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Need for an earlylife HIV vaccine

The successful implementation of antiretroviral therapy (ART) in women living with HIV

(WLWH), either for their own health or for prevention of mother-to-child transmission

(MTCT), has reduced MTCT risk of HIV to<5% [1]. Yet, in 2018, worldwide, approximately

160,000 infants were infected with HIV [2]. The currently available ART-based measures to

prevent MTCT in WLWH are limited by implementation challenges, such as suboptimal ART

coverage of pregnant and breastfeeding women [3], poor adherence to ART [4,5] resulting in

incomplete viral suppression and increased risk of drug resistance, and late presentation for

prenatal care [6]. In addition, ART-based prophylactic strategies do not address the scenario

of acute maternal infections that occur late during pregnancy or during the breastfeeding

period [7]. While breastfeeding is critical to reduce infant mortality in resource-limited set-

tings by providing nutrition and protection against common childhood diseases, it also con-

tributes to>50% of new infant HIV infections. Therefore, to prevent MTCT and achieve an

HIV-free generation, novel immune-based intervention strategies beyond ART need to be

explored. While these immune-based strategies could be administered either to pregnant

women or to infants in the form of active immunization or passive immunization, this review

primarily focuses on active immunization of neonates with an HIV vaccine that can protect

during early life, from breast milk transmission, and during adolescence, from sexual

transmission.

In addition to the risk of HIV infections that occur early in life via breastfeeding, sexual

transmission during adolescence and adulthood also represents a significant and ongoing

mode of infection [8]. A pediatric HIV vaccine administered at birth and boosted during

infancy may protect infants during the period of repetitive HIV exposure via breastfeeding.

Additionally, sequential boosting through childhood and preadolescence may allow for the

maturation of their immune responses and the development of broadly protective immunity

prior to sexual debut, including HIV-specific broadly neutralizing antibodies (bNabs), which

can neutralize a diverse variety of HIV strains by targeting conserved viral epitopes. Passive

immunization with bNabs has been shown to be associated with modest and transient sup-

pression of viremia in humans [9] and in animal models [10,11]. Consequently, elicitation of
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bNabs is a major goal for an efficacious HIV vaccine. Since bNab development requires years

of affinity maturation and somatic hypermutation (SHM), the period between breastfeeding

and sexual debut represents a unique “window of opportunity” to boost anti-HIV antibody

responses at a time when the risk of HIV infection is low. Thus, a vaccine strategy initiated at

birth and pursued through adolescence may protect an individual from infancy through adult-

hood (Fig 1).

Several recent studies have indicated that the early life immune system may present some

advantages for elicitation of HIV-specific antibody responses. The purpose of this review is to

summarize these studies and highlight the unique ability of the early life developing immune

system to mount robust and durable immune responses against HIV, compared to adults.

Additionally, the potential of harnessing neonatal immune ontogeny to develop an effective

earlylife HIV vaccine is emphasized.

Infants can develop robust and durable responses to HIV

vaccination

Owing to maturational differences in the early life and adult immune systems, the ability of

infants to generate vaccine-specific immune responses has traditionally been considered as

impaired [reviewed in [12]]. Additionally, there are concerns around vaccine safety in infants,

possible interference of passively acquired maternal antibodies with the development of pro-

tective immune responses [13], and interference of novel vaccines with commonly adminis-

tered childhood vaccines [14]. These factors are further complicated by the inability of the

child to provide approval of participation in the trial, challenges of obtaining parental consent

for the child to participate due to perceived risks of the trial [15], and the constraint of limited

Fig 1. Early life vaccination to achieve protection from bimodal HIV acquisition. An HIV vaccine administered at birth with successive boosting during infancy will

induce anti-HIV neutralizing and non-neutralizing antibody responses and HIV-specific cellular immunity that will reduce the risk of HIV infection via breastfeeding.

Moreover, immunization started at birth and boosted during infancy, childhood and preadolescence will provide those neutralizing antibodies sufficient time to mature,

undergo extensive affinity maturation, and SHM and enhance their breadth and strength prior to sexual debut. These developed bNabs will confer protection against

sexual transmission of HIV during adulthood. bNabs, broadly neutralizing antibodies; SHM, somatic hypermutation.

https://doi.org/10.1371/journal.ppat.1008983.g001
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blood volumes obtained from infants for immunogenicity evaluations. As a consequence, only

a restricted number of infant vaccine trials have been conducted, to date. Nevertheless,

increasing evidence indicates that infants can mount robust and durable immune responses

following vaccination, demonstrating that earlylife immune system is not unresponsive. In

fact, it is increasingly recognized that qualitative and quantitative differences between infant

and adult immune system are critical for the adaptation of early-life immune system to the ex

utero environment [reviewed in [16]].

Neonatal nonhuman primate (NHP) studies have provided encouraging results regarding

the ability of infants to mount durable immune responses against HIV or simian immunodefi-

ciency virus (SIV) vaccines [17–19]. In fact, the concept of vaccination at birth to protect

through infancy and adolescence was highlighted by a study demonstrating that immunization

of neonatal rhesus macaques (RM) with poxvirus-based SIV vaccines early after birth provided

partial protection against multiple low-dose SIV challenges not only during infancy but also

during adolescence [20]. Other studies have also demonstrated that HIV vaccination can

induce robust antibody responses in infant RMs, although the protective roles of these anti-

bodies were not investigated in that cohort [21].

To date, only a few pediatric HIV vaccine trials have been completed (Table 1). While none

of these vaccine trials was designed to evaluate vaccine efficacy, these trials have consistently

confirmed a good safety profile in infants. All these trials have indicated that vaccinated infants

could develop robust and durable antigen-specific humoral and cell-mediated immune

responses, despite the use of different antigens, adjuvants, and viral vectors. To determine

whether infants were capable of eliciting potentially protective responses, antibody responses

from infant HIV vaccinees (Pediatric AIDS Clinical Trials Group [PACTG] 230 and PACTG

326 trials) (Table 1) were compared to those of the vaccine recipients from the RV144 trial,

the only adult HIV vaccine trial that resulted in moderate efficacy [22]. Immune correlate anal-

ysis of RV144 indicated an association between a higher magnitude of immunoglobulin G

(IgG) responses against the envelope variable loops 1 and 2 (V1V2) with reduced risk of HIV

acquisition, whereas envelope-specific immunoglobulin A (IgA) responses were associated

with increased risk of HIV acquisition [23]. Infants from both trials mounted robust V1V2-

specific IgG responses, yet vaccine-elicited Env-specific IgA responses were rarely detected.

Table 1. Pediatric HIV vaccine clinical trials.

Trial Phase Vaccine candidates Adjuvants Study population Study

population age

Year of enrollment/

references

PACTG

218

Phase I rgp120-SF2 (Chiron, USA) MF-59 Asymptomatic HIV-infected infants

and children in the USA

1 month to 18

years

1993–1994 [29]

rgp160 IIIB (MicroGeneSys, USA) Alum

rgp120-MN (Genentech, USA) Alum

PACTG

230

Phase I rgp120-MN (VaxGen, USA) Alum HIV-exposed infants born to

WLWH in the USA

Birth

(<72-hour age)

1993–1996 [30,31]

rgp120-SF2 (Chiron) MF-59

PACTG

326

Phase

I/II

ALVAC-HIV vCP205 (Sanofi-Pasteur, France) - HIV-exposed infants born to

WLWH in the USA

Birth

(�72-hour age)

1998–1999 [32]

ALVAC-HIV vCP1452 (Sanofi-Pasteur) AIDSVAX

B/B-rgp120-MN and rgp120-GNE8 (VaxGen)

Alum 2000–2002 [26]

HPTN 027 Phase I ALVAC-HIV vCP1521(subtype E/B) (Sanofi-

Pasteur)

- HIV-exposed infants born to

WLWH in Uganda

Birth

(�72-hour age)

2006–2007 [33,34]

PedVacc

001

Phase I MVA.HIVA (Impfstoffwerk DessauTornau,

Germany)

- HIV–negative infants born to HIV-

uninfected women in Gambia

20 weeks 2010 [28]

PedVacc

002

Phase

I/II

MVA.HIVA - HIV-exposed infants born to

WLWH in Kenya

20 weeks 2010 [35]

HPTN, HIV Prevention Trials Network; PACTG, Pediatric AIDS Clinical Trials Group; PedVacc, Pediatric Vaccine; WLWH, women living with HIV.

https://doi.org/10.1371/journal.ppat.1008983.t001
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Interestingly, the frequency of V1V2 IgG response of infants immunized with MF-59-adju-

vanted rgp120 vaccine (Chiron, United States of America) (PACTG 230 trial) was also higher

than that of RV144 vaccinees, and high magnitude antibody responses were still detected more

than 6 months after immunization [24]. Since RV144 vaccinees received a different vaccine

regimen than PACTG vaccinees, the ability of infants to mount V1V2 IgG responses at a

higher magnitude than adults was further confirmed by comparing the antibody responses

between infants and adults immunized with similar vaccine regimens [25]. Additionally, the

presence of maternal antibodies did not interfere with the infants’ ability to mount antibody

responses [24,26], and immunization with HIV vaccine during infancy did not inhibit the abil-

ity of other childhood vaccines to induce protective antibody levels [27,28].

Development of protective broadly neutralizing antibody

responses and non-neutralizing responses in young children

Although the induction of cross-clade bNab is 1 of the major goals of any HIV vaccination

strategy [36,37], so far, no HIV vaccine regimen has successfully elicited such responses.

Therefore, understanding the immune mechanisms behind generation of such bNab responses

remains the number 1 priority in the HIV vaccination research. During natural infection,

bNabs develop only in 10% to 30% of the HIV-infected adults after several years of infection

and are associated with extensive SHM and affinity maturation [38,39]. In contrast, HIV-

infected children can develop broad neutralization earlier than adults [40–43] and exhibit

increase in neutralization breadth and potency over time [41,44]. Moreover, compared to

adults, where plasma neutralization breadth is driven by antibodies of limited specificities,

neutralization breadth in children is often achieved via polyclonal epitope specificity [40,45].

To date, the 2 bNabs isolated from children demonstrated absence of extensive SHM [43,46].

The mutational changes that are critical for bNab functionality were revealed to be distinct in

pediatric population compared to adults [47]. Mutations important for the functional activity

of 1 isolated pediatric bNab were primarily found in the heavy chain complementarity-deter-

mining region 2 (HCDR2) and light chain complementarity-determining region 1(LCDR1),

in contrast to adult bNabs, where major determinant of breadth reside in the heavy chain com-

plementarity-determining region 3 (HCDR3) [47]. For the other isolated pediatric bNab,

unlike adult bNabs, indels in the heavy chain framework 3 region (HFR3) seemed to be critical

for neutralization breadth [43]. Additionally, neutralization breadth in children was found to

be associated with several immune parameters such as T follicular helper (Tfh) cells, circulat-

ing T follicular regulatory (Tfr) cells [48], and T helper cell 2 (Th2) cytokine interleukin 5 (IL-

5) levels in plasma [49]. These findings suggest that neutralization breadth in children is driven

by distinct mechanisms than in adults. Therefore, to augment our understanding of the advan-

tage of early immune landscape on the development of neutralization breadth and to provide

possible leverage in the quest of protective pediatric HIV vaccination regimens, further isola-

tion, and characterization of pediatric bNabs will be crucial. Understanding the immune

mechanisms, evolutionary pathways, and mutational changes that are critical for bNab devel-

opment and activity in early life will be crucial for designing effective HIV vaccines.

While elicitation of bNabs remains a priority of HIV vaccine development, a combination

of neutralizing and non-neutralizing effector responses might be crucial for an efficacious vac-

cine. A recent study has indicated that polyfunctional antibody responses are predictive of

bNab development [50], suggesting that the pathways for induction of neutralizing and non-

neutralizing effector functions are not completely distinct. In the RV144 adult HIV vaccine

trial, non-neutralizing IgG antibody-dependent cellular cytotoxicity (ADCC)-associated anti-

bodies were correlated with reduced risk of HIV infection [23]. Additionally, non-neutralizing
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antibody responses were correlated with protection induced by HIV vaccine candidates in

adult RM models [51,52]. In infants, the presence of non-neutralizing antibodies capable of

ADCC functions has been associated with better clinical outcomes, during breastfeeding [53].

Therefore, it might be postulated that upon HIV immunization at birth, prior to the develop-

ment of bNabs, non-neutralizing antibody responses such as ADCC might confer some level

of protection against breastmilk transmission (Fig 1). Interestingly, while only a short-lived

ADCC response was detectable in infant HIV vaccinees from the PACTG 230 trial [24]

(Table 1), durable HIV-specific ADCC responses were obtained in infant RMs immunized

with an HIV vaccine [54], suggesting that further studies involving non-neutralizing antibody

responses in the context of pediatric HIV vaccination are necessary.

Modulating the early life immune landscape to augment protective

anti-HIV immunity

Newborns transition from a relatively sheltered intrauterine environment to an environment

with multiple antigenic exposures. To obtain survival benefits during the period of immune

maturation, newborns establish a highly tolerogenic environment and exhibit a distinct

immune profile than adults [reviewed in [16]]. Therefore, to optimally design a pediatric vac-

cine regimen tailored to the developing infant’s immune landscape, understanding earlylife

immune ontogeny remains crucial.

Use of age-relevant adjuvants

While alum has been the standard adjuvant of choice for commercial pediatric vaccines, HlV

pediatric vaccine trials have reported the superiority of MF-59 adjuvant in mounting potent

and durable antibody responses when compared to alum. In PACTG 230 trial, the MF-

59-adjuvanted vaccine formulation was associated with durable anti-Env IgG responses, which

was associated with higher breadth and durability as compared to the alum-adjuvanted coun-

terpart [24]. This indicates that proper selection of adjuvants will be essential to augment

infant vaccination responses. The ability of adjuvants to differentially modulate immune

responses in different age groups has only recently started to be appreciated [55]. Since infants

exhibit an intrinsic bias toward Th2 responses, an effective HIV vaccine might require adju-

vants that enhance Th1 responses. Indeed, incorporation of the TLR7/8 agonist adjuvant 3M-

052, which can prime antigen presenting cells (APCs) by producing interleukin 12 (IL-12), in

alum-adjuvanted pneumococcal vaccines (PCV), facilitated Th1 differentiation and signifi-

cantly enhanced antibody responses in infant RMs immunized at birth [56]. Similarly, a recent

study in infant RMs demonstrated a potential advantage of TLR-based adjuvants, AS01-TLR4

agonist and 3M-052-TLR7/8 agonist, on the induction of robust HIV-specific antibody

responses compared to squalene or alum [57], although the protective efficacy of those elicited

HIV antibodies was not investigated. Therefore, further exploration of age-specific mecha-

nisms of adjuvant effects will be required to develop potent and durable pediatric HIV

vaccines.

Alterations of the infant microbiome to optimize vaccine responses

Emerging evidence suggests that an individual’s microbiome can influence immune responses

to vaccination [58]. Therefore, variations in microbial communities due to environmental,

socioeconomic, and nutritional conditions partially explain the heterogeneity of an individu-

al’s vaccine response [59]. While the mechanisms through which the microbiome modulate

immune responses are likely complex and are not clearly defined, microbiota have been associ-

ated with a constant source of natural adjuvants that can shape one’s innate and adaptive
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immunity [60]. This endogenous adjuvant potential of microbiota was highlighted in a study

where germ-free or antibiotic-treated mice had significantly impaired response to an inacti-

vated influenza vaccine [61]. Additionally, an oral probiotic regimen augmented antibody

response to multiple vaccines [62,63]. In contrast, the microbiome can also adversely impact

vaccine efficacy by skewing antibody response toward non-protective antigens that resemble

commensal bacterial antigens [reviewed in [64]]. In the setting of HIV vaccination, the preex-

isting B cell repertoire that develops against the commensal microbiota may divert the vac-

cine-elicited immune responses toward the gp41 region of vaccine candidates, as opposed to

the more desirable neutralizing epitopes contained within the gp120 subunit [65]. Therefore,

altering the existing gut microbiota in early infancy, when the B cell repertoire is predomi-

nantly naïve, could be beneficial to direct the immune response, upon vaccination, toward

protective immunity. In fact, the first 2 years of life represents the perfect “window of opportu-

nity” to perform microbial modulations, since the microbiome remains highly plastic during

the time when maternal stimuli, nutrition, and introduction to solid foods, metabolism, and

the environment are major contributors that shape microbial diversity [reviewed in [66]].

Next-generation immunogens for pediatric vaccine trials

Neonates and infants possess unique immunological characteristics that promote the develop-

ment of protective immunity via immunological and molecular pathways distinct from those

of adults. Therefore, a deeper understanding of the infant immune system is needed to develop

novel HIV immunization regimens tailored to the infant’s immune landscape. The fact that

the most recent adult HIV vaccine trial (HVTN 702), done in South Africa, which tested a

canarypox vector-based vaccine (ALVAC-HIV) with HIV subtype C gp120 protein adjuvanted

with MF-59, was recently discontinued due to lack of efficacy [67] highlights the need to evalu-

ate promising next-generation immunogens. To mimic the natural development of specific

bNab lineages, a sequential immunization approach using HIV envelope sequences from

patients who developed bNabs is currently being pursued in preclinical models [68,69]. Since

in most cases natural evolution of a B cell lineage is unknown, an alternative approach is to

design envelope constructs with specific antigenic features to target the bNab germline [70].

Epitope-based vaccine approaches consisting of envelope constructs that incorporate a portion

of the bNab epitope to obtain a focused immune response are also currently being evaluated

[reviewed in [71]]. The neonatal B cell compartment primarily consists of naïve and B cells

[72] with high germinal center B cell activity, lower frequency of regulatory B cells, and limited

diversity of B cell repertoire. Hence, early life may offer a unique opportunity to enhance B cell

priming following vaccination, thereby providing potential advantages toward the develop-

ment of bNabs. Additionally, infants demonstrate distinct B cell tolerance mechanism com-

pared to adults [73,74], which could be a beneficial strategy of engaging and positively

selecting B cells expressing specific germline immunoglobulin gene sequences. Other novel

immunogen approaches that are currently being evaluated in adults include native-like enve-

lope trimer immunogens [75], fold-on trimers [76], native flexible-linked (NFL) trimers [77],

DNA vaccines encoding polyvalent gp120s [78], and mRNA vaccine [79]. While recent studies

in adults have demonstrated the existence of bNab precursors [80], their frequency in pediatric

population is largely unknown. Therefore, to assess whether pediatric immune system presents

advantages for induction of neutralization breadth, novel immunization strategies need to be

evaluated in pediatric preclinical models [81].

The pediatric HIV vaccine protocol HVTN 135 is currently in development to assess the

safety and immunogenicity of HIV CH505 transmitted-founder (T/F) gp120 adjuvanted with

the TLR4 agonist GLA-SE in HIV-exposed infants. This Phase I trial will use the CH505 T/F
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protein that is currently being tested in an adult HIV vaccine trial, and the results from

HVTN135 will determine if this vaccine is safe to be used in infants. Additionally, this trial will

indicate whether infants develop a distinct immune response to this vaccine as compared to

adults, hence providing valuable information for the design of future pediatric HIV vaccine tri-

als. Ultimately, additional clinical trials will be required to assess if immunization at birth can

protect infants from vertical HIV transmission during infancy and against sexual HIV trans-

mission during adolescence.
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