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Abstract

There is great interest in passive transfer of broadly neutralizing antibodies (bnAbs) and
engineered bispecific antibodies (Abs) for prevention of HIV-1 infections due to their in vitro
neutralization breadth and potency against global isolates and long in vivo half-lives. We
compared the potential of eight bnAbs and two bispecific Abs currently under clinical devel-
opment, and their 2 Ab combinations, to prevent infection by dominant HIV-1 subtypes in
sub-Saharan Africa. Using in vitro neutralization data for Abs against 25 subtype A, 100 C,
and 20 D pseudoviruses, we modeled neutralization by single Abs and 2 Ab combinations
assuming realistic target concentrations of 10ug/ml total for bnAbs and combinations, and
5ug/mi for bispecifics. We used ICgq breadth-potency, completeness of neutralization, and
simultaneous coverage by both Abs in the combination as metrics to characterize preven-
tion potential. Additionally, we predicted in vivo protection by Abs and combinations by
modeling protection as a function of in vitro neutralization based on data from a macaque
simian-human immunodeficiency virus (SHIV) challenge study. Our model suggests that
nearly complete neutralization of a given virus is needed for in vivo protection (~98% neu-
tralization for 50% relative protection). Using the above metrics, we found that bnAb combi-
nations should outperform single bnAbs, as expected; however, different combinations are
optimal for different subtypes. Remarkably, a single bispecific 10E8-iMAb, which targets
HIV Env and host-cell CD4, outperformed all combinations of two conventional bnAbs, with
95-97% predicted relative protection across subtypes. Combinations that included 10E8-
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iMAD substantially improved protection over use of 10E8-iMAD alone. Our results highlight
the promise of 10E8-iMAb and its combinations to prevent HIV-1 infections in sub-Saharan
Africa.

Author summary

In the absence of effective vaccines, the use of passive transfer of conventional and engi-
neered antibodies to prevent HIV-1 infection is being considered. This approach is prom-
ising because of broad efficacy and long in vivo lifetimes of antibodies. We analyzed the
potential of leading antibody candidates, and combinations of two antibodies, to prevent
HIV-1 infections in sub-Saharan Africa, the hardest-hit region in the world. We used in
vitro antibody neutralization data to predict neutralization metrics that might be relevant
for in vivo success, and modeled antibody-based in vivo protection as a function of in vitro
neutralization using data from a macaque study. By systematic comparison, we found, as
expected, that combinations of two conventional antibodies significantly outperformed
individual conventional antibodies, even with same total concentration. However, differ-
ent antibody combinations were optimal for the different HIV-1 subtypes analyzed. The
engineered bispecific 10E8-iMAb, which targets epitopes on HIV Env and host-cell CD4,
was predicted to reduce infection probability by 20-30 fold, and outperformed all individ-
ual antibodies and combinations of two conventional antibodies. This performance was
further improved by combining 10E8-iMAb with other antibodies. Thus, our results sug-
gest that passive transfer of current antibody candidates, especially 10E8-iMADb and its
combinations, might be successful in prevention of HIV-1 infections in sub-Saharan
Africa.

Introduction

The World Health Organization estimated that in 2015, approximately two-thirds of the 2 mil-
lion new HIV-1 infections globally, were in sub-Saharan Africa. Since HIV-1 infection cannot
be cured, effective vaccines or other prevention measures are needed to mitigate the impact of
HIV/AIDS on global health. Successful antibody (Ab)-based vaccines prevent infection, and
T-cell-based vaccines enhance control of infection, but the development of such vaccines has
proven challenging [1]. Pre-exposure prophylaxis (PrEP) with reverse transcriptase inhibitors
is effective in prevention of HIV-1 infections, and is in current use [2]. PrEP efficacy, however,
depends on adherence, which is challenging given that four or more doses a week are required,
and associated costs and toxicity [2, 3]. Thus, alternative approaches to PrEP using broadly
neutralizing antibodies (bnAbs) or long acting antiretroviral formulations are being explored
[4].

Many bnAbs isolated from chronically infected individuals can potently neutralize a sub-
stantial fraction of diverse global panels of HIV-1 pseudoviruses in vitro. Their characteriza-
tion has provided insights for vaccine design [5-9], enabling progress in strategies for eliciting
bnAb responses [10, 11]. The best bnAbs are also promising candidates for passive transfer to
prevent HIV-1 infections, a more readily achievable goal [4, 12].

Several preclinical studies have shown efficacy for prevention of HIV-1 infections following
passive transfer of bnAbs [13-21]. In a recent repeated low-dose simian-human
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immunodeficiency virus (SHIV) challenge study in rhesus macaques using SHIV spg 5o [21], a
single bnAb infusion delayed infection by weekly SHIV challenges to medians of 8-14 weeks,
depending on the bnAb, compared to median of 3 weeks for infection of control animals. This
underscores a main advantage of bnAbs over most small-molecule drugs-the long in vivo half-
lives of bnAbs can result in prolonged protection by a single dose. Antibodies can be engi-
neered to extend in vivo half-life even further [22, 23]. Other advantages include Fc-mediated
effector functions [24, 25], reduced side effects, and the availability of alternative approaches
in situations of emerging drug resistance. Based on such encouraging data, several promising
bnAbs are being clinically developed, and have either begun (PGT121 in clinical trial
NCT02960581 (ClinicalTrials.gov identifier) and VRC07-523LS in NCT03015181), or com-
pleted preliminary human testing (VRC01, 3BNC117 and 10-1074) [26-28]. The first phase
2b efficacy trials using the bnAb VRCO1 are underway in three continents (NCT0271665,
NCT02568215).

The potency of particular bnAbs against different pseudoviruses tested in global panels is
highly variable (Fig 1); some Envs for any given bnAb will be completely resistant or have
less potent ICgj titers [29, 30]. Patterns of Env sensitivity are similar for bnAbs targeting
similar epitopes, but differ across epitope classes [30]. Thus, a natural solution to the prob-
lem of limited breadth/potency is to combine bnAbs targeting different epitopes [29]. Neu-
tralization for bnAb combinations in vitro can be very accurately modeled using individual
bnAD data, suggesting that bnAbs targeting different epitopes act independently when used
in combination [30]. Other solutions include engineering artificial bispecific antibodies
with two Fab arms derived from different bnAbs [31-33], or bispecific antibodies with one
arm targeting the HIV receptor or co-receptor on host cells, and the other targeting HIV-1
Env [34-36]. A different approach involves arms derived from the CD4 receptor, with the
Ab base including a CCR5 co-receptor mimetic peptide [37]. All these approaches can
increase neutralization breadth and potency against diverse viruses, and several are under
clinical development.

As promising bnAb and bispecific candidates are developed, it will be important to assess
their potential for in vivo prevention, and to compare in vivo performance to in vitro measures
of neutralization. This will help inform choices regarding candidates Abs for subsequent
advancement in the clinical testing pipeline. For successful clinical outcomes, Abs or Ab com-
binations will need to be effective against diverse circulating strains and the diversity in viral
quasispecies that accumulates in each chronically infected donor. Furthermore, genetically
identical virus samples can have Ab resistant subpopulations [30, 38], due to phenotypic het-
erogeneity in glycosylation profiles [39] and protein conformations [40, 41]. Economic factors
must also be considered, as Ab manufacturing costs may be higher than for small molecule
drugs.

Here, we analyzed the potential of several leading conventional and bispecific Ab candi-
dates to prevent HIV-1 infections in sub-Saharan Africa. We obtained in vitro neutraliza-
tion data for leading Ab candidates against virus panels of subtypes A, C & D, the dominant
subtypes in this region, and used our modeling approach to predict neutralization by all
Abs and 2 Ab combinations [30]. We compared the in vitro performance of Abs and Ab
combinations using realistic in vivo target concentrations and previously developed metrics
[30] that measure breadth-potency of neutralization, and efficacy against within-host viral
diversity and viral phenotypic heterogeneity. Finally, we modeled Ab-mediated in vivo pro-
tection as a function of in vitro neutralization using data from a macaque SHIV challenge
study, and used this to predict the relative protection afforded by Abs and Ab combinations
in this study.
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Fig 1. In vitro neutralization data for individual antibodies against A, C & D subtype pseudovirus panels. (A) Distribution of HIV-1 subtypes in
sub-Saharan Africa using the “Geography Search Interface” on the Los Alamos HIV Database. (B-D) Experimental ICq, titers for antibodies against
subtype C, A and D panels, respectively. Viruses are represented on rows and antibodies on columns. Red-yellow shades indicate more-less potent
neutralization, and blue cells indicate ICqgj titers above experimental threshold or 10ug/ml. (E) Comparison of ICg, distributions for each antibody
across subtypes. The percent of viruses in each subtype with ICg, above experimental threshold for each antibody are indicated in the figure. The ICg,
distributions between subtypes were compared for each antibody using Wilcoxon rank sum test and comparisons with p < 0.01 are indicated.

https://doi.org/10.1371/journal.ppat.1006860.g001

Results
In vitro neutralization data for subtypes A, C & D

We collected in vitro neutralization data (Methods) for leading candidate bnAbs and bispeci-
fics for PrEP: CD4 binding site (CD4bs) bnAbs 3BNC117 [42], N6 [43], VRCO1 [44] and
VRC07-523LS [23]; V2 glycan (V2g) apex bnAbs CAP256-VRC26.25 [45] and PGDM1400
[46]; V3 glycan (V3g) bnAbs 10-1074 [47] and PGT121 [48]; and bispecific antibodies
10E8,,0-iMAb (10E8-iMAD for brevity) [36], which targets membrane proximal external
region (MPER) on Env and host-cell CD4, and 3BNC117-PGT135 [32], which targets CD4
binding site and V3 glycan epitopes on Env.

We studied the efficacy of the above antibodies against subtype A, C and D viruses, which
make up 81.1% of the Los Alamos HIV database sequences from sub-Saharan Africa (Fig 1A).
The subtype C panel is a 100 pseudovirus subset of a previous panel of 200 early/acute viruses
from southern Africa, designed to preserve the breadth-potency profiles of bnAbs as seen for
the larger panel [49, 50]. Subtype A panel includes 25 pseudoviruses, subtype D 20, cloned
from chronically infected individuals from five sub-Saharan Africa countries each spanning
years 1992-2008 and 1993-2008, respectively (S1 Table). 22 out of 25 subtype A pseudoviruses
(including 5 transmitted-founder viruses) and 11 out of 20 subtype D viruses (with 4 transmit-
ted-founder viruses) were isolated from acute/early infections. Majority of subtype A and D
pseudoviruses were cloned using single genome amplification or limiting dilution PCR. ICq
titer heatmaps of antibodies are shown in Fig 1B-1D, and IC5, and ICg, data are reported in
S1 and S2 Data.

These data recapitulate previously observed bnAb neutralization profiles, e.g. [29, 30]: V2g
and V3g bnAbs can be very potent, but have limited breadth (Fig 1), and CD4bs bnAbs are
generally less potent but show higher breadth. Also, V2g and V3g bnAbs tend to have comple-
mentary reactivity patterns; Envs that are insensitive to V3g bnAbs are sensitive to V2g bnAbs,
and vice versa. Several Abs showed subtype-specific differences in ICg, potency (see Fig 1E for
levels of statistical support). CD4bs bnAbs VRCO01, 3BNC117 and bispecific 3BNC117-PGT135
were significantly more potent against subtype A viruses; PGT121 less potent against subtype
D; and 10E8-iMAD was less potent against subtype A.

Performance of single antibodies

We next characterized the performance of individual Abs using in vitro ICg, breadth and
potency and completeness of neutralization (Fig 2). Some bnAbs incompletely neutralize pseu-
doviruses even at very high concentrations [30, 38, 51], due to phenotypic heterogeneity in a
clonal pseudovirus sample arising from heterogeneity in glycan occupancy and/or processing
[39], dynamics of Env trimers [40] and alternate variable loop configurations [41]. We mod-
eled the fraction of pseudovirus neutralized by bnAbs using the Hill curve parametrization of
neutralization curves (Methods), which accurately predicts observed neutralization profiles
[30]. As exact thresholds for in vivo efficacy are not yet well characterized, we used >95% for
complete neutralization as before [30]. This threshold is not unreasonably high, as our analysis
of alow-dose SHIV challenge study below showed that a few macaques got infected in spite of

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006860 March 5, 2018 5/24


https://doi.org/10.1371/journal.ppat.1006860.g001
https://doi.org/10.1371/journal.ppat.1006860

@'PLOS | PATHOGENS

Antibody-based prevention of HIV-1 subtype A, C & D infections

A Subtype A
96 84 92 92 84 32 64 60 56 % viruses with
1.0} ' ' ' "] 1.0 = D —— o & @<= | max inh > 0.95
O Hgreeitens
2 0.8} < 0.8} o ° T o]
8 = o o -
o 2
3 0.6} £o06f © o °
O £
(0] e [e]
2 0.4} 2 0.4} © .
© E
2 5
€ 0.2} S 0.2} 1
(&)
0.0p ! ! 1 I ! ! 0.0p 1 CIII) ol ol CIII) 1 @‘@ @'@ ]
0.0001 0.001 o0.01 0.1 1 10 Xy X, a; a, az a, b, b, ¢4 ¢
ICqo (MG/mI)
B SubtypeC
96 71 87 79 51 47 49 47 51 % viruses with
1.0F T T T T ™ 1.0F T T T T T ; §' @' ! : 4 max inh > 0.95
S 0.8} - S 0.8} g o @o & -
® 2 o o o
Q S ° % o o od® ©7o
0.6} . < 0.6} o) .
3 < ¥ Qo
2 04 5 0.4 o o &
g O | 2 ®— @ °
S & o
€ 0.2t . S 0.2f as -
O (o]
0'0_ I L I I I L 0'0_ Gll)@ CI? @q 1 “ “ ]
0.0001 0.001 0.01 0.1 1 10 X1 Xo aq; a, az au b1 b2 Ci Co
ICgo (Hg/ml)
C SubtypeD
10085 75 70 70 40 40 20 40 % viruses with
of” , . l = Of o= apeEwme > Goss O {maxinh>095
1.0 1.0 e %® mzﬁ%ﬂg
P
< c &0 > —_ O
2 0.8 1 g 0.8¢ 0O oo % 1
o S| © ° o
8 0.6} [ E 0.6} ® ©° .
g ) 5 i
£ 0.4f . g 0.4t o o
N = o
S X —
E 0.2} o ol = 0.2 o ]
&)
0'0_ I ! ! I ! L 00_ | ! Ol OI OI 1 @-@ @-@- ]
0.0001 0.001 o0.01 0.1 1 10 Xy X, a;a aza, byb ¢ ¢
1Cgo (Mg/mI) Bispecific CD4bs V2glycan V3 glycan
at 5ug/ml at 10pg/ml
bnAbs:
= N6 (a,) mmm CAP256-VRC26.25 (b,) = PGT121 (cy) mmm 10E8-IMAD (x4)
== VRCO07-523 (a,) == PGDM1400 (b,) m 10-1074 (c,) === 3BNC117-PGT135 (x,)
=== 3BNC117 (a,)
m== VRCO1 (a,)
PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006860 March 5, 2018 6/24


https://doi.org/10.1371/journal.ppat.1006860

o ®
@ : PLOS | PATHOGENS Antibody-based prevention of HIV-1 subtype A, C & D infections

Fig 2. Performance of individual antibodies. (A-C) show the results for subtypes A, C and D, respectively. The left panels show ICg breadth-potency curves for
antibodies and the right panels show the fraction maximum inhibition values at 10 pg/ml for conventional antibodies and at 5 pg/ml for bispecifics against viruses
from a given subtype virus panel. The numbers on top of right panels show the percent of viruses in the panel that had maximum inhibition > 0.95 for each antibody.

https://doi.org/10.1371/journal.ppat.1006860.9002

serum bnAb levels corresponding to 95-99% in vitro neutralization of the challenge pseudo-
virus [21]. In the ongoing Phase 2b VRCO1 clinical trials, the minimum VRCO1 in vivo serum
concentrations are predicted to be 5-16 pug/ml [52]. Based on this, we chose the target mini-
mum concentration of 10 ug/ml total for our modeling of Abs, individually or in combina-
tions. We used 5 pg/ml for bispecifics because of their greater potency (Fig 1). Since post-
infusion concentrations will be higher than the minimum concentrations we assumed, our
results yield conservative estimates of Ab efficacy.

Even with using half the target concentration, 10E8-iMAD had the best neutralization met-
rics when compared against all other individual Abs for each subtype (Fig 2 and S2 Table). It
showed best ICgq potency (median ICgq of 0.0045-0.015 pg/ml across all subtypes, 4-54 fold
more potent than the next most potent Ab, p = 9.4x10-8-0.037 using Wilcoxon rank-sum test)
and completely neutralized (>95% neutralization) 96-100% of panel viruses.

For subtypes A and C, the next best performing single Ab was N6, with 95-96% ICg, cover-
age and complete neutralization of 87-92% panel viruses at 10 ug/ml. For subtype D, the bispe-
cific 3BNC117-PGT135 showed the second most potent ICg titers after I0E8-iMAD (median
ICgo of 0.2425 pg/ml) and completely neutralized 85% of viruses at 5 pug/ml. While V2g bnAbs
were very potent against sensitive viruses, they had relatively low ICg, breadth (55-59% for
CAP256-VRC26.25 and 50-68% for PGDM1400) and lower proportion of completely neutral-
ized viruses (32-47% for CAP256-VRC26.25 and 40-64% for PGDM1400). Similarly, V3g
bnAbs, which were slightly less potent than V2g, also show limited ICg breadth and a low pro-
portion of viruses completely neutralized. Among CD4bs bnAbs, N6 was best, VRC07-523LS
was nearly comparable followed by 3BNC117 and VRCO1 (Fig 2).

To partially mitigate potential sampling biases of our pseudovirus panels (particularly the
smaller subtype A and D panels), we performed bootstrap resampling to understand the
robustness of our results (Methods). We generated 1,000 bootstrap realizations to match the
size of each panel, and characterized the median and 95% confidence intervals (CI) for each of
the above metric for each Ab; these results are presented in S3 Table. We found that 10E8-
iMAD still showed the best metrics for all subtypes, with few bnAbs showing any metrics that
were within the bootstrap 95% CI of the respective metric for 10E8-iMAD (S3 Table).

Performance of 2 bnAb combinations

Next, we analyzed combinations of 2 conventional bnAbs, since combinations improve perfor-
mance over single bnAbs [29, 30]. We used the Bliss-Hill model on single bnAb ICs, and ICgq
data to predict combination ICg titers and pseudovirus fraction neutralized for combinations
of 2 bnAbs targeting different epitopes (Methods). This approach was shown to accurately pre-
dict experimental data [30]. We assumed equal concentrations for both bnAbs, and used a
total target concentration of 10 pg/ml for the combination, i.e. 5ug/ml per bnAb. As before, we
used ICg, breadth-potency and completeness of neutralization as metrics to evaluate perfor-
mance. We also used coverage with both bnAbs active as a metric for prevention success,
assuming a virus is actively neutralized by both bnAbs in a combination if ICgy < 5ug/ml for
each bnAb individually. The rationale behind this metric is that strains from within-host qua-
sispecies will have a lower chance of resistance to both bnAbs [30].

We analyzed three classes of 2 bnAb combinations: CD4bs + V2g, CD4bs +V3g and V2g
+ V3g. For each subtype the best overall performance across all metrics was observed for
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CD4bs + V2g combinations, however, the best specific combination was subtype dependent.
For subtype A, the best combination was N6 + PGDM 1400, with the lowest median ICqg titer
(0.027 pg/ml, combination titers are reported as total concentration of both bnAbs) (Fig 3A, S2
Table), best ICg, coverage (96%), second best coverage of complete neutralization (92%, best was
96%), and best coverage with both bnAbs active (68%). For subtype C, the best combination was
N6 + CAP256-VRC26.25, with the second lowest median ICg titer (0.041 pg/ml, best was

0.025 pg/ml), best ICgq coverage (99%), best coverage of complete neutralization (93%), and
third best coverage with both bnAbs active (52%, best was 56%). For subtype D, the best combi-
nation was 3BNC117 + CAP256-VRC26.25, with the most potent median ICgy titer (0.114 pg/
ml), second best ICg, coverage (95%, best was 100%), best coverage of complete neutralization
(90%) and second best coverage with both bnAbs active (45%, best was 50%). CD4bs + V3g com-
binations had somewhat lower performance than CD4bs + V2g combinations. The V2g + V3g
combinations had some of the most potent median ICgy titers, however, they also had the lowest
ICg coverage, completeness of neutralization and especially coverage with both bnAbs active,
due to the complementarity between V2g and V3g bnAb neutralization profiles (Fig 1B-1D).

Several of these results were robust to bootstrap variation (S3 Table), however, a few differ-
ences were observed. For subtype D, the best combination was predicted to be VRC07-523LS
+ 10-1074, based on each of its metrics being the best or within 95% bootstrap CI of the best
metric. This combination showed the best ICgq breadth (100%) and best coverage with com-
plete neutralization (90%) among combinations of two conventional bnAbs for subtype D. In
general, we found that several combinations showed metrics that were within 95% bootstrap
CI from the best metric for the subtype A and D panels, consistent with their smaller size
(n =25 and 20, respectively). This suggests that larger, representative panels for these subtypes
might be needed to accurately inform ranking of 2 bnAb combinations.

As expected, the best 2 bnAb combinations improved performance over individual conven-
tional bnAbs (Fig 2, S2 and S3 Tables) with the same total target concentration (10 pug/ml).
Improvements were observed mainly in median ICg, titers (2.3-5.2 fold more potent across
subtypes, p = 1.5x 107°-0.035 using Wilcoxon rank sum test on ICgj titers) and complete neu-
tralization (0-15% increase, not significant), while ICg, coverage was comparable (0-4%
increase, not significant). These results reinforce the notion that it is better to combine bnAbs
than use the same concentration of a single bnAb. Moreover, given the extent of complete neu-
tralization, passive transfer of the best 2 bnAb combinations has the potential to prevent infec-
tion by most diverse strains across all subtypes.

Remarkably, the 10E8-iMAD bispecific performed better than the best 2 bnAb combinations
across all subtypes (Fig 3, S2 and S3 Tables), despite a target concentration of 5ug/ml, half of
that for the 2 bnAb combinations. 10E8-iMAD was strikingly more potent (1.8-22.8 fold lower
median ICgy than the most potent 2 bnAb combinations across subtypes; p = 0.0001-0.0256
using Wilcoxon rank sum test; median ICgo below the 95% bootstrap CI of the best 2 bnAb
combinations for subtypes C and D (S3 Table)), and had higher complete neutralization cover-
age (3-10%, not significant). For ICg, coverage, 10E8-iMAb matched the coverage of the best 2
bnAb combination for subtype A, had 3% lower coverage for subtype C and had 5% higher cov-
erage for subtype D. 10E8-iMAD also has the potential to match 2 bnAb combinations in terms
of two independent targets [36], although the strong synergy between the components makes it
difficult to measure coverage of 10E8-iMAb with both specificities active.

Performance of combinations of bispecifics and conventional antibodies

Building on the impressive performance of 10E8-iMAb, we next investigated the performance
of 2 Ab combinations involving bispecifics. We assumed a target concentration of 5ug/ml for
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https://doi.org/10.1371/journal.ppat.1006860.9003

each Ab in the combination, and used the Bliss-Hill model to predict the neutralization for the
combinations of both bispecifics, and of a bispecific with a conventional bnAb, such that epi-
tope targets are not repeated (combinations of 3BNC117-PGT135 with CD4bs or V3g bnAbs
were not considered). As before, we used median ICg titers, ICg, coverage, coverage of com-
plete neutralization and coverage with both Abs active as metrics to evaluate performance (Fig
4 and S2 and S3 Tables).

For subtype A, the bispecific combinations with the best overall performance were
10E8-iMADb with VRC07-523LS, N6 or PGDM1400 (S2 Table). The former two combinations
showed median ICgy titers of 0.016-0.019 pg/ml, completely neutralized all viruses, and neu-
tralized 88% viruses with both Abs active. 10E8-iIMADb + PGDM1400 had the lowest median
ICgy titer (0.007 pg/ml), completely neutralized all viruses, and neutralized 64% viruses with
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https://doi.org/10.1371/journal.ppat.1006860.9004

both Abs active. Bootstrap analysis favored 10E8-iMAb + VRC07-523LS as its median ICgj fell
within the 95% bootstrap CI of 10E8-iMAb + PGDM1400 (S3 Table). For subtype C, the best
combination was 10E8-iMAb + N6 with median ICs, titer of 0.015pug/ml, complete neutraliza-
tion of all viruses and neutralization of 90% viruses with both Abs active (S2 and S3 Tables).
For subtype D, the best combination was 10E8-iMADb + 3BNC117-PGT135 with the second
lowest median ICgj titer of 0.007 pg/ml, complete neutralization of all viruses and neutraliza-
tion of 95% viruses with both Abs active. Across all subtypes, the best combination was
10E8-iMAD + N6, which had relatively less potent median ICgy titers than the best, but
completely neutralized all viruses and neutralized 85-90% viruses with both Abs active. It was
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comparable to the combination of both bispecifics for ICg potency and coverage of complete
neutralization, however, it showed higher coverage with both Abs active for subtypes A and C
(8 and 10%, respectively) (for subtype D it showed 10% lower coverage with both Abs active)
(S2 Table). The differences in coverage with both bnAbs active for subtypes A and D were not
robust to bootstrap (S3 Table).

The best combinations involving bispecifics performed better than either 10E8-iMAD alone
or the best 2 conventional bnAb combinations. The improvements were complete neutraliza-
tion of all viruses (10E8-iMAb and best 2 bnAb combinations incompletely neutralized 0-10%
viruses across subtypes) and substantial increase in coverage with both Abs active (20-50%
increase over best 2 bnAb combinations; not significant for subtype A and p = 2.9 x 10~° and
0.001 for subtypes C and D, respectively, using Fisher’s exact test; higher than 95% bootstrap
CI for best 2 bnAb combinations for subtypes C and D (S3 Table)). The latter could be impor-
tant as viral resistance can emerge in chronically infected mice treated with 10E8-iMAb [36].
In such cases, combinations involving bispecifics may be advantageous as bispecific + con-
ventional Ab combinations effectively have three independent targets and the combination of
bispecifics have four independent targets. In terms of potency, the overall best bispecific com-
binations sometimes had less potent median ICgj titers than 10E8-iMAb alone because of the
conventions of equal concentration of Abs in the combination and combination ICgj titers
reported as the total Ab concentrations. However, V2g bnAbs combined with 10E8-iMAb
showed more potent ICg titers than for 10E8-iMAb alone (S2 Table).

Modeling antibody mediated protection in vivo

The protective effect of passively transferred Abs in preventing SHIV infections has been
shown in macaques [13, 15-18, 21, 22]. While these studies highlight the potential of bnAbs
for protection, no strategy exists to predict in vivo protection using the in vitro neutralization
profile of a given Ab against a given challenge virus. Here we begin to address this question by
modeling Ab mediated protection using data from a repeated, low-dose SHIV challenge
macaque study by Gautam et al. [21]. In this study, a single injection of 20 mg/kg of one mono-
clonal antibody, 10-1074, 3BNC117, VRCO1 or the longer half-life variant of VRC01 (VRCO01-
LS), was given to six macaques per Ab group, and nine macaques were used as controls. Each
animal was challenged weekly with a low-dose SHIV spg o inoculum by the intrarectal route
until they got infected. The in vivo protective effect of each Ab was significantly higher than
control, and modeling of protection as a function of Ab concentration showed that the more
potent the Ab against SHIV apg o, the higher the protective effect.

To explore whether differences in the in vivo protective effect between Ab groups could be
predicted using in vitro potency of Abs, we modeled in vivo protection as a function of in vitro
neutralization corresponding to the Ab titers at the time of each challenge. We predicted the
fraction neutralization of the SHIV spg o pseudovirus using measured or interpolated in vivo
concentrations of Abs, and the in vitro pseudovirus ICs, and ICgy Ab titers reported in Gautam
et al (Methods). We transformed the fraction neutralization to instantaneous inhibitory poten-
tial (ITP) [53] as our dependent variable, since it provided better fits. IIP is defined as
-Log;0(1.0 —fraction neutralization), and measures the Log;, reduction in a single round of
infection. We modeled the binary variable “protected” or “not protected” for each challenge as
a function of IIP using modified logistic regression models, with model parameters deter-
mined using likelihood maximization (Methods, S1 Text). These modified models account for
the baseline probability of infection for the low-dose challenge by having a scale parameter for
the maximum probability of infection (p,) that is fit using experimental data. We compared
the fits of the experimental data using two models: a) with the same parameters across all Abs
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(3 parameters in total), and b) with different parameters for all Abs (9 parameters in total) (S1
Text). Using model selection criteria the maximum-likelihood model with same parameters
across Abs was better (difference in AIC = 1.98, and in BIC = 24.90), and both models pro-
vided similar likelihoods (p = 0.12 using likelihood ratio test). We tested the goodness of fit of
the model with same parameters by using the Hosmer-Lemeshow test (Methods), which esti-
mates the statistical significance for rejecting the hypothesis that the fitted model is the true
model [54]. For the above model, we obtained p = 0.9871, which indicates a good fit of our
model to the experimental data. Thus, these results together suggest that the 4 Abs from Gau-
tam et al. provided similar in vivo protection as a function of IIP, and that the differences in
protection in this study may be explained by differences in potency and pharmacokinetics of
the Abs.

The maximum likelihood model with same parameters for Abs is shown in Fig 5A. This
model has a baseline probability of infection for the low-dose SHIV challenge of 22.42%, con-
sistent with the 9 out of 33 challenges resulting in infection of control animals (p = 0.53 using
binomial test). The probability of infection was significantly negatively correlated with IIP
(p = 6.35x10"'%, using likelihood ratio test, S Text). However, the protective effect of Abs was
seen at high fraction neutralization, with < 5% relative protection (defined as 100 - % relative
probability of infection) for < 96.1% neutralization. Above this, the protection probability was
predicted to have a sharp transition, with 50% relative protection for 97.9% neutralization
and > 95% relative protection for > 98.8% neutralization. To estimate the robustness of the
model parameters, we simulated 1,000 bootstrap randomizations (Methods, S1 Fig); the
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estimated parameters for baseline probability of infection (median = 23.68%, interquartile
range = 22.37-25.29%) and neutralization for 50% relative protection (median = 97.77%, inter-
quartile range = 97.18-98.05%) were robust and close to the best-fit model. However, the slope
of the scaled logistic curve (median = 11.97, interquartile range = 7.64-37.93) showed rela-
tively higher variation, with ~22% realizations showing slopes >100, suggesting that the slope
of the best-fit model might show some dependence on the exact data used.

We used the above model to predict the in vivo protection offered by Abs and Ab combina-
tions in this study. Since the baseline rates of human HIV-1 infections are much lower than
those estimated for the low-dose SHIV challenge above, we used the relative probability of
infection to model the performance of Abs and Ab combinations. We calculated IIP for Abs
and combinations using the Bliss-Hill model (Methods) for a range of concentrations and pre-
dicted the relative probability of infection for each virus and the average relative probability of
infection for a panel by averaging over all viruses in the panel (Fig 5B). The average relative
probability of infection as a function of concentration for Abs and Ab combinations are
shown in Fig 6 and numerical values at the target concentrations of 5 or 10ug/ml are reported
in S2 Table. The results from bootstrap simulations of each pseudovirus panel are shown in
§2-54 Figs and bootstrap medians and 95% CI are reported in S3 Table.

Among single Abs, 10E8-iMAb had the lowest average relative probability of infection of
3-5% across subtypes at 5pg/ml. It was significantly better than the next best, N6, with 11-39%
across subtypes at 10ug/ml (p = 7.2x10-12-0.0006 using Wilcoxon rank sum test on relative
probability of infection values for each virus in a panel) (Fig 6A, S2 Table). The differences
between 10E8-iMAD and other bnAbs were significant for subtypes C and D using 95% boot-
strap CI (53 Table). VRC07-523LS was comparable to N6, but other single Abs were predicted
to have limited protection across subtypes. VRC01 showed 40% average relative probability of
infection for subtype A, but 78% for subtype C and 85% for subtype D. Similarly, V2g and V3g
bnAbs had minimum average relative probability of infection of 40-63% across subtypes.
3BNC117-PGT135 showed intermediate performance with 16-50% average relative probabil-
ity of infection across subtypes.

The best 2 conventional bnAb combinations showed 4-18% average relative probability of
infection across subtypes and were different for each subtype: N6 + CAP256-VRC26.25 for
subtype A, N6 + PGT121 for subtype C and 3BNC117 + CAP256-VRC26.25 for subtype D
(Fig 6B, S2 and S3 Tables). While N6 + CAP256-VRC26.25 showed slightly better protection
than 10E8-iMAb for subtype A (0.27% lower average relative probability of infection, not sig-
nificantly different using bootstrap analysis (S3 Table)), 10E8-iMAb was better than the best 2
bnAb combinations for subtypes C (4.3% lower average probability of infection, p = 0.06, Wil-
coxon rank sum test) and D (14.7% lower average probability of infection, p = 0.005 Wilcoxon
rank sum test and significantly different using 95% bootstrap CI (S3 Table)), in spite of having
half the total target concentration.

Combinations of 10E8-iMAb with other Abs reduced the average probability of infection
across all subtypes (Fig 6C, S2 and S3 Tables). 10E8-iMAD + N6 showed the best protection
with average relative probability of infection of < 1.3 x 107% for subtypes A and D and of
0.54% for subtype C, a significant improvement over 10E8-iMADb (p = 3.6 x 10~'*~0.002 across
subtypes using Wilcoxon rank sum test, and significantly different using 95% bootstrap CI (53
Table)). 10E8-iMAb + 3BNC117-PGT135 was next with an average relative probability of
infection of 7.2 x 10~°~1% across subtypes. These results raise the possibility that 10E8-iMAb
combinations with N6 or 3BNC117-PGT135, may be very effective at preventing almost all
subtype A, C and D infections.
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Fig 6. Predicted in vivo protection for individual Abs and combinations. The average relative in vivo probability of infection predicted using above
modeling is shown for single Abs (A), combinations of two conventional Abs (B) and combinations with one or two bispecific Abs (C) for the subtype A
(left), C (middle) and D (right) panels. The curves show the relative probability of infection at a given concentration averaged over pseudoviruses from
each panel. For Ab combinations, the total concentration of both Abs is shown.

https://doi.org/10.1371/journal.ppat.1006860.9006

Discussion

Given the absence of effective Ab-based vaccines against HIV-1, and the difficulties in adher-
ence to antiretroviral drug PrEP, passive transfer of Abs is a promising alternative prophylactic
modality [4, 12]. Here, we characterized the potential of the most clinically advanced conven-
tional and engineered Abs, and their two antibody combinations, to prevent infections in sub-
Saharan Africa, by analyzing in vitro neutralization metrics and modeling of in vivo
protection.

Modeling of data from a macaque challenge study highlighted the potential challenges for
Ab-mediated in vivo protection. In particular, the protective effect of Abs was observed only
beyond 96% neutralization, suggesting that near-complete neutralization, even beyond our
assumed cutoff of 95% neutralization, might be important for consistent in vivo protection.
Since the number of infectious challenges was relatively small in this dataset (n = 33 out of 337
total), it is possible that our modeling would miss low levels of protection at low neutralization,
rendering our estimates to be conservative. However, our result is consistent with previous
findings that plasma IDs titers of ~40-200, using different bnAbs, can protect against SHIV
challenges with different viruses, doses and routes of challenge [15, 17, 18, 23, 55]. These
serum titers correspond to Ab concentrations of 40-200 times ICs, titers, which assuming an
average neutralization curve with slope = 1 [38, 56], yield ~97.5-99% in vitro neutralization
[38, 56]. Nonetheless, we found that 10E8-iMADb, which targets MPER and host-cell CD4,
alone and in combination with other Abs, can still meet these stringent requirements of near
complete neutralization.

It is not clear how applicable for human infections is the above modeling of in vivo protec-
tion using macaque data due to several potential differences. First, even the low-dose SHIV
challenge is much more infectious than typical human sexual transmissions (~30% baseline
infection rate versus ~0.1-1% [57, 58]). Second, our model was derived using data on the sin-
gle subtype B SHIV spg_ o challenge, and whether it will hold true for different viruses with
different baseline infection rates is not clear. Third, while we found that the four bnAbs studied
in Gautam et al. could be modeled using the same parameters, it is not clear whether this will
apply for all the Abs/combinations in this study. Fourth, our model does not account for any
potential contribution of effector functions or other non-neutralizing antibody functions to in
vivo antibody mediated protection; although, the good fits of experimental data suggest that
these effects could be minor in comparison to neutralization. Nonetheless, our modeling clari-
fies the relationship between in vitro neutralization and in vivo protection in macaques, and
introduces a novel statistical framework to explore the question whether or not there are uni-
versal features of Ab protection, as future human and animal studies are undertaken.

The use of in vitro neutralization metrics to inform the in vivo performance of Abs intrinsi-
cally has limitations. Two issues that may impact this study are that the in vitro assays used
here were based on pseudoviruses grown in 293T cells, which can result in bnAb-specific neu-
tralization differences relative to molecular clones grown in PBMCs [38, 59]. As the latter are
more relevant in vivo, such differences could impact the relative ranking of Abs and Ab combi-
nations obtained using pseudovirus-based in vitro metrics. Another important factor missing
from our analysis is in vivo Ab stability, which can vary between Abs and can impact the choice
of optimal Abs and Ab combinations for clinical efficacy.
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The variable performance of single bnAbs highlights the difficulty of meeting the challenges
in the prevention setting. While V2 and V3 glycan bnAbs were some of the most potent, they
potently neutralized less than 50% of the pseudoviruses tested (ICgo < 0.1 pg/ml) (Fig 2), and
had low coverage of complete neutralization and predicted relative protection in vivo across
subtypes. The CD4bs bnAbs improved coverage of complete neutralization and relative pro-
tection; however, this performance was observed for some but not all subtypes. For example,
VRCO1 efficacy was predicted to be lower for subtypes C and D, and higher for subtype A,
highlighting the importance of considering viral subtypes among breakthrough cases in the
phase 2b VRCO01 Antibody Mediated Prevention (AMP) clinical trials [60]. Given the limita-
tions discussed above, our models may not be predictive of outcomes in a clinical setting, how-
ever, data from clinical trials will be invaluable in understanding how predictive in vitro
neutralization can be of in vivo protection in human infections, and will help refine the models
developed here.

Our results indicated that combinations of 2 conventional bnAbs would substantially
improve the performance over the single bnAbs, even with the same total concentration. This
improvement was most notable for complete neutralization and relative probability of infec-
tion. The best combinations consisted of one CD4bs and one V2 glycan bnAb, however, the
optimal combination differed for each subtype. Overall, N6 with CAP256-VRC26.25 or
PGDM1400 showed best performance across subtypes, although their performance was lim-
ited for subtype D. Thus, at the total target concentration of 10 pg/ml, even combinations of 2
bnAbs might be insufficient for prevention of some infections, across subtypes prevalent in
sub-Saharan Africa. Nonetheless, 2 bnAb combinations are predicted to be highly preferable
over single bnAbs. Since combinations target two independent targets, they will also increase
the coverage of the donor quasispecies diversity, as chronically infected donors can have
viruses resistant to single bnAbs.

Bispecific Abs offer a way to increase breadth and potency by combining different para-
topes in a single molecule, thus overcoming some of the above challenges. The bispecific
3BNC117-PGT135 was comparable to the best conventional bnAbs, but was outperformed by
some 2 bnAb combinations. However, we found that 10E8-iMAb showed superior perfor-
mance over all single Abs and, remarkably, even over all combinations of two conventional
bnAbs. This performance was found across subtypes at the lower assumed concentration of
5ug/ml, half that of bnAbs/bnAb combinations. 10E8-iMAD also has two independent compo-
nents, both of which are individually quite broad, with significant synergy between them in
the context of the bispecifics [36]. Still, 10E8 resistance mutations in Env allowed escape in
most chronically infected mice treated with 10E8-iMAD [36], suggesting that combining
10E8-iMAD with other Abs can improve coverage of within-host quasispecies and reduce the
opportunity for emergence of resistance. Indeed, our modeling indicated that 10E8-iMAb
when combined with N6 or 3BNC117-PGT135 showed 80-95% coverage with both Abs active
and very low average relative probability of infection (<0.6%) across subtypes. Since
10E8-iMAD does not retain Fc effector functions such as antibody dependent cellular cytotox-
icity (ADCC), combining 10E8-iMAb with Abs with ADCC activity might provide an addi-
tional advantage. It is not clear how important Fc effector functions might be for sterilizing
protection relative to neutralization, however previous studies suggest a beneficial role, as such
functionalities may help clear infections as they are beginning to disseminate [15, 20, 61].
Thus, combining 10E8-iMAb with potent Abs like N6 or 3BNC117-PGT135 substantially
improves the already impressive predicted potential of 10E8-iMAD to prevent HIV-1 infec-
tions in sub-Saharan Africa.
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Materials and methods

Study design

This study was designed to analyze the potential of passively transferred Abs and Ab combina-
tions to prevent HIV-1 subtype A, C and D infections. We collected in vitro neutralization data
for 10 conventional and bispecific Abs against a total of 145 pseudoviruses and used computa-
tional modeling on these data to predict neutralization data for Ab combinations. We analyzed
these data to compare the performance of Abs and Ab combinations. We also modeled Ab-
mediated in vivo protection using data from a published macaque challenge study and used this
to predict the relative in vivo protection offered by Abs and Ab combinations in this study.

Viruses and antibodies

Panels of HIV-1 Env pseudoviruses representative of clades A (n = 25), C (n = 100), and D

(n = 20) were utilized to assess the breadth and potency of bnAb neutralizing activity. The
clade C virus panel is a subset of the larger 200 virus panel of early/acute isolates previously
described [49, 50]. The clade A and D pseudoviruses are derived from isolates from HIV-
infected patients from sub-Saharan Africa obtained as part of the CAVD Comprehensive Anti-
body Vaccine Immune Monitoring Consortium’s (CAVIMC) Standard Virus Panel Project
and exhibit a Tier 2 neutralization phenotype; information about these viruses is presented in
S1 Table. Env pseudovirus stocks were generated by transfection of 293T/17 cells (American
Type Culture Collection (ATCC), Manassas, VA) as previously described [62]. While the pseu-
doviruses panels used here are a resource shared throughout the field, developed with the
intention of being representative of circulating viruses, still they are subject to bias. Two docu-
mented issues suggest they may not be fully representative of the levels of resistance that would
be encountered in a prevention trial. In particular, HIV-1 is diversifying over time, and
becoming increasingly resistant at the population level, measurable on the time scale of
decades [49, 63]. As neutralization panels take years to develop, the original samples from
which the pseudoviruses were derived were often sampled 10-20 years ago. In addition, trans-
mitted-founder viruses tend to be more resistant to antibodies, and many of the viruses in our
panels were sampled during chronic infection [49, 64].

The panel of 10 broad and potent monoclonal antibodies tested here was selected based on
their current use in passive infusion clinical trials, or considered advanced candidates for clinical
development. Cloned human antibodies were generated in the laboratories of M. Nussenzweig
(3BNC117, 10-1074), D. Burton (PGT121, PGDM1400), M. Connors (N6), or at the NIH Vac-
cine Research Center (VRCO01, VRC07-523, CAP256-VRC26.25). Engineered bispecific antibod-
ies were generated in the laboratories of D. Ho (10E8-iMAb) and J. Ravetch (3BNC117-PGT135).

Neutralization assays

Neutralizing antibody titers were determined using a luciferase-based reporter assay in TZM.
bl cells as previously described [65, 66]. Starting concentrations of individual Abs ranged from
10-50 ug/ml depending on available supply at the time of testing. All Abs were serially diluted
seven times using a 5-fold titration series. All assays were performed in a laboratory meeting
GCLP standards. Data for 3BNC117, 10-1074, VRCO01, VRC07-523LS and CAP256-VRC26.25
for some A and D pseudoviruses were used from previous studies [23, 29, 36, 43, 45, 67].

Modeling of neutralization by Abs and Ab combinations

We used the previously developed Bliss-Hill model [30] to predict the ICg, and fraction maxi-
mum inhibition values for 2 Ab combinations, using the web tool, CombiNAber (https://
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www.hiv.lanl.gov/content/sequence/ COMBINABER/combinaber.html). The individual Ab
ICsy and ICgq experimental data was the input, and a target concentration of 5pg/ml of each
Ab in the combination was used. We predicted incomplete neutralization values for single Abs
against panel viruses by assuming a Hill curve (f(c) = ¢™ / (ICso™ + c™), where fis fraction neu-
tralized, c is concentration of Ab and m =log(4) / [log(ICgo)-log(ICsy)]), as implemented in
CombiNAber.

Bootstrap analyses

To understand variation of the metrics studied here with respect to finite sampling, we used a
bootstrapping approach. 1,000 bootstrap replicates for each pseudovirus panel were generated
by randomly sampling viruses with replacement, with each replicate matching the size of the
pseudovirus panel. For each bnAb/combination and for each subtype, each metric was evalu-
ated for these bootstrap replicates and the medians and 95% CI were calculated (S3 Table).

Statistical analyses

We performed statistical comparisons using packages implemented in the Stats module from
SciPy [68]. Non-parametric tests were preferred and two-sided p-values are reported.

Modeling of in vivo protection as a function of in vitro IIP

We used the in vivo Ab concentrations reported in Gautam et al. [21] to obtain concentration
at the time of each challenge for each macaque. If the concentration at the time of challenge
was not reported, we interpolated the concentration assuming a log-linear decay of Ab concen-
tration between the timepoints immediately before and after the challenge with reported con-
centrations; or extrapolated the concentration by using the previous two time points with
reported concentrations. To match the experimental data, a minimum threshold of 0.1 pg/ml
was used for predicted concentrations. We used Hill curves to predict the fraction neutraliza-
tion at a given concentration of an Ab using the ICso and ICgy titers against SHIV apg_go pseu-
dovirus from Gautam et al., and transformed this to IIP using IIP = -Log; (1.0 —fraction
neutralization).

We used modified versions of logistic regression models to model the probability of infection
in vivo as a function of ITP (S1 Text). The best model with same parameters across Ab groups
was: p(x) =po / [1 + exp(a x + b)], where x is IIP and parameters p,, a and b were fixed using
maximum likelihood on data from all challenges in all animals across control and Ab groups.
We used the SciPy package for constrained optimization algorithm ‘L-BFGS-B’ [68, 69] to esti-
mate maximum likelihood parameters, which were p, = 0.2242, a = 11.2994 and b = -18.8970.

The goodness-of-fit for the above model was tested using the Hosmer-Lemeshow test [54],
as implemented in R. Given the size of our dataset (337 data points), we used 10 groups for the
Hosmer-Lemeshow test as recommended by Paul et al. [70]; however, our result was robust
when we used 5-15 groups. Likelihood ratio tests were performed to compare models and esti-
mate significance of parameters as reported in S1 Text. For bootstrap simulations, we gener-
ated 1,000 realizations using random sampling of observed data with replacement to obtain
the same number of infected and uninfected data points as in the observed data, and fit the
above scaled logistic model to each bootstrap realization.

For prediction of in vivo relative protection of Abs and Ab combinations from this study,
the above model was used with IIP values at a given concentration predicted either using Hill
curves for single Abs or using Bliss-Hill model for Ab combinations as implemented in Com-
biNAber [30]. Average relative protection for a virus panel was obtained by averaging over rel-
ative protection for all viruses in the panel at a given concentration of Ab or Ab combination.
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Supporting information

S1 Text. Details for modeling of in vivo protection as a function of in vitro IIP.
(DOCX)

S1 Fig. Bootstrap robustness of models of Ab-based in vivo protection. We simulated 1,000
bootstrap realizations and obtained best-fit scaled logistic models for probability of infection
as a function of IIP for each realization (Methods). (A) The scaled logistic curves for bootstrap
realizations are shown in translucent black and that using the observed data is shown in solid
red. (B-D) Histograms of best-fit model parameters for each bootstrap realization are shown
using grey bars, and those for the observed data are shown using red vertical lines.

(TIF)

S2 Fig. Bootstrap variation of predicted in vivo protection of individual Abs and combina-
tions against subtype A pseudovirus panel. Each panel shows the average relative in vivo
probability of infection as a function of concentration for individual Abs and combinations
using the full subtype A pseudovirus panel data (red dashed curves) and using 1,000 bootstrap
replicates (Methods). The bootstrap median curves are shown with black lines, the interquar-
tile range (25-75 percentiles) at each concentration shown using dark grey shaded regions and
the 95% confidence intervals shown using light grey shaded regions.

(TIF)

S3 Fig. Bootstrap variation of predicted in vivo protection of individual Abs and combina-
tions against subtype C pseudovirus panel. Same as S2 Fig, except using subtype C pseudo-
virus panel.

(TIF)

S4 Fig. Bootstrap variation of predicted in vivo protection of individual Abs and combina-
tions against subtype D pseudovirus panel. Same as S2 Fig, except using subtype D pseudo-
virus panel.

(TIF)

S1 Table. Virus information for subtype A and D pseudovirus panels.
(XLSX)

$2 Table. Summary of metrics used to evaluate performance for all individual Abs and Ab
combinations against all subtypes.
(XLSX)

$3 Table. Bootstrap median and 95% confidence intervals for metrics used to evaluate per-
formance for all individual Abs and Ab combinations against all subtypes.
(XLSX)

S1 Data. ICso and ICg, titers for individual Abs against subtype A and D panels.
(XLS)

$2 Data. ICs, and ICg, titers for individual Abs against subtype C panel.
(XLSX)
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