment
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and increase the infection. Their cross-kingdom interactions may be a new target for the pre-

vention, diagnosis, and treatment of H. pylori infection.
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