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Abstract

The structural flexibility or ‘breathing’ of the envelope (E) protein of flaviviruses allows virions

to sample an ensemble of conformations at equilibrium. The molecular basis and functional

consequences of virus conformational dynamics are poorly understood. Here, we identified a

single mutation at residue 198 (T198F) of the West Nile virus (WNV) E protein domain I-II

hinge that regulates virus breathing. The T198F mutation resulted in a ~70-fold increase in

sensitivity to neutralization by a monoclonal antibody targeting a cryptic epitope in the fusion

loop. Increased exposure of this otherwise poorly accessible fusion loop epitope was accom-

panied by reduced virus stability in solution at physiological temperatures. Introduction of a

mutation at the analogous residue of dengue virus (DENV), but not Zika virus (ZIKV), E pro-

tein also increased accessibility of the cryptic fusion loop epitope and decreased virus stabil-

ity in solution, suggesting that this residue modulates the structural ensembles sampled by

distinct flaviviruses at equilibrium in a context dependent manner. Although the T198F muta-

tion did not substantially impair WNV growth kinetics in vitro, studies in mice revealed attenu-

ation of WNV T198F infection. Overall, our study provides insight into the molecular basis

and the in vitro and in vivo consequences of flavivirus breathing.

Author summary

Flaviviruses include emerging pathogens such as WNV, DENV, and ZIKV that threaten

global health. Despite causing significant morbidity, effective vaccines or therapeutic agents

to protect humans against many flaviviruses are lacking. Because of the importance of anti-

bodies in flavivirus immunity and vaccine protection, much effort is focused on under-

standing the factors that modulate antibody recognition of flaviviruses. Virus breathing,

which allows viruses to sample different conformations at equilibrium, has the potential to

transiently expose otherwise inaccessible antibody epitopes. Here, we report the identifica-

tion a single mutation in the envelope protein that alters the exposure of a poorly accessible
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epitope and the stability of both WNV and DENV through changes in the ensemble of

structures sampled by the virus. For WNV, this change attenuated infection and pathogen-

esis in mice, suggesting that virus conformational dynamics have relevant consequences in
vivo.

Introduction

Flaviviruses are enveloped, positive-stranded RNA viruses typically transmitted to humans via

infected ticks or mosquitoes. As many members of the flavivirus genus are emerging, they con-

stitute a significant threat to global health. For example, approximately 390 million humans

worldwide are infected annually with one of the four serotypes of dengue virus (DENV) [1].

West Nile virus (WNV) was introduced into North America in 1999 [2] and rapidly became

the leading cause of arbovirus-related encephalitis in the United States [3]; Zika virus (ZIKV)

emerged from Asia and Africa for the first time in 2007 and has since caused epidemics in

French Polynesia [4], Oceania [5], and most recently, the Americas [6, 7]. Despite causing sig-

nificant morbidity, licensed vaccines or therapeutic agents to protect humans against many fla-

viviruses are lacking. However, highly effective vaccines for some flaviviruses such as yellow

fever virus, Japanese encephalitis virus, and tick-borne encephalitis virus are in use. The induc-

tion of a neutralizing antibody (NAb) response is a correlate of protection for these vaccines

[8–12]. While a live-attenuated tetravalent DENV vaccine was recently licensed, its efficacy

and durability varied by DENV serotype, pre-existing flavivirus immune status, and age of vac-

cine recipient [13–15]; the relationship between neutralization titer and protection for this vac-

cine is less clear. Because of the importance of antibodies for flavivirus immunity, a detailed

understanding of flavivirus antigenic structure as well as the mechanisms of antibody-medi-

ated neutralization is critical [16].

Assembled flavivirus particles are composed of three structural proteins: capsid (C), pre-

membrane (prM), and envelope (E). The E protein, which consists of three structural domains

(DI, DII, and DIII) connected to the viral membrane via a helical anchor, has critical roles in

directing both the assembly of virions and their entry into cells. Flexible hinges between E pro-

tein domains enable conformational changes necessary for many steps of the viral life cycle,

including fusion and maturation [17, 18]. Flaviviruses bud into the lumen of the endoplasmic

reticulum as immature, non-infectious particles with a spiky surface composed of 60 icosahed-

rally arranged prM-E heterotrimers [19, 20]. During virus egress through the acidic environ-

ment of the trans-Golgi network, conformational changes in E expose a cleavage site within

prM, which is recognized by host furin-like proteases. Cleavage of prM in the trans-Golgi net-

work and release of the pr peptide in the extracellular environment give rise to mature and

infectious virus particles covered by antiparallel E homodimers. NAbs can target epitopes in

all three E protein structural domains and in quaternary structures composed of multiple

domains within or across E dimers [21–31], and may block multiple steps in the virus entry

pathway [32–35].

Cryo-electron microscopic (cryo-EM) reconstructions of DENV [36, 37], ZIKV [38, 39],

and WNV [40] have provided detailed models for the structure of mature virions on which 90

E dimers lie flat against the viral membrane in a herringbone pattern. However, several lines of

evidence suggest that many infectious flaviviruses exist as structures beyond those captured by

high-resolution cryo-EM reconstructions [16]. Flaviviruses are released from infected cells as a

heterogeneous population containing varying amounts of uncleaved prM due to incomplete

maturation [41]. While the structures of these partially mature virions are not fully defined,
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they appear to contain regions that display mature- and immature-like arrangements of E pro-

teins in varying proportions [42]. The presence of uncleaved prM on virions modulates the

accessibility of many E protein epitopes recognized by NAbs [43–47]. Additionally, prM reten-

tion on virions allows for recognition by prM-reactive antibodies incapable of efficiently neu-

tralizing infectivity. These prM-specific antibodies can enhance DENV infection and

potentially contribute to severe clinical disease [48–52].

Flavivirus heterogeneity also arises from conformational flexibility of viral proteins that

allows virions to sample an ensemble of conformations at equilibrium [53]. As with changes in

virus maturation efficiency, virus conformational dynamics or ‘breathing’ has the potential to

modulate antibody recognition and potency. Prolonged virus-antibody incubation reveals

time-and temperature-dependent changes in antibody potency, the degree of which correlates

generally with predictions of epitope accessibility on the mature virion; the neutralization

potency of antibodies targeting cryptic epitopes can be enhanced more significantly compared

to antibodies targeting highly accessible epitopes [54]. In this context, prolonged incubation of

WNV and DENV in the absence of antibody does not irreversibly render them more sensitive

to neutralization, suggesting that antibody binding may stabilize transiently sampled virion

conformations [47].

The role of virus breathing in modulating antibody recognition is exemplified by the

DENV1-specific human monoclonal antibody (mAb) E111, which neutralizes two DENV1

strains, Western Pacific (WP) and 16007, with a ~200-fold difference in potency [55]. Struc-

tural analyses revealed that E111 binds to an epitope in DIII that is predicted to be inaccessible

based on existing cryo-EM models. The strain-dependent neutralization potency of E111 was

neither explained by antibody binding affinity nor sequence variation within the epitope.

Instead, a single residue in DII outside of the antibody footprint that differed between DENV1

WP and 16007 was responsible for modulating sensitivity to neutralization by E111 [56]. Thus,

natural variation at this residue regulates the conformational dynamics of DENV1 in a way

that affects exposure of the distal E111 epitope.

The determinants and functional consequences of a dynamic virion are poorly understood.

In this study, we describe a single residue within the E protein DI-DII hinge that alters the neu-

tralization sensitivity and stability of WNV and DENV virions through changes in conforma-

tional dynamics. Mutation at this residue in the WNV E protein attenuated infection and

pathogenesis in mice, suggesting that changes in virus breathing have relevant consequences

in vivo.

Results

Mutation of residue 198 in the WNV E DI-DII hinge increases the

accessibility of a cryptic DII fusion loop epitope

To identify epitopes targeted by NAbs in flavivirus-immune sera, we created a library of WNV

reporter virus particles (RVPs) [57] containing mutations at solvent-accessible E protein resi-

dues for use in neutralization studies. We focused on residues within the DI-DII hinge region,

which has been shown to be an important target for many potently neutralizing antibodies

against both WNV and DENV [23, 24, 33]. Because virion maturation state and conforma-

tional dynamics may modulate epitope accessibility and neutralization sensitivity indirectly,

we performed a series of control experiments, as described previously [26], to identify pleiotro-

pic effects of mutations on the overall antigenic structure of virions. These experiments identi-

fied a mutation at E residue 198 (T198F, Fig 1A) that unexpectedly modulated sensitivity to

neutralization by the DII-fusion loop (DII-FL)-reactive mAb, E60, despite being located dis-

tally from the predicted epitope [58]. RVPs incorporating T198F were 68-fold more sensitive
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Fig 1. Neutralization sensitivity of WNV E T198F RVPs to mAbs. (A) Top (left panel) and side (right panel) views of the crystal structure of the WNV E

protein monomer (PDB 2HG0) are shown, with domains I, II, and III (DI, DII, and DIII), and the fusion loop of DII (DII-FL) indicated below the structure. The

side view was obtained by rotating the structure in the left panel 90 degrees towards the page. On the structure, amino acid residues important for

recognition by mAb E60 in the DII-FL [58] and by mAb E16 [59] in DIII are indicated by the green and purple spheres, respectively. Gray spheres indicate

residues within DI-DII hinge that were mutated for epitope mapping studies. The blue spheres and black arrow indicate the location of threonine at E

protein residue 198 described in this study (B) Representative dose-response neutralization curves for WT and T198F WNV RVPs tested concurrently

Functional effects of flavivirus conformational dynamics
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to E60 neutralization than were wild type (WT) RVPs (average EC50 = 13.1 and 881 ng/ml for

T198F and WT RVPs, respectively, p< 0.0001, Fig 1B and 1D). In contrast, there was little dif-

ference in sensitivity to neutralization by mAb E16 (average EC50 = 5.9 and 8.1 ng/ml for

T198F and WT RVPs, respectively, Fig 1C and 1E), which binds an accessible epitope on the

DIII lateral ridge (Fig 1A) [59–62].

Neutralization studies with antibodies that bind poorly accessible epitopes such as those in

DII-FL [46, 58, 63] often reveal incomplete neutralization even at saturating antibody concen-

trations [45]. As flavivirus neutralization occurs when the number of antibodies bound to the

virion exceeds a stoichiometric threshold [62], incomplete neutralization may reflect structural

heterogeneity among a genetically homogeneous RVP population that limits epitope accessi-

bility. Virions that are not bound by antibodies at a stoichiometry sufficient for neutralization

remain infectious [62]. We noted that a significantly smaller fraction of T198F RVPs remained

infectious at the highest E60 concentration tested (10 μg/ml) compared to WT (5.5% and

26.7% for T198F and WT RVPs, respectively, p = 0.001, Fig 1B). These results demonstrate

that the T198F mutation increases the accessibility of a cryptic epitope in DII-FL.

Increased neutralization sensitivity of WNV T198F RVPs to mAb E60 is

not explained by changes in virion maturation

The neutralizing activities of many mAbs, including those targeting DII-FL, can be modulated

by the efficiency of virion maturation [45, 46, 64]. Specifically, virions that retain uncleaved

prM often are more sensitive to neutralization by antibodies that bind epitopes predicted to be

poorly accessible on the mature virion. For example, increasing the efficiency of prM cleavage

(Fig 2A) reduced the sensitivity of WT WNV RVPs to neutralization by E60 relative to a stan-

dard WT RVP preparation (~70-fold reduction in EC50, p = 0.02, Fig 2B and 2C), as detailed

previously [26, 45, 47]. To investigate whether T198F modulates the efficiency of prM cleavage

during virion maturation, we analyzed the prM content of RVPs produced using standard con-

ditions (Std-RVP) and in the presence of over-expressed human furin (Furin-RVP). Although

three independent preparations of Std T198F RVPs contained an average of five times the level

of uncleaved prM compared to that of WT RVPs prepared in parallel, furin over-expression in

RVP producing cells resulted in efficient prM cleavage for both WT and T198F RVPs (Fig 2A),

suggesting that the increased prM content of Std T198F RVPs was not due to an inability of the

virion to adopt conformations in which the prM cleavage site was accessible during egress.

Moreover, increased prM content was not sufficient to explain the greater sensitivity of T198F

RVPs to neutralization by E60, as Furin T198F RVPs were more sensitive to neutralization by

E60 than were Furin WT RVPs (148-fold reduction in EC50, p = 0.002, Fig 2B and 2C), despite

undetectable levels of uncleaved prM (Fig 2A).

Consistent with prior studies [26, 45, 47], increasing the efficiency of prM cleavage

increased the proportion of WT RVPs that were resistant to E60 neutralization at the highest

mAb concentration tested (22% and 55% for Std and Furin WT RVPs, respectively, p = 0.03,

Fig 2B and 2D). In contrast, we observed only a minimal difference between the proportion of

Std and Furin T198F RVPs resistant to neutralization at saturating concentrations of E60 (5%

and 11%, respectively, p = 0.12, Fig 2B and 2D). Additionally, in contrast to the 70-fold differ-

ence in EC50 between Std and Furin WT RVPs, there was a much smaller (7-fold) difference

against mAbs E60 and (C) E16. The y- and x-axes indicate percent infectivity and mAb concentration, respectively. Infectivity was normalized to levels

observed in the absence of antibody. Error bars indicate the range of infectivity from duplicate wells. We performed paired t-tests to compare the EC50

values of (D) E60 and (E) E16 against WT and T198F RVPs obtained from six independent experiments performed in duplicate. Error bars indicate the

standard error of the mean (SEM).

doi:10.1371/journal.ppat.1006178.g001

Functional effects of flavivirus conformational dynamics

PLOS Pathogens | DOI:10.1371/journal.ppat.1006178 February 16, 2017 5 / 32



in EC50 between corresponding preparations of T198F RVPs (p = 0.09, Fig 2B and 2C). Alto-

gether, these data suggest that the large increase in sensitivity of T198F RVPs to neutralization

by E60 was not simply due to increased retention of uncleaved prM. Furthermore, the reduced

impact of maturation state on E60 recognition of WNV T198F suggests that the E60 DII-FL

epitope is distinctly displayed by this variant.

Increased neutralization sensitivity of WNV T198F RVPs is not explained

by a specific change in amino acid chemistry

We investigated whether the increased neutralization sensitivity of WNV T198F was depen-

dent on amino acid chemistry at this position. In addition to T198F, we produced Std WNV

RVPs in which the threonine at position 198 was replaced with amino acids containing small

(A), nucleophilic (C, S), hydrophobic (L, M), acidic (D), basic (K), or amide (N) side chains.

Each of these variants resulted in infectious RVPs, with titers within 2-fold of the WT control

Fig 2. Effect of virion maturation state on neutralization sensitivity of WNV E T198F RVPs. (A) We assessed the level of V5-tagged

prM in WNV RVPs prepared using standard (Std) conditions, or those increasing the efficiency of prM cleavage (Furin) by SDS-PAGE and

Western blotting of pelleted virions using a mouse monoclonal antibody against V5 (top panel). The level of E protein (bottom panel), as

detected by mouse monoclonal antibody, 4G2, was used as a loading control for each RVP preparation. Data are representative of three

independent experiments performed with independent RVP preparations. (B) We concurrently tested Std and Furin preparations of WT and

T198F RVPs for sensitivity to neutralization by mAb E60. Representative dose-response neutralization curves are shown, with the y- and x-

axes representing percent infectivity and mAb concentration, respectively. Infectivity was normalized to levels observed in the absence of

antibody. Error bars indicate the range of infectivity from duplicate infections. (C) Mean EC50 values for E60 against Std or Furin preparations

of WT and T198F RVPs. Error bars represent the SEM. The indicated p-values were obtained from paired t-tests. (D) Mean percentages of

Std or Furin WT and T198F RVPs resistant to neutralization at the highest concentration of E60 tested (10 μg/ml). Error bars represent the

SEM. The indicated p-values were obtained from paired t-tests. For (C) and (D), mean values were obtained from three independent

experiments performed in duplicate using independent RVP preparations.

doi:10.1371/journal.ppat.1006178.g002
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produced in parallel (p = 0.47, S1 Fig). Compared to WT, all T198 RVP variants were similarly

sensitive to neutralization by mAb E16 (<2-fold difference in EC50, Fig 3A and 3C). How-

ever, when tested against E60, neutralization sensitivity varied among RVP variants, although

there was no clear correlation with amino acid chemistry. For example, T198F, T198M, T198K

resulted in a similar (~50-fold) reduction in EC50 despite incorporating amino acids with dis-

tinct side chain characteristics (Fig 3B and 3D). Importantly, every T198 variant except for

T198A and T198S resulted in a significant increase in sensitivity to neutralization by E60 to

varying extents (~10 to 100-fold reduction in EC50 compared to WT, Fig 3B and 3D). Thus,

the increased sensitivity of T198F RVPs to neutralization by E60 was not linked to a particular

change in amino acid chemistry at WNV E residue 198.

Fig 3. Effect of amino acid chemistry on neutralization sensitivity of WNV E T198 RVP variants. We tested WT WNV RVPs containing threonine at E

residue 198 (black curves) for sensitivity to neutralization by mAbs (A) E16 and (B) E60 concurrently with RVPs incorporating amino acid variants representing

distinct chemical groups at residue 198, including aromatic (F; grey), small (A; red), nucleophilic (C, S; cyan), hydrophobic (L, M; magenta), acidic (D; orange),

basic (K; blue), and amide (N; green). Error bars indicate the range of infectivity from duplicate infections. Percent infectivity versus mAb concentration is shown

in each graph. Infectivity was normalized to levels observed in the absence of antibody. We compared the mean EC50 values for (C) E16 and (D) E60 against

each variant to those of WT RVPs using a one-way ANOVA followed by Dunnett’s multiple comparisons test. Data were obtained from three independent

experiments performed in duplicate. Error bars indicate the SEM. The color scheme for distinct amino acid chemical groups corresponds to that in (A) and (B).

*, p<0.05.

doi:10.1371/journal.ppat.1006178.g003
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Mutation of WNV E residue 198 reduces the infectious half-life of RVPs

in solution

We hypothesized that the increased accessibility of the E60 DII-FL epitope on T198F virions

was due to changes in virus conformational dynamics or ‘breathing,’ which allows the tran-

sient display of poorly exposed epitopes [47, 54]. A potential consequence of virus breathing is

a reduction in virus stability that can be inferred by the loss of infectivity over time (or ‘intrin-

sic decay’) at physiological temperatures, as has been established for picornaviruses [65, 66].

Among the ensemble of conformations sampled by a virion at equilibrium, a subset may result

in irreversible structural changes that are incompatible with infectivity for a given cell type. We

therefore investigated whether the T198F mutation altered the functional stability of WNV

RVPs. Following incubation at 37˚C for up to 72 hours, the infectivity of WT and T198F RVPs

collected periodically was determined by titrating viruses on Raji-DCSIGN-R cells (Fig 4A). In

agreement with previous findings, virion maturation state modulated the rate of intrinsic decay

[47, 67]: the infectivity of Std RVPs decayed more rapidly compared to that of Furin RVPs for

both WT and T198F. For Std RVPs, the T198F substitution resulted in a ~3-fold reduction in

half-life relative to WT (average half-life of 5 versus 16 hours, respectively, p<0.0001, Fig 4B).

Similarly, the infectivity of Furin T198F RVPs decayed at a rate that was approximately twice as

fast as Furin WT RVPs (average half-life of 10 versus 22 hours, respectively, p = 0.001). These

findings support the hypothesis that the T198F mutation alters the ensemble of conformations

sampled by virions at equilibrium.

Mutation at the corresponding residue of DENV, but not ZIKV, E protein

modulates neutralizing antibody sensitivity and virion functional stability

The threonine at residue 198 in WNV and the phenylalanine found at the corresponding resi-

due in DENV (193) and ZIKV (198) is highly conserved (99.9 to 100%) among 1989, 2692,

and 104 sequences of WNV, DENV, and ZIKV naturally occurring isolates, respectively, avail-

able in the Virus Variation database [68]. We introduced the reciprocal mutation at this

Fig 4. Stability of WNV E T198F RVPs. (A) Intrinsic decay of the infectivity of WT and T198F RVPs. Standard or Furin RVP preparations were

equilibrated at 37˚C for 1 h and further incubated for additional lengths of time as indicated on the x-axis, after which aliquots were harvested and

frozen. Samples from each time point were thawed concurrently and used to infect Raji-DC-SIGN-R cells. Data were normalized to the infectivity of

RVPs incubated at 37˚C for 1 h and fitted to a one-phase exponential decay curve. Representative decay curves for WT and T198F RVPs are

shown. Error bars indicate the SEM from triplicate infections. (B) Paired t-tests were used to compare the half-life of infectivity of WT and T198F

RVPs. Shown are mean half-life values obtained from three independent experiments performed in triplicate. Error bars represent the SEM.

doi:10.1371/journal.ppat.1006178.g004

Functional effects of flavivirus conformational dynamics

PLOS Pathogens | DOI:10.1371/journal.ppat.1006178 February 16, 2017 8 / 32



residue (F193T) into the Western Pacific strain of DENV1 to investigate whether it similarly

affected antigenic structure and dynamics of the virion. The infectivity of standard RVP prepa-

rations of DENV1 F193T was reduced by ~10-fold as compared to WT DENVI (p = 0.001, S1

Fig). While prM cleavage was much less efficient for DENV than WNV, as reported previously

[69, 70] (Figs 2A and 5A), the F193T mutation in DENV1 did not alter maturation efficiency;

three independent standard preparations of WT and F193T DENV1 RVPs contained a similar

level of prM (1.1-fold difference, Fig 5A). We next investigated the effect of F193T on the neu-

tralization of DENV1 by E60 [58]. Similar to results with WNV T198F, DENV1 F193T RVPs

were more sensitive to neutralization than WT RVPs (average EC50 = 25 ng/ml and 200 ng/ml

for F193T and WT RVPs respectively, p = 0.0006, Fig 5B and 5C). Moreover, the F193T muta-

tion resulted in a 3-fold reduction in the half-life of infectivity of DENV1 RVPs (average half-

life of 2.5 and 0.8 hours for WT and F193T, respectively, p<0.0001, Fig 5D and 5E). In con-

trast to our findings with WNV and DENV1, mutation at the analogous residue (F198) of

ZIKV E protein had no effect on sensitivity to neutralization by E60 or virion stability in solu-

tion (Fig 5F and 5G). Together, these results suggest that a single residue in the DI-DII hinge

of the E protein alters the exposure of a cryptic DII-FL epitope and the stability of flavivirus

particles in solution in a context-dependent manner.

Kinetic aspects of neutralization of WNV T198F RVPs

To explore further the possibility that the T198F mutation modulates WNV conformational

dynamics, we performed kinetic neutralization assays, in which virus-antibody complexes

were used to infect Raji-DC-SIGN-R cells immediately following a 1 h pre-incubation at room

temperature, or further incubated at 37˚C prior to addition of target cells (Fig 6). We studied

only Furin RVP preparations containing little or no prM to eliminate the confounding effects

of heterogeneity in virion maturation state on neutralization sensitivity (Fig 2B) [26, 45, 47].

As observed previously, increasing the virus-antibody incubation time for mAb E16, which

binds an accessible epitope on DIII, resulted in only modest increases in neutralization

potency against both WT and T198F RVPs [54]. In contrast, kinetic changes in neutralizing

antibody potency were more pronounced with mAb E60. Increased sensitivity due to the

T198F mutation was observed at all time points tested. For example, after 8 hours of incuba-

tion, we observed complete neutralization of Furin T198F RVPs, whereas a large proportion of

Furin WT RVPs remained infectious at the highest E60 concentration tested. Even after 24

hours of incubation with E60, WT RVPs remained much less neutralized compared to T198F

RVPs. These findings suggest that the T198F mutation alters accessibility of the E60 DII-FL

epitope.

T198F does not impair WNV replication in vitro

To extend our findings with RVPs capable of only a single round of infection, we investigated

effect of the T198F mutation on standard preparations of fully infectious WNV encoding GFP

[71]. As observed with RVPs (Figs 1 and 2), the T198F mutation reduced the efficiency of prM

cleavage (Fig 7A), and resulted in increased sensitivity to neutralization by E60 (Fig 7B). Fol-

lowing prolonged incubation at 37˚C, T198F reduced the infectious half-life of virions by

~2-fold relative to WT (average half-life of 2.8 and 6.5 hours, respectively, p = 0.002, Fig 7C),

consistent with our observations with RVPs (Fig 4). As expected, raising the temperature at

which viruses were incubated to 40˚C reduced the infectious half-life of both WT and T198F

RVPs (average half-life of 3.6 and 1.6 hours, respectively, Fig 7C) compared to incubation at

37˚C; the 2-fold decrease in the half-life of T198F relative to WT viruses was maintained at

40˚C (p<0.0001). Despite reduced stability in solution, T198F viruses nonetheless displayed

Functional effects of flavivirus conformational dynamics
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Fig 5. Characteristics of DENV1 E F193T and ZIKV E F198T RVPs. (A) We assessed the efficiency of prM cleavage of standard (Std) prepar-

ations of WT and F193T DENV1 RVPs by SDS-PAGE and Western blotting of pelleted virions using a mouse prM-reactive mAb (top panel). The level of

E protein, as detected using mouse mAb 4G2, was used as a loading control (bottom panel). Data are representative of three independent experiments

performed using independent RVP preparations. (B) Representative dose-response neutralization curves for Std DENV1 WT and F193T RVPs against

mAb E60. Percent infectivity versus mAb concentration is shown. Error bars indicate the range of infectivity from duplicate infections. (C) Comparison of

mean EC50 values of E60 against Std DENV1 WT and F193T RVPs using a paired t-test. Values were obtained from five independent experiments

performed in duplicate. Error bars indicate the SEM. (D) Representative intrinsic decay curves of Std DENV1 WT and F193T RVPs. Experiments were

performed as described in Fig 4A. Percent infectivity versus hours of incubation is shown. Error bars indicate the SEM obtained from triplicate infections

of Raji-DC-SIGN-R cells. (E) Comparison of the mean half-life of infectivity of Std DENV1 WT and F193T RVPs using a paired t-test. Values were
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similar growth kinetics as WT in Vero cells at 37˚C and 40˚C, and in mosquito (C6/36) cells at

28˚C (Fig 7D), suggesting that the effect of T198F on virus stability in solution might be

masked under conditions that allow efficient cell-cell spread of infection.

In vivo effects of WNV T198F

Because the T198F mutation did not impair WNV replication in vitro, we investigated its

impact on pathogenesis in a well-established mouse model of infection [72]. We infected

5-week old C57BL/6J mice with either WT or T198F WNV and monitored survival for three

weeks. In contrast to the high mortality rate (13 of 15) observed among mice infected with WT

WNV, only 2 of 15 T198F-infected mice succumbed to infection (p<0.0001, Fig 8A). As

expected, WT- and T198F-infected mice that died experienced rapid weight loss beginning at

day 6 post-infection (Fig 8B). Weight loss was observed to a much lesser extent among mice

that survived infection.

Type I interferon (IFN) and antibody responses have been shown to be critical for protec-

tion against lethal WNV infection [72–75]. We therefore investigated the outcome of T198F

infection of mice treated with MAR1-5A3, a previously described blocking antibody against

obtained from five independent experiments performed in triplicate. Error bars indicate the SEM. (F) Intrinsic decay of Std ZIKV WT and F198T RVPs.

Experiments were performed as described in Fig 4A. Percent infectivity versus hours of incubation is shown. Decay curves shown are representative of

three independent experiments. Error bars indicate the SEM obtained from triplicate infections of Raji-DC-SIGN-R cells. (G) Neutralization of Std ZIKV

WT and F198T RVPs by mAb E60. Percent infectivity, normalized to levels observed in the absence of antibody, versus mAb concentration is shown.

Curves shown are representative of four independent experiments. Error bars indicate the range of infectivity from duplicate infections.

doi:10.1371/journal.ppat.1006178.g005

Fig 6. Kinetic aspects of neutralization of WNV E T198F RVPs. Furin WT and Furin T198F WNV RVPs were incubated with mAb E16 (top

panel) or E60 (bottom panel) for 1 h at room temperature and were either immediately used to infect Raji-DC-SIGN-R cells or were further

incubated at 37˚C for additional lengths of time as indicated above the graphs prior to the addition of Raji-DC-SIGN-R cells. Percent infectivity

versus mAb concentration is shown in each graph. Infectivity was normalized to levels observed in the absence of antibody. Error bars indicate

the range of infectivity from duplicate infections. Neutralization curves shown are representative of five independent experiments performed in

duplicate.

doi:10.1371/journal.ppat.1006178.g006

Functional effects of flavivirus conformational dynamics

PLOS Pathogens | DOI:10.1371/journal.ppat.1006178 February 16, 2017 11 / 32



IFN-α/β receptor that prevents type I IFN-induced intracellular signaling in vitro and inhibits

antiviral responses in mice [76, 77], and of congenic C57BL/6J mice that were genetically defi-

cient in mature B cells and antibody (μMT strain). The attenuated phenotype of T198F in WT

mice was not observed in MAR1-5A3-treated WT or μMT mice. Although T198F infection

remained attenuated relative to WT infection (1/10 versus 7/10 deaths, respectively, p = 0.004,

Fig 8C) in mice treated with GIR-208, an isotype control antibody targeting human IFNγ
receptor, MAR1-5A3-treated mice were equally susceptible to lethal infection with WT or

T198F virus (9/10 vs 8/10 deaths, respectively, p = 0.36, Fig 8C). Analogously, 8/8 μMT mice

infected with either WT or T198F virus succumbed to lethal infection by day 12 and 13 post-

infection, respectively (p = 0.08, Fig 8D). Thus, the T198F mutation attenuates WNV in mice

in a manner that is dependent on type I IFN signaling or B cell responses.

To investigate whether the T198F virus was attenuated due to rapid clearance, we collected

serum samples at days 2 and 4 following infection of WT mice with either WT or T198F WNV.

At day 2 post-infection, serum viral load was 7-fold lower in T198F- compared to WT-infected

mice (p = 0.009, Fig 8E); a similar reduction in serum T198F infectious titer was observed at

Fig 7. Characteristics of WNV E T198F fully infectious viruses. (A) The efficiency of prM cleavage of standard preparations of WT or T198F viruses

was assessed by SDS-PAGE followed by Western blotting of pelleted virions, as described in Fig 2. (B) Sensitivity of standard preparations of WT and

T198F WNV-GFP to neutralization by mAb E60. The y- and x-axes indicate percent infectivity and mAb concentration, respectively. Percent infectivity was

normalized to levels obtained in the absence of antibody. Neutralization curves shown are representative of two independent experiments performed in

duplicate using independent virus preparations. Error bars indicate the range of infectivity. (C) Paired t-tests were used to compare the half-life of infectivity

of standard preparations of WT and T198F viruses following prolonged incubation at 37˚C or 40˚C as described in Fig 4. Shown are the mean half-life

values obtained from three independent experiments performed in triplicate using independent virus preparations. Error bars indicate the SEM. (D)

Standard preparations of WT and T198F viruses were used to infect Vero cells at 37˚C or 40˚C and C6/36 cells at 28˚C at a MOI of 0.05. At the indicated

time points, virus supernatant was collected and used to infect Raji-DC-SIGN-R cells to determine viral titers. Growth curves shown are based on average

titers obtained from three independent experiments performed in duplicate using independent virus stocks. The y- and x-axes indicate virus infectious units

(IU) per ml and days post-infection, respectively.

doi:10.1371/journal.ppat.1006178.g007
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Fig 8. In vivo effects of WNV E T198F. Five-week old WT C57BL/6J mice were inoculated subcutaneously with 102 FFU of WT (n = 15) or T198F

(n = 15) WNV and monitored for (A) survival and (B) weight loss. Data are pooled from three independent experiments. Error bars in (B) represent the

standard deviation. (C) Nine- to ten-week old WT C57BL/6J mice were injected via an intraperitoneal route with 0.5 mg each of blocking antibody against

mouse IFN-α/β receptor (MAR1-5A3, n = 10) or an isotype control antibody against human IFN-γ receptor 1 (GIR-208, n = 10) one day prior to

subcutaneous inoculation with 102 FFU of WT or T198F WNV. Mice were monitored for survival up to 21 days post-infection. Data are pooled from two

independent experiments. (D) Eight-week old μMT mice were inoculated subcutaneously with 102 FFU of WT (n = 8) or T198F (n = 8) WNV and

monitored for survival. Data are pooled from two independent experiments. (E) Five-week old WT C57BL/6J mice were infected with WT (n = 6) or

T198F WNV (n = 6) as in (A). Serum samples were collected on days 2 and 4 post-infection and viral burden was quantified by qRT-PCR. Horizontal

lines across data points indicate the median viral burden. (F) Determination of infectious virus titer in the serum and spleen of five-week old WT C57BL/

6J mice infected with WT (n = 8) or T198F (n = 8) virus at day 4 post-infection by plaque assay on Vero or BHK21 cells, respectively. Horizontal lines

across data points indicate the median viral titer. (G) Five-week old WT C57BL/6J mice were infected with WT (n = 8) or T198F WNV (n = 8) as in (A).

Infectious titer in the brain at 6 and 8 days post-infection was determined by plaque assay on BHK21 cells. Horizontal lines across data points indicate

the median viral titer. Data in (E-G) were pooled from two independent experiments. The p-values shown in (A) and (D) were obtained from a log-rank

test; those in (E-G) were obtained by a Mann-Whitney test.

doi:10.1371/journal.ppat.1006178.g008
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this time point (p = 0.06, Fig 8F). However, by day 4 post-infection, T198F serum viremia

reached WT levels (p = 0.82, Fig 8E). Moreover, there was no difference in the infectious titer of

WT and T198F viruses harvested from spleens at 4 days post-infection (p = 0.79, Fig 8F).

Despite similar levels of WT and T198F viremia by day 4 post-infection, viral burden in the

brain of T198F-infected mice was severely reduced compared to WT-infected mice. By day 6,

WT-infected mice had a median virus titer of 104 PFU/g in the brain, whereas no infectious

virus was detectable in the brain of T198F-infected mice (p = 0.001, Fig 8G). Infectious virus

became detectable in the brain of 2 of 8 T198F-infected in mice by day 8, although at levels that

were over 10-fold lower than those found in WT-infected mice on the same day (p = 0.02, Fig

8G). Sequence analyses of viruses isolated from the brain of T198F-infected mice revealed no

reversion to WT. These results suggest that WNV containing the T198F mutation is suppressed

early in infection and is attenuated for neuroinvasion or neurovirulence.

Effect of natural antibodies on the infectious half-life of WNV in solution

As shown above, viremia in T198F-infected mice was reduced as early as day 2, but not by day 4

post-infection (Fig 8E and 8F). Because WNV-specific antibodies become detectable 4 days

after infection [72, 73], we hypothesized that natural antibodies might accelerate the rate of

T198F virus decay relative to WT. To test this hypothesis, we compared the stability of WT and

T198F viruses incubated at 37˚C in heat-inactivated serum samples obtained from naïve WT

or μMT mice; viruses incubated in media were included as controls. We observed a ~2.3- and

~1.5-fold reduction in half-life of WT and T198F viruses in these serum samples, respectively,

compared to incubation in media (Fig 9), suggesting that antibodies and other heat-resistant

serum factors modulate the infectious half-life of WNV. Notably, the 2-fold reduction in half-

life of T198F viruses compared to WT was observed following incubation in WT serum, μMT

serum, and media (Fig 9D), suggesting that natural antibodies do not differentially modulate

the rate of decay of WT and T198F WNV.

Neutralizing activity of WNV-immune sera

To investigate whether neutralizing antibodies play a role in the attenuation of WNV T198F,

we pooled serum samples from five WT- or T198F-infected WT mice for use in neutralization

studies with WT and T198F RVPs. We compared serum samples obtained at days 6 and 9 after

infection to distinguish neutralizing activity mediated by IgM and IgG, which become detect-

able at 4 and 8 days after infection, respectively [72, 73]. At both days 6 and 9, there were mini-

mal differences (maximum of 1.2 fold change in EC50) in the ability of sera from WT- and

T198F-infected mice to neutralize WT or T198F RVPs (Fig 10A–10D).

To distinguish IgM- versus IgG-mediated neutralizing activity, pooled serum samples from

infected mice were either treated with 2-mercaptoethanol (2-ME), which preferentially

degrades IgM [72, 78], or were used for IgG purification. As expected, treatment with 2-ME

resulted in a large reduction (74–196 fold, Fig 10A and 10B) in the neutralization potency of

serum samples obtained from WT- and T198F-infected mice at day 6, during which IgM, but

not IgG is present [72, 73]. At day 9, when IgG is present, 2-ME treatment resulted in a smaller

reduction in serum neutralization potency (4–8 fold, Fig 10C and 10D). As observed with

untreated sera, at both days 6 and 9, there were minimal differences (maximum of 1.8 fold

change in EC50) in the ability of WT- or T198F-immune sera treated with 2-ME to neutralize

WT and T198F RVPs. Although T198F RVPs were slightly more sensitive (2–4 fold) to neu-

tralization by IgG purified from day 9 sera compared to WT RVPs, this was observed for both

WT- and T198F-immune IgG (Fig 10E and 10F), suggesting that infection with WNV T198F

did not uniquely elicit NAbs that preferentially neutralized T198F viruses.
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Finally, to directly study the impact of the T198F mutation on immunogenicity, we immu-

nized WT C57BL/6J mice with WT or T198F RVPs capable of only a single round of infection.

Pooled sera from WT or T198F RVP-immunized mice at either day 10 or 21 displayed limited

differences in their ability to neutralize WT and T198F RVPs (S2C–S2F Fig). Similar results

were observed with individual serum samples at day 21 post-immunization; although T198F

was neutralized with a 3–4 fold greater potency compared to WT RVPs, this was observed for

sera obtained from both WT and T198F RVP immunization groups (S2G Fig). These results

suggest that neither infection nor immunization with T198F elicited unique NAb responses in

mouse polyclonal sera.

Discussion

Our study demonstrates that a single residue in the E protein DI-DII hinge regulates confor-

mational dynamics in distinct flaviviruses, with relevant consequences in vivo for WNV infec-

tion and pathogenesis. Although conformational flexibility has been described for different

Fig 9. Effect of natural antibodies on WNV intrinsic decay. Representative intrinsic decay curves of fully infectious WT and T198F

viruses in serum obtained from (A) naïve WT C57BL/6J mice, (B) naïve μMT C57BL/6J mice, and (C) media. Experiments were

performed as described in Fig 4A. Error bars indicate the SEM from triplicate infections. (D) Average half-life values of WT and T198F

viruses following prolonged incubation in serum obtained from naïve WT mice, naïve μMT mice, or media obtained from two independent

experiments performed using independent serum samples and virus preparations. Error bars indicate the SEM. Fold-differences in half-

life between WT and T198F WNV in each incubation condition are indicated.

doi:10.1371/journal.ppat.1006178.g009
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Fig 10. Neutralizing activity of WNV-immune sera. Sensitivity of WNV WT and T198F RVPs to neutralization by

2-mercaptoethanol (2-ME)-treated or untreated (unt) sera pooled from WT-immune (n = 5) (A and C) or T198F-immune

(n = 5) (B and D) five-week old WT C57BL/6J mice. Sera were obtained at 6 (A and B) and 9 (C and D) days post-

infection. IgG purified from pooled (E) WT-immune (n = 5) or (F) T198F-immune (n = 5) sera obtained from 9 days post-

infection were tested for the ability to neutralize WNV WT and T198F RVPs. Error bars indicate the range of infection from

duplicate wells. Data in (A-F) are representative of four independent experiments performed using independent RVP

stocks.

doi:10.1371/journal.ppat.1006178.g010
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virus families [53], the first evidence of the dynamic properties of flaviviruses came from struc-

tural studies of mAb 1A1D-2, which is capable of neutralizing multiple DENV serotypes, yet

binds to an epitope in the β-strand of DIII that is not predicted to be fully accessible on the

mature virus particle [79]. Monoclonal antibody 1A1D-2 can bind to DENV particles at 37˚C,

but not at 4˚C, suggesting that at an elevated temperature, this mAb trapped a conformation

on which the DIII β-strand epitope was otherwise not accessible at lower temperatures [79].

Consistent with the conformational flexibility of flaviviruses, subsequent studies showed that

exposure of DENV2 virions to physiological temperatures in the absence of antibody results in

the formation of an expanded ‘bumpy’ structure, on which E protein dimers are more loosely

arranged and are rotated outwards relative to their orientation on fully mature particles [80,

81]. However, this ‘bumpy’ structure was not observed for all DENV strains or serotypes [81,

82], suggesting that sequence variation contributes to the structural pathways sampled by virus

breathing at equilibrium.

The molecular determinants that govern flavivirus breathing have not been defined. We

recently demonstrated that natural variation at residue 204 in DII of the DENV1 E protein

explained large genotypic differences in sensitivity to neutralization by a mAb targeting a cryp-

tic epitope in DIII [56]. In our current study, we identified a single mutation in the E protein

DI-DII hinge of WNV (T198F) and DENV1 (F193T) that increased sensitivity to neutraliza-

tion by mAb E60, which targets a poorly accessible epitope that includes the DII-FL. Because

flavivirus neutralization occurs once the number of antibodies bound to the virion exceeds a

stoichiometric threshold, neutralization potency depends not only on antibody affinity, but

also on epitope accessibility [62]. Based on this model, antibodies targeting poorly exposed epi-

topes may not achieve complete neutralization even at saturating concentrations [45, 62], as

observed for E60 against WT WNV. We observed that the T198F mutation markedly reduced

the proportion of neutralization resistant WNV virions at high E60 concentrations. Compared

to WT, increased accessibility of this epitope on T198F virions was less dependent on matura-

tion state, which has been shown to indirectly modulate epitope accessibility [45, 46, 64]. Fol-

lowing prolonged incubation with E60 for up to 24 hours, WT WNV virions remained much

less sensitive to neutralization than T198F virions. These results demonstrate that the E60

DII-FL epitope is displayed uniquely on T198F virus particles. Notably, increased sensitivity to

neutralization by E60 also was observed by introducing a mutation at the corresponding resi-

due of DENV1, but not ZIKV, suggesting that the molecular mechanisms governing confor-

mational flexibility and/or FL exposure may be distinct for ZIKV, in agreement with recent

neutralization studies with mAbs [31, 83–85]. The structural basis for these functional data

cannot be inferred directly from our studies. The phenylalanine at position 193 and 198 of

DENV and ZIKV, respectively play a space filling role (S4 Fig), while for WNV, the analogous

threonine at this position projects outwards and is solvent exposed. Thus, the local structural

environment likely contributes to the effects of amino acid substitutions at this position. More-

over, while the structures of mature ZIKV and DENV particles share many similarities, a dis-

tinguishing feature is an extended loop surrounding the glycan at ZIKV E residue 154, which

has been hypothesized to limit accessibility of the adjacent DII-FL on the neighboring E pro-

tein [38].

Time-dependent increases in E60 neutralization potency were still apparent for T198F viri-

ons, suggesting that while this mutation increased the overall accessibility of a cryptic DII-FL

epitope, it did not result in a grossly open ‘ground-state’ conformation. In support of this

hypothesis, neutralization studies with an expanded panel of mAbs revealed that T198F (and

DENV1 F193T) did not uniformly confer large increases in the potency of antibodies targeting

distinct epitopes throughout the E protein (S3 Fig). Indeed, T198F resulted in a relatively

modest increase in the neutralization sensitivity of WNV to mAb E53, which targets residues
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within the nearby DII bc-loop in addition to those within DII-FL [46, 58]. Together, these

results suggest that T198F alters the ensemble of conformations sampled by WNV to increase

the accessibility of poorly accessible epitopes within DII-FL. Consistent with alterations in

conformational dynamics, T198F also impacted the functional stability of WNV virions.

Although the molecular basis for the loss of virus infectivity (intrinsic decay) following pro-

longed incubation is not understood [47, 65, 66], we hypothesize this could be a consequence

of virus breathing. Among the ensemble of conformations sampled by a dynamic virus, a sub-

set may lead to irreversible changes in the E protein that impair viral infectivity. The more

rapid intrinsic decay of T198F virions suggests that this mutation alters the conformational

landscape in a manner that more frequently leads to irreversible changes in the E protein that

are incompatible with infectivity.

Although studies of antibody reactivity and intrinsic decay have provided clues into the

dynamic properties of flaviviruses, the consequences of virus breathing for viral replication

and pathogenesis remain poorly understood. Our finding that the T198F mutation in WNV

reduced the efficiency of prM cleavage from virions prepared under standard conditions sug-

gests that virus breathing may affect the accessibility of the prM cleavage site during Golgi

transit, thus contributing to the heterogeneity in the maturation state of released virus particles

[41]. While the corresponding mutation in DENV1 (F193T) increased both sensitivity to E60

neutralization and the rate of intrinsic decay, prM cleavage efficiency in the context of DENV1

was unaffected. We previously demonstrated that the rate of intrinsic decay differs between

WNV and DENV [47, 86], suggesting that sequence variation and the presence of uncleaved

prM may alter the structural pathways sampled by flaviviruses. The possibility that virus

breathing affects prM cleavage efficiency, perhaps by modulating access to the furin cleavage

site on prM, further adds to the complex interplay among the determinants of flavivirus struc-

tural heterogeneity. Indeed, the reduced efficiency of prM cleavage of both WT and F193T

DENV1 compared to WT WNV may reflect differences in the structural flexibility of DENV

and WNV.

We demonstrated that altered virus breathing impacts pathogenesis. The T198F mutation

attenuated WNV pathogenesis in WT mice, but not in mice treated with a monoclonal anti-

body targeting the IFN-α/β receptor or in congenic C57BL/6J mice deficient in B cells and

antibody, suggesting that T198F attenuation is dependent on type I IFN- or B cell-mediated

immunity. Our finding highlights the role of both innate and adaptive immune responses in

protection against WNV lethal infection. Specifically, type I IFN signaling has been shown to

be important in priming and enhancing B cell responses, in addition to its established role in

innate antiviral defense [87–89]. Prior studies have demonstrated that both neutralizing and

non-neutralizing WNV-specific antibodies can protect against lethal infection [72–74, 90]. For

weakly neutralizing antibodies targeting DII-FL, protection is dependent on non-neutralizing

mechanisms [90]. Our data indicate that T198F attenuation is not likely due to increased sus-

ceptibility to NAbs, suggesting a possible role for antibody effector functions.

T198F viremia was reduced as early as day 2 post-infection, before WNV-specific antibod-

ies become detectable [72, 73], suggesting that this early viral suppression also might be due to

differential effects of innate immune responses. Additionally, we previously found that the

presence of even low concentrations of WNV-specific antibody can decrease the infectious

half-life of virions in vitro [54], perhaps by trapping conformations that are incompatible with

infectivity. Although we demonstrated that natural antibodies did not differentially affect the

rate of intrinsic decay of WT and T198F viruses in vitro, it is possible that in the presence of

other immune factors, even low concentrations of WNV-specific and/or natural antibodies

may facilitate rapid viral clearance in vivo to limit dissemination to vital organs, as has been

shown for other viruses [91]. Indeed, the suppression of T198F viremia very early in infection,
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though transient, was sufficient to limit CNS dissemination, which typically occurs between

days 4 and 5 after infection [72, 74]. Finally, the stoichiometric requirements of prM cleavage

for the production of infectious virus particles have not been defined. Although increased prM

retention on T198F virus particles did not significantly impair infectivity in vitro (Fig 7), it is

possible that decreased maturation efficiency of T198F may result in lower infectivity of key

target cells in vivo, thus contributing to its attenuation.

Beyond impacting pathogenicity, the in vivo consequences of virus conformational dynamics

are unexplored. The vector competence and extrinsic incubation period (time from infected

blood meal to transmission) for both WNV [92–95] and DENV [96–99] are temperature-depen-

dent, which could correspond to changes in the extent of virus breathing. It is intriguing to con-

sider that the reduced infectious half-life of T198F WNV and F193T DENV1 virions in solution

may result in less efficient transmission to mosquitoes during an infected blood meal, especially

from a febrile animal, given that the rate of intrinsic decay is accelerated at elevated temperatures

(Fig 7C and [86]). Indeed, sequence analyses reveal that WNV E residue 198 and the analogous

DENV E residue 193 are highly conserved in nature [68]. The impact of changes in conforma-

tional dynamics on virus attachment to target cells also is unexplored. In addition to increased

susceptibility to immune clearance, changes in conformational flexibility also might impair

T198F virus interaction with host attachment factors in the central nervous system or in the ves-

sels lining the blood-brain barrier [100].

T198F was neutralized slightly more potently than WT RVPs by both WT- and T198F-

immune mouse sera (Fig 10 and S2 Fig), suggesting that infection or vaccination with T198F

did not skew the NAb response to preferentially neutralize T198F. Thus, although the T198F

mutation impacts antigenicity as measured by changes in accessibility of a cryptic DII-FL epi-

tope, its effects on immunogenicity are unclear. These results suggest, however, that antibodies

targeting DII-FL do not significantly contribute to the overall neutralizing activity of polyclonal

sera in mice. As the specificity of the polyclonal antibody repertoire elicited by flavivirus infec-

tion likely differs between mice and humans [22, 101–103], how changes in E protein confor-

mational flexibility alter immunogenicity in humans remains to be determined. Recently, a

number of potently neutralizing human monoclonal antibodies that target quaternary epitopes

within or across flavivirus E protein dimers have been identified following natural infection or

vaccination [23, 24, 27, 30, 31, 33, 34]. We speculate that the dynamic properties of E proteins

have the potential to impact the exposure of these epitopes, and thus the induction of antibodies

against them. The conformational flexibility of envelope proteins has been shown to modulate

antibody recognition of HIV ([104]; among the different structures sampled by HIV envelope

trimers at equilibrium, broad and potent NAbs preferentially target the highly ordered, ‘closed’

trimer conformation [104–106]. Based on these observations, current HIV immunogen design

strategies to elicit broad and potent NAbs are focused on stably presenting the closed form of

native envelope trimers [106–108]. Whether limiting conformational flexibility is a suitable

strategy for flavivirus vaccine design awaits further studies.

Our ongoing studies aim to identify additional residues throughout the E protein that regu-

late conformational flexibility to facilitate studies on the impact of flavivirus breathing on

immunogenicity and other aspects of flavivirus biology, including maturation, replication, and

the pH threshold of fusion [109, 110]. We hypothesize that residues at the E protein hinge

regions and dimer interface play critical roles in regulating virus breathing by virtue of their

conformational flexibility [17, 18] and potential interactions that contribute to overall virion

stability [111], respectively. The existence of antiviral compounds that inhibit virus breathing

of selected picornaviruses suggests an important role for structural flexibility in the lifecycle of

viruses [112–117]. Structural flexibility contributes to heterogeneity in the antigenic structure

of virions by governing the exposure of cryptic epitopes that may be immunodominant [47,
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54]. For example, antibodies that bind the conserved DII-FL are cross-reactive, poorly neutral-

izing antibodies with the potential to contribute to antibody dependent enhancement at high

concentrations, which is especially relevant in the context of DENV infection [52, 118]. We

have shown here for WNV and elsewhere for DENV [56] that exposure of cryptic epitopes can

be modulated by amino acid substitutions at a distance. Thus, an improved understanding of

the molecular determinants that regulate flavivirus breathing and the consequences of confor-

mational dynamics on flavivirus biology has the potential to inform both the design of novel

vaccines and identification of antiviral compounds.

Methods

Cell culture

HEK-293T (ATCC) and Vero (ATCC) cells were maintained in Dulbecco’s Modified Eagle

medium (DMEM) containing 25 mM HEPES (Invitrogen) supplemented with 7% fetal bovine

serum (FBS; Invitrogen) and 100 U/ml penicillin-streptomycin (P/S; Invitrogen). C6/36

(ATCC) cells were similarly cultured, except with the addition of 1X non-essential amino acids

(Invitrogen). Raji-DC-SIGN-R cells (Raji B lymphoblast [ATCC] engineered to stably express

DC-SIGN-R, Pierson lab [45, 54, 62, 119]) were cultured in RPMI 1640 medium containing

Glutamax (Invitrogen) supplemented with 7% FBS and 100 U/ml P/S. HEK-293T, Vero, and

Raji-DC-SIGN-R cells were maintained at 37˚C in the presence of 7% CO2. C6/36 cells were

maintained at 28˚C in the presence of 7% CO2.

Generation of E variants

We used a previously described expression vector encoding the structural genes (C-prM-E) of

the WNV NY99 strain [57] as a template for mutagenesis. Initially, threonine at residue 198 of

the WNV E protein was replaced with phenylalanine by site-directed mutagenesis using the

Pfu Ultra DNA polymerase system (Agilent Technologies). The reciprocal mutation (F193T)

was introduced into a previously described expression vector encoding the structural genes

(C-prM-E) of the DENV1 Western Pacific strain [86]. Mutation at the analogous residue of

the ZIKV E protein (F198T) was introduced into a plasmid encoding the structural genes of

the ZIKV strain H/PF/2013 [120]. This plasmid is described elsewhere [121]. Additional

amino acid variants were introduced at position 198 of the WNV E protein using primers con-

taining a degenerate codon (NNN). PCR cycling parameters were as follows: 1 cycle of 95˚C

for 1 min; 18 cycles of 95˚C for 50 s, 60˚C for 50 s, and 68˚C for 9 min; and 1 cycle of 68˚C for

7 min. PCR products were treated with DpnI (New England BioLabs) for 3 h at 37˚C, prior to

transformation into Stbl2 cells (Invitrogen) and propagation at 30˚C. The entire C-prM-E

region of each construct was sequenced to ensure that no additional mutations were present.

Production of RVPs

RVPs were produced by complementation of a GFP-expressing WNV sub-genomic replicon

with plasmids encoding the structural genes of WNV, DENV, or ZIKV, as described previ-

ously [121, 122], with slight modifications. Briefly, HEK-293T cells were pre-plated in a low-

glucose (1 g/liter) formulation of DMEM containing 25 mM HEPES (Invitrogen), 7% FBS,

and 100 U/ml P/S, transfected with plasmids encoding the replicon and structural genes at a

1:3 ratio by mass using Lipofectamine 3000 (Invitrogen), and incubated at 37˚C. For each

microgram of DNA, 2 μl of Lipofectamine 3000 was used. Four hours post-transfection, cells

were transferred to 30˚C. Supernatant was harvested at 72–96 h post-transfection, passed

through a 0.22 μm filter (Millipore), and stored at –80˚C. To produce mature preparations of
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WNV RVPs containing low to undetectable prM, RVPs were produced as above by co-trans-

fecting plasmids encoding the replicon, structural genes, and human furin at a 1:3:1 ratio. To

detect prM in RVP preparations, a modified structural gene construct that encodes prM and

E, with a V5 tag immediately downstream of the prM signal cleavage site [123] was used to

complement a plasmid encoding capsid [57]. For immunization studies, 180 ml of transfection

supernatant containing WT or T198F RVPs was passed through a 0.22 μm filter, layered on

20% sucrose (pH 7.4), and pelleted by ultracentrifugation at 32,000 rpm at 4˚C for 5 h. The

virus pellet was resuspended in 0.5 ml of PBS containing 1% BSA.

Production of fully infectious WNV

Infectious WNV encoding a GFP reporter gene was produced using a previously described

molecular clone system in which a DNA fragment encoding WNV structural genes is ligated

into a GFP-expressing WNV replicon plasmid (pWNV-GFP-backbone V3) and transfected

directly into HEK-293T cells [71]. Briefly, 1 μg each of the backbone and structural gene plas-

mids was digested with BamHI and BssHII, and ligated with T4 DNA ligase (New England

Biolabs) in a final volume of 40 μl at 16˚C overnight. Next, the entire unpurified ligation mix-

ture was transfected directly into HEK-293T cells using Lipofectamine 3000 (Invitrogen). Cells

were incubated at 37˚C in the presence of 7% CO2. Viral supernatant was harvested at 48 and

72 h post-transfection, filtered using a 0.22 μm filter (Millipore), and stored at –80˚C. To

detect prM in fully infectious virus preparations, a DNA fragment encoding WNV structural

genes was modified to express a V5 tag immediately downstream of the prM signal cleavage

site and was used for virus production as described above.

Determination of virus titer

Clarified virus-containing supernatant was serially diluted 2-fold in a total volume of 100 μl

and used to infect 5 x 104 Raji-DC-SIGN-R cells in an equal volume at 37˚C. Cells were fixed

in 1.8% paraformaldehyde at 48 h or 16 h following infection by RVPs or fully infectious

viruses, respectively, and GFP-positive cells enumerated using flow cytometry. Virus titer was

calculated using the linear portion of the virus-dose infectivity curve using the following for-

mula: Infectious units (IU)/sample volume = (% GFP-positive cells) x (number of cells) x (dilu-

tion factor).

Measuring growth kinetics of WNV

Viruses produced in HEK-293T cells using WNV-GFP-backbone V3 [71] as described above

were used to inoculate Vero or C6/36 cells at a multiplicity of infection (MOI) of 0.05 for 2 h at

the indicated temperatures, after which supernatant was collected to confirm the input virus

titer. After washing twice with PBS to remove unbound virus, cells were further incubated at

37˚C (Vero), 40˚C (Vero), or 28˚C (C6/36). At the indicated time points, virus supernatant

was collected and clarified by centrifugation at 2000 rpm for 5 min. Virus titers were deter-

mined on Raji-DC-SIGN-R as described above.

Neutralization assays

RVP or fully infectious virus stocks were diluted to a level of infectivity that ensures antibody

excess (~5 to 10%) and incubated with serial dilutions of mAbs or heat-inactivated (56˚C for 1

h) sera for 1 h at room temperature before addition of Raji-DC-SIGN-R cells. To investigate

the kinetics of neutralization, virus-antibody complexes were further incubated for additional

lengths of time at 37˚C as indicated prior to addition of Raji-DC-SIGN-R cells. All infections
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were performed in duplicate at 37˚C. At 48 h (RVP) or 16 h (fully infectious virus) post-infec-

tion, infectivity was scored as a percentage of GFP-positive cells by flow cytometry. Antibody

dose-response curves were analyzed using non-linear regression with a variable slope (Graph-

Pad Prism v 6.0g, GraphPad Software Inc.) to calculate the concentration of antibody (EC50)

required to inhibit infection by 50%, or the maximum inhibition of infectivity achieved at the

highest antibody concentration tested (‘% Resistant’).

IgM- versus IgG-mediated neutralization

Serum samples were depleted of IgM by treatment with 0.1 M of 2-mercaptoethanol in 1X PBS

for 1 h at 37˚C, as described previously [72, 78]. Total IgG was purified from 50 μl sera pooled

from WT-immune (n = 5) or T198F-immune (n = 5) five-week old WT C57BL/6J mice at day

9 post-infection using the Melon IgG purification kit (Thermo Scientific) in a final volume of

500 μl (1:10 dilution). Purified total IgG was quantified using a human IgG ELISA kit (Immu-

nology Consultants Laboratory) for use in neutralization assays as described above.

Intrinsic decay of infectivity

Viruses were diluted to a similar level of infectivity as used in neutralization assays, allowed to

equilibrate at the indicated temperature for 1 h (reference) and sampled periodically for the

next 48–72 h. At each time point, aliquots were collected and stored at –80˚C. All frozen sam-

ples were thawed simultaneously and used to infect Raji-DC-SIGN-R in triplicate to assess

infectivity as described above. Infection was normalized to the level observed at the initial ref-

erence time point and fitted with a one-phase exponential decay curve (GraphPad Prism v

6.0g, GraphPad Software Inc.) to estimate the infectious half-life.

Analysis of RVP maturation state

The level of prM in RVP preparations was determined by SDS-PAGE and Western blot analy-

sis, as previously described [64, 123]. Briefly, RVPs were concentrated and partially purified by

ultracentrifugation at 4˚C (32,000 rpm for 5 h) through a 20% sucrose cushion, followed by re-

suspension in TNE buffer (50 mM Tris, 140 mM NaCl, 5 mM EDTA, pH adjusted to 7.4) con-

taining 1% Triton-X100. WNV and DENV1 E proteins were detected by a cross-reactive

DII-FL reactive mouse monoclonal antibody, 4G2 (1 μg/ml). WNV prM-V5 was detected

using a 1:5000 dilution of a mouse monoclonal antibody targeting V5 (Invitrogen), while

DENV1 prM was detected using mouse monoclonal antibody, prM22 (0.5 μg/ml) [124].

IRDye 800CW goat-anti mouse IgG (LI-COR Biosciences) diluted 1:2500 was used as a sec-

ondary antibody. Protein bands were visualized and quantified using the Odyssey infrared

imaging system (LI-COR Biosciences).

Mouse experiments

C57BL/6J mice were purchased from Jackson Laboratories (Bar Harbor, ME) and

congenic μMT B cell-deficient were bred at Washington University under pathogen-free con-

ditions. Five-week old WT C57BL/6J mice or eight-week old μMT mice were inoculated sub-

cutaneously via footpad injection with 102 focus-forming units (FFU) of WNV NY99 WT or

T198F, and monitored daily for survival. Where indicated, C57BL/6J mice were injected via an

intraperitoneal route with 0.5 mg of a mouse monoclonal antibody targeting mouse IFN-α/β
receptor (MAR1-5A3) [76] or an isotype control mouse antibody targeting human IFN-γ
receptor 1 (GIR-208) one day prior to infection. Purified LPS-free monoclonal antibodies

MAR1-5A3 and GIR-208 were purchased from Leinco Technologies. WT and T198F viral
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stocks were generated by in vitro transcription of an infectious two-plasmid cDNA clone as

previously described [125]. The T198F mutation was introduced into plasmid pWN-AB,

which consists of the 5’-UTR and structural genes, by site-directed mutagenesis as described

above. For immunization studies, five-week old C57BL/6J mice were injected via an intraperi-

toneal route with 50 μl of WNV WT or T198F RVPs normalized by infectivity and relative E

protein content as determined by antigen capture ELISA. Serum from immunized mice col-

lected at days 10 and 21 were analyzed in neutralization studies.

Antigen capture ELISA for WNV E protein

High-binding 96-well plates (Corning) were coated with 3 μg/ml humanized mAb E16 in

100 μl coating buffer (100 mM BupH Carbonate Bicarbonate Buffer, Fisher) with pH adjusted

to 9.6. Plates were washed six times with PBS containing 0.05% Tween 20 followed by incuba-

tion with 100 μl blocking buffer (PBS, 3% non-fat dry milk, and 0.05% Tween 20). RVPs were

serially diluted 2-fold starting at a 1:100 dilution in 100 μl blocking buffer, added to plates, and

incubated for 1 h at 37˚C. Plates were washed again and were incubated with 100 μl of mouse

mAb E16 diluted in blocking buffer (2 μg/ml) for 1 h at 37˚C. Following washing, 100 μl of

HRP-conjugated goat anti-mouse IgG (Thermo Scientific) diluted 1:10,000 in blocking buffer

were added to plates and incubated for 1 h at 37˚C. One-step Ultra TMB-ELISA (Thermo Sci-

entific) substrate was added (100 μl/well) and incubated for six minutes at room temperature

in the dark. The reaction was stopped by the addition of 100 μl 1N hydrocholoric acid (Fisher)

and read on a plate reader (BioTek Synergy H1) at a wavelength of 450 nm.

Measurement of viral burden

On the indicated day post-infection, mice were sacrificed and organs collected following exten-

sive perfusion with PBS. Organs were weighed, homogenized using a bead-beater apparatus,

and titrated by plaque assay on BHK-21 cells [126]. Viral burden in serum samples was mea-

sured by plaque assay on Vero cells, and viral RNA from serum was isolated using the Viral

RNA Mini Kit (Qiagen) and measured by quantitative fluorogenic reverse-transcription PCR as

described previously [126].

Statistical analysis

Statistical analyses were performed using GraphPad Prism v 6.0g (GraphPad Software Inc.).

For results of in vitro experiments, paired t-tests or a one-way ANOVA followed by Dunnett’s

multiple comparisons test was used, for two or more comparisons, respectively. For survival

analysis, Kaplan-Meier curves were plotted and analyzed by the log rank test. Mouse serum,

spleen, and brain viral loads and titers were compared using the Mann-Whitney test.

Ethics statement

Experiments were approved and performed in accordance with the recommendations in the

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The

protocols were approved by the Institutional Animal Care and Use Committee at the Wash-

ington University School of Medicine (Assurance number A3381-01).

Supporting information

S1 Fig. Infectivity of WNV T198 and DENV1 F193 RVP variants. (A) Threonine at WNV E

residue 198 was replaced with various amino acids representing distinct chemical groups,

including aromatic (F; gray), small (A; red), nucleophilic (C, S; cyan), hydrophobic (L, M;
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magenta), acidic (D; orange), basic (K; blue), and amide (N; green). These variants were used to

create RVPs and infectivity was determined concurrently with WT WNV on Raji-DC-SIGN-R

cells. Values shown are mean titers obtained from 4–13 independent RVP preparations. Titers

are expressed as infectious units per ml (IU/ml) as determined by the formula described in the

methods section. Error bars indicate the SEM. The p-value shown was obtained from a one-way

ANOVA. (B) Infectivity of DENV1 F193T was determined concurrently with WT DENV1 as

described in (A). Values shown are mean titers obtained from five independent RVP prepara-

tions. Error bars indicate the SEM. The p-value shown was obtained from a paired t-test.

(TIFF)

S2 Fig. Neutralizing activity of sera from mice immunized with WNV WT or T198F RVPs.

Following concentration and partial purification through a sucrose cushion by ultracentrifuga-

tion, WT and T198F RVPs were analyzed for (A) infectivity on Raji-DCSIGN-R cells and (B) E

protein content by antigen capture ELISA. Data are representative of two independent experi-

ments performed with independent RVP preparations. Error bars in panels A and B represent

the range of titers in infectious units/ml (IU/ml) and of OD 450 values from duplicate wells,

respectively. Pooled serum samples collected from five-week old WT C57BL/6J mice at days 10

(C, D) and 21 (E, F) following immunization with either (C, E) WT (n = 10) or (D, F) T198F

(n = 10) RVPs normalized by infectivity and E protein content were tested for neutralizing activ-

ity against WT and T198F RVPs. Shown are representative dose-response neutralization curves.

Error bars indicate the range of infection of duplicate wells. Data are representative of three inde-

pendent experiments. (G) Individual serum samples obtained from day 21 post-immunization

with WT or T198F RVPs (n = 10 each) were tested for neutralizing activity against WT or T198F

RVPs. Data points represent reciprocal serum dilutions required to inhibit infectivity by 50%

(NT50) for each sample. Solid horizontal bars represent the geometric mean and 95% confidence

intervals. The dotted horizontal line represents the lowest serum dilution tested. P-values shown

were obtained from paired t-tests.

(TIFF)

S3 Fig. Sensitivity of WNV T198F and DENV1 F193T RVPs to neutralization by an

extended panel of mAbs. Standard preparations of (A) WNV or (B) DENV1 WT and mutant

RVPs were concurrently tested for neutralization sensitivity against a panel of mAbs targeting

distinct epitopes as indicated in the first two columns. The next two columns indicate the mean

and SEM of EC50 values for WT and mutant RVPs, respectively, obtained from 3–10 indepen-

dent experiments performed in duplicate, followed by p-values from paired t-tests. The final

column indicates the fold-change in EC50 of each mAb against mutant relative to WT RVPs.

Values greater than one indicate increased neutralization sensitivity of mutant relative to WT

RVPs. The fold change in EC50 values is color-coded as indicated in the key in panel A.

(TIFF)

S4 Fig. (A) Top (upper panel) and side (lower panel) views of the E protein dimer of DENV

(PDB 1OAN) with residue F193 indicated by black spheres. The side view was obtained by

rotating the dimer in the upper panel 90 degrees towards the page. Domains I, II, and III are

indicated in red, yellow, and blue, respectively, with the fusion loop of DII shown in green. (B)

Superimposition of E residues F193 of DENV (magenta), F198 of ZIKV (cyan, PDB 5JHM),

and T198 of WNV (orange, PDB 2HG0). Residues F193 and F198 of DENV and ZIKV, respec-

tively point away from the viral membrane towards the neighboring E protein within the

dimer, while T198 of WNV projects outwards and is oriented parallel to the membrane sur-

face.

(TIFF)
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