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Introduction

Segmentation of viral genomes allows exchange of intact genes between related viruses when

they coinfect the same cell (Fig 1). This exchange is a type of recombination called reassort-

ment. Classical recombination involves the joining of nucleic acid sequences derived from two

different templates into one chimeric product. During reassortment, however, entire gene seg-

ments are swapped to give rise to chimeric genomes. In both cases, novel genotypes are

formed, giving the potential for viruses to evolve. As with genetic change through mutation,

most reassortment events yield progeny viruses that are less fit than either parent (Fig 2).

Occasionally, however, reassortment gives rise to a combination of genes particularly well

suited to a given set of selection pressures, and increased fitness results.

In theory, any virus with a segmented genome can undergo reassortment. Among viruses

that infect vertebrates, those that carry segmented genomes belong to the Arenaviridae, Birna-

viridae, Bunyavirales, Orthomyxoviridae, Picobirnaviridae, and Reoviridae. Reassortment has

been documented to occur in nature for each of these viral taxa [1–6]. Nevertheless, both the

frequency of reassortment and its evolutionary implications for this highly diverse set of

viruses are likely to vary greatly.

Coinfection: A necessary prerequisite for reassortment

Since reassortment takes place in coinfected cells, a critical factor governing reassortment is

the frequency of coinfection (Fig 1). When thinking about a single virus population within a

host, infection of individual cells with multiple viral genomes is likely to be enhanced through

aggregation of virus particles and spread of virus within foci rather than dispersal throughout

a tissue. In addition, if productive viral infection is fully or partially dependent on multiple

infection (for example, because some viral genomes lack one or more segments), this depen-

dency would be expected to augment reassortment. Indeed, abundant reassortment in influ-

enza A virus (IAV) (family Orthomyxoviridae) infections occurs because fewer than eight

segments are replicated in many singly infected cells [7–9]. Because all eight segments of IAV

encode essential gene products, such semi-infected cells can produce progeny viruses only if

the missing segments are introduced through coinfection. As a result, a high proportion of

productively infected cells are coinfected [7,8]. Although not formally demonstrated to date,

this phenomenon is also expected to occur for bunyaviruses (order Bunyavirales), which are

thought to package less than the full complement of three genome segments into most virus

particles [10,11].

Of course, reassortment has a greater impact on viral genotype if coinfecting viruses are not

derived from the same population but rather represent two distinct lineages. The likelihood of

such a mixed infection occurring depends on numerous factors, including prevalence of the
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viral lineages in circulation, likelihood of dual exposure, and the spatial dynamics of the two

viruses within a coinfected host. Another important factor is the active exclusion of a second

virus as a result of superinfection interference [12,13]. This phenomenon can result from

direct effects of primary infection, such as viral destruction of cell surface receptors, or as a

consequence of host innate immune responses, which render infected cells or an infected host

refractory to further infection. Superinfection interference has been documented for diverse

viruses, but it is notable that this effect appears to be minimal for certain members of the Reo-

viridae and Arenaviridae [14–16].

Physical barriers to reassortment within the cell

In theory, coinfection does not necessarily lead to reassortment. The efficiency of reassortment

within a coinfected cell depends on (i) the extent to which viral replication is compartmental-

ized within the cell and (ii) the stringency of genome packaging and compatibility of packaging

signals between coinfecting viruses. The first of these factors determines the level of mixing

between coinfecting viral genomes, while the second dictates whether or not segments derived

from differing parental strains can be coincorporated into nascent virus particles.

Most viral life cycles are characterized by a compartmentalization of viral functions into

localized areas. These can take the form of cytoplasmic inclusion bodies, viral replication

organelles associated with host cell membranes, or punctate accumulations of viral compo-

nents within the nucleus. The concentration of viral genetic material, viral proteins, and neces-

sary host factors within these inclusions is thought to increase the efficiency of viral functions.

However, reassortment is predicted to be limited by inclusions. If each incoming parental

virus generates its own inclusion, the resultant constraint on the physical mixing of genome

Fig 1. Reassortment requires viruses to meet on multiple scales. For reassortment to occur between viruses of two

distinct genotypes, these viruses must infect the same host (A) and the same tissue within that host (B). Either the

inoculating viruses or their progeny must come together within the same cell (C). Finally, the coinfecting viral

genomes must mix within the coinfected cell, and replicated segments must be copackaged, processes which may be

limited by compartmentalization of viral replication and selectivity of genome incorporation, respectively (D). When

all of these criteria are met, progeny viruses of both reassortant and parental viral genotypes will emerge from the cell

(E).

https://doi.org/10.1371/journal.ppat.1007200.g001
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segments would restrict reassortment. Reoviruses (family Reoviridae) give an excellent exam-

ple of a highly compartmentalized viral lifecycle. Reovirus components accumulate in distinct

inclusion bodies within the cytoplasm, which are the sites of viral transcription, translation,

replication, and particle assembly [17]. In this context, viral genomes replicated within the

same cytoplasm may nevertheless remain unmixed. Relatively inefficient mixing of coinfecting

reovirus genomes is supported by the results of experimental coinfections in which the major-

ity of progeny viruses from coinfected cells retained a parental genotype [18]. The fact that reo-

virus reassortment occurs, however, is likely attributable to the merging of heterologous viral

inclusions within coinfected cells (Fig 1). Reovirus inclusions are known to be dynamic, and

fusion between inclusions in singly infected cells has been documented [19]. Trafficking of

viral RNAs between inclusions may also be possible. In contrast to reovirus, visualization of

IAV RNAs within infected cells suggested that the gene segments remain colocalized only en

route to the nucleus early in infection and that the segments disperse once in the nucleus, cre-

ating the potential for mixing when multiple genomes are present [20].

Viral mechanisms that evolved to ensure the coordinated packaging of genome segments

into virus particles may also place constraints on reassortment. Incorporation of viral genomes

into virions is typically directed by specific nucleic acid sequences, viral protein motifs, or a

combination of both. For segmented viruses, these packaging signals must be present on all

gene segments. In addition, some segmented viruses enforce a high fidelity of genome packag-

ing to ensure that one of each segment is present, a process that relies on segment-specific sig-

nals and selective incorporation. Divergence among related viruses in packaging signals may

limit the potential for reassortant genotypes to form. For IAV, this form of constraint has been

Fig 2. Reassortant viruses are often less fit than parental strains. The evolutionary success of reassortant progeny

viruses depends on the compatibility of the reassortant genes and the selection conditions of the host environment.

Thus, even when reassortment occurs efficiently (A), the prevalence of reassortant viruses may be limited by inherently

low fitness and/or competition with parental viruses present in the same host or host population (B).

https://doi.org/10.1371/journal.ppat.1007200.g002
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demonstrated experimentally [21,22]. Although the formation of viruses with heterologous

packaging signals was disfavored, it was not entirely excluded. This degree of flexibility in IAV

packaging gives the potential for large changes, or shifts, in viral genotype to occur when

highly heterologous strains reassort.

Fitness barriers to reassortment

In contrast to other forms of recombination, reassortment does not rely on template switching

during replication and does not result in the formation of chimeric genes. Reassortment there-

fore does not give rise to nonfunctional genes. Nevertheless, most reassortment events are del-

eterious, even between similar viruses [23] (Fig 2). The reason is that many viral components

act in concert, and coevolution of these components optimizes their physical or functional

interactions. Reassortment, however, can abruptly pair divergent—often incompatible—viral

genes. The polymerase of IAV is, for example, a tripartite complex composed of proteins

encoded on three different segments. Reassortment among these segments is frequently associ-

ated with suboptimal polymerase activity and reduced fitness of the reassortant viruses [24,25].

Similarly, heterologous combinations of bunyavirus polymerase and nucleoprotein genes have

been observed to be poorly compatible [26,27], and a requirement of the viral polymerase for

its cognate core shell protein constrains reassortment between divergent rotaviruses (family

Reoviridae) [28].

Emergence of novel viruses through reassortment

Although usually deleterious, reassortment is very important in the evolutionary history of

many segmented viruses because of the rare occasions when a reassortant virus is successful

on a population scale. A striking example from the Bunyavirales is that of Ngari virus. This

virus is a reassortant that derives its large and small gene segments from Bunyamwera virus

and its medium gene segment from Batai virus [29]. The continued circulation of Ngari virus

indicates that it is evolutionarily successful in its reservoir hosts. In addition, a marked change

in virulence upon human infection has been noted: although both Bunyamwera and Batai

viruses cause self-limiting febrile disease in humans, the reassortant Ngari virus has been asso-

ciated with large outbreaks of hemorrhagic fever [30]. The underlying reasons for this change

in virulence remain unclear. As a second example, reassortment among IAVs has been seen

repeatedly to facilitate emergence into a new host niche, a phenomenon that is central to the

formation of pandemic strains [31]. When an IAV adapted to a nonhuman host reassorts with

a seasonal strain, resultant progeny can combine genes well adapted for replication in human

cells with genes encoding hemagglutinin and neuraminidase antigenic determinants to which

humans lack preexisting immunity. The antigenic novelty of such a reassortant virus gives it a

significant advantage over circulating seasonal strains. If the novel virus retains or acquires the

ability to replicate and transmit efficiently in humans, it can therefore spread rapidly through

the population, causing a pandemic and outcompeting the previously circulating seasonal

lineage.

Prospects

Reassortment in nature is best documented for the viruses of the Orthomyxoviridae, owing to

the relatively thorough surveillance and full genome sequencing efforts focused on influenza

viruses circulating in human and nonhuman hosts. The extent to which reassortment contrib-

utes to emergence of novel viruses belonging to other segmented virus families is less clear,

and further research is needed on this topic. In addition, the significance to virus evolution of

reassortment among related variants of a single virus population is understudied. Most
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segmented viruses have RNA genomes and therefore have high mutation rates. Thus, even a

clonal virus population is not characterized by a single sequence but is rather a cloud of related

variants. By analogy to sexual reproduction in eukaryotes, reassortment within a viral popula-

tion is expected to accelerate adaptive change by combinatorial shuffling of beneficial and dele-

terious mutations [32,33]. While homologous reassortment would not bring about the large

shifts in phenotype for which reassortment is best known, it could be highly significant to viral

evolution occurring over a larger timescale. Formal testing of this concept is needed to reveal

the full implications of reassortment for the evolution of segmented viruses. Finally, major

gaps in our understanding of reassortment lie at the mechanistic level: What processes give

rise to incomplete viral genomes and consequent reliance on multiple infection? How do gene

segments traverse the physical barriers imposed by viral inclusion bodies? How are heterolo-

gous segments excluded during genome assembly? Basic research aimed at addressing these

questions promises to reveal important insight into the molecular processes that underlie

reassortment.

Conclusions

In summary, for viruses with segmented genomes, reassortment is an important means of

genetic diversification. Its prevalence is governed by a number of stochastic effects, like the

probability of dual exposure, but also by fundamental aspects of a given virus’ replication strat-

egy. Viruses formed through reassortment of heterologous parental strains usually suffer fit-

ness defects but occasionally possess a selective advantage and therefore can have a major

impact on the evolution and epidemiology of circulating viruses.
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