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PAMPs Are Indicators of Microbial Identity and Virulence

The first line of defense against infection, the innate immune system, identifies and responds
to microbial threats. Central to this response is the discrimination of self from non-self. Pattern
recognition receptors (PRRs) expressed by mammalian cells detect molecular signatures
unique to microbes yet absent from the host. These molecules, termed pathogen-associated
molecular patterns (PAMPs), are invariant structures broadly represented among microbial
taxa and have essential roles in microbial physiology. Consequently, only an extremely select
group of molecules have been found to function as PAMPs.

It is becoming increasingly clear that rather than being redundant, PAMPs are interpreted
by the innate immune system as a “pathogenic barcode” that informs the host to both the iden-
tity and infectious risk posed by a microorganism. The combination of PAMPs presented, the
tissue type affected, and the subcellular compartment contaminated represent just some of the
contextual signals used by the host to identify and assess the microbial threat. For example,
PAMP contamination of the host cytosol is interpreted as an indicator of microbial virulence
since direct cellular invasion or virulence factor-mediated translocation is a prerequisite for
their presence in this normally sterile site [1]. Such distinctions are critical to maintaining
immune homeostasis since, despite their name, PAMPs are not unique to pathogens; instead,
they can be found in virtually all microorganisms, including the commensal microflora that
constitutively reside on body surfaces.

Heptose Is a Sugar Unique to Gram-Negative Bacteria

A central tenant to pattern recognition theory is that the structures the host has evolved to
interpret as foreign are found solely in the microbial world. Gram-negative bacteria, for exam-
ple, are defined by the presence of a second membrane outside of the cell wall, which serves as
protection against both the environment and attacks by the host. The external leaflet of the
outer membrane is composed of an amphipathic molecule termed lipopolysaccharide (LPS)
(Fig 1A), which typically elicits an intense innate immune response. The hydrophobic base of
LPS, termed lipid A or endotoxin, is a glucosamine-containing phospholipid acylated with a
variable number of fatty acid chains [2]. This lipid A component is the innate immune agonist,
since it activates the cellular PRRs toll-like receptor (TLR) 4 on the cell surface and the cas-
pase-4/11 inflammasome within the cytoplasm [2,3]. Attached to lipid A are a series of
repeated hydrophilic sugars, which can be subdivided into the core oligosaccharide and a lon-
ger repeating polysaccharide unit termed the O-specific chain [4]. The “inner core” region is
typically composed of one to three residues of the seven carbon monosaccharide L-glycero-D-
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Fig 1. Host recognition of the bacterial metabolite HBP. (A) Gram-negative bacteria possess a unique
branch from the pentose phosphate pathway (PPP) that generates ADP- heptose precursors (ADP-hep) for
incorporation of heptose (green hexagon) into the inner core of the LPS structure. Hep-1,7-PP (HBP) is
synthesized in the second step of this pathway and is released from bacteria during growth or lysis. (B)
Summary of the manners by which gram-negative bacteria can present HBP to mammalian cells and activate
the TIFA-signaling pathway. TIFA is an intrinsic anti-parallel dimer, possessing a Threonine residue (Thr9), a
central forkhead domain (FHA), and a C-terminal TRAF6 binding site (T6BP; green rectangle). Upon HBP
detection, Thr9 is phosphorylated, driving head-to tail oligomerization via intermolecular pThr9-FHA
interactions. TIFA oligomers or the ‘TIFAsome’ recruits and activates TRAF6, driving canonical NF-kB
activation and inflammatory signaling. Inset fluorescence micrograph depicts HBP-induced TIFAsome
formation (green, white arrow) in human colonic epithelial cells treated with HBP for 2 hours. Nucleus is
stained with DAPI (blue), scale bar 5 ym.

doi:10.1371/journal.ppat1005807.9001

manno-heptose, which are often decorated with phosphate, pyrophosphate, or diphosphoetha-
nolamine residues and serve to cross-link LPS molecules through divalent cations [5]. Notably,
heptose is strictly derived from microbes, since gram-negative bacteria possess a unique five-
step biosynthetic pathway that converts sedoheptulose-7 phosphate (S7P) from the pentose
phosphate pathway (PPP) into ADP-heptose, the precursor for the heptose residues found in
the inner core (Fig 1A) [6]. This biosynthetic pathway is well conserved across nearly all gram-
negative phylogeny, with a few exceptions, including Moraxella, Rhizobium, Francisella, and
Legionella, but is not found in other organisms [7].

Heptose-1,7-bisphosphate (HBP) Is Gram-Negative Bacterial PAMP

The restriction of the ADP-heptose biosynthetic pathway to gram-negative bacteria implicates
its metabolic constituents as possible signal(s) to the innate immune system. In fact, we
recently discovered that the second molecule generated in this pathway, heptose-1,7-bispho-
sphate (HBP), elicits an inflammatory response from mammalian cells [8]. This metabolite is
sensed within the host cytosol, inducing a robust inflammatory response by activating the tran-
scription factor NF-kB. We reconstituted the ADP-heptose biosynthetic pathway in a cell-free
system using recombinant enzymes to prove that HBP was both necessary and sufficient to
induce inflammation. Curiously, though the end goal of this pathway is to synthesize LPS, the
pro-inflammatory effect of HBP is not reproduced by heptose when incorporated into the
intact LPS glycan structure.

There is strong selective pressure to synthesize ADP-heptose, as disruptions in this pathway
generate bacteria with LPS truncations, referred to as “deep-rough mutants,” that can survive
in the laboratory but are extremely susceptible to environmental stress [7]. In terms of viru-
lence, deep-rough mutants are typically serum sensitive and avirulent in animal models.
Indeed, in vitro and in vivo studies have revealed that deep-rough mutants of Escherichia coli,
Salmonella enterica, Shigella flexneri, Burkholderia, Neisseria meningitidis, and Neisseria gonor-
rhoeae are avirulent [9-14]. Considering its microbial origin, the selective pressure for its gen-
eration, and the conservation of its synthesis pathway across gram-negative phyla, HBP
satisfies the three defining characteristics of a PAMP [15].

HBP Is Generated by a Wide Variety of Gram-Negative Bacteria but
Signals in Different Cellular Contexts

A systematic analysis of the bacterial glycome indicated that heptose is among the most com-
mon monosaccharides restricted to the bacterial kingdom [16]. Moreover, the cellular abun-
dance of LPS ensures the ADP-heptose pathway is highly active during bacterial growth and
proliferation [2]. As such, HBP represents an intuitively satisfying PAMP. Indeed, we showed
that immunoactive HBP is present in the cytosol of a wide variety of gram-negative bacteria
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[8]. However, the context in which HBP signaling is triggered differs considerably among bac-
terial species. For prototypical gram-negative bacteria such as E. coli, we found that HBP must
be liberated from within the bacterial cytosol to activate host cells. We demonstrated that this
can occur during extracellular bacteriolysis, or after opsonized bacteria are engulfed and
degraded within the phagolysosome of macrophages [8]. Alternatively, we observed that the
closely related pathogens Neisseria gonorrhoeae and Neisseria meningitidis each release abun-
dant HBP during growth such that it accumulates in culture media [17]. Once liberated, extra-
cellular HBP gains access to the host cytoplasm through dynamin-dependent endocytosis [8].
It is unclear if there exists an active mechanism of HBP export in Neisseria that is unique
among gram-negative bacteria or if HBP release is instead indirect, attributable to some facet
of the neisserial growth pattern yet to be recognized. Moreover, the requirement for cytosolic
sensing makes it tempting to speculate that HBP might also function to alert the host to the
presence of intracellular gram-negative bacteria. Both of these questions represent fascinating
topics for future investigation.

HBP Is Detected by a TIFA-Dependent Signaling Cascade

Germ-line encoded PRRs located on cellular membranes or in the cytosol sense PAMPs and
trigger the production of proinflammatory cytokines. Following stimulation, each receptor
recruits a defined set of downstream adaptor proteins through shared signaling domains,
assembling into large multiprotein signaling complexes that in turn activate a common set of
signaling mediators, including the TRAF family of proteins. TRAF6 specifically is an E3 ubi-
quitin ligase essential for signaling downstream of many PRRs [18].

Since host sensing of HBP occurred independently of any known PRR, we used a genome-
wide RNA interference screen to uncover a novel cytoplasmic surveillance pathway that specif-
ically detects HBP [8]. This revealed that HBP-driven inflammation was mediated by TRAF-
interacting forkhead-associated protein A (TIFA), a ubiquitously expressed vertebrate protein
with no clearly defined physiological function. Initially identified in a series of two-hybrid
screens as a TRAF2- and TRAF6-binding protein, TIFA was annotated as a putative NF-xB
activating protein when overexpression was found to activate NF-«B [19,20]. While TIFA nor-
mally exists as an antiparallel homodimer, overexpressed TIFA can become phosphorylated on
threonine 9 (Thr9), leading to oligomerization via intermolecular binding of pThr9 of one
dimer with the phospho-threonine binding forkhead domain of a different dimer [21]. Once
formed, these oligomers are sufficient to activate oligomerization and polyubiquitination of
TRAF6 in a cell free system [22]. The recently solved structure of TIFA supports a model in
which “head-to-tail binding” between different TIFA dimers promotes oligomerization while
leaving the C-terminal TRAF6 binding site exposed, creating a signaling scaffold that drives
TRAF6 recruitment, oligomerization, and propagation of downstream signaling [23]. Despite
this mechanistic insight, a role for TIFA in a cellular response remained elusive.

It was not until we reported that TIFA was essential for the cellular response to HBP that
the function of TIFA became clear [8]. Whereas endogenous levels of TIFA are not phosphory-
lated, HBP induces the specific phosphorylation of TIFA on Thr9, leading to the pThr9-FHA-
dependent intermolecular oligomerization events described above (Fig 1B). Whereas the over-
expression studies had suggested TIFA was constitutively associated with TRAF6, we observed
that HBP was required to promote the physical association of TIFA and TRAF6 in a more
physiological context. In fact, HBP promotes the assembly of large TIFA and TRAF6-contain-
ing “TTFAsomes” that are evident by fluorescence microscopy (Fig 1B). Critically, TTFA is dis-
pensable for macrophage responses to a variety of other PAMPs of bacterial, viral, or fungal
origin, suggesting that its role is restricted to the HBP response. Whether TIFA is the receptor
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for HBP or a proximal signaling adaptor remains unknown. However, it is now clear that TIFA
is a linchpin linking cytosolic detection of HBP with the common innate immune signaling
hub TRAF6.

Concluding Remarks

A major challenge of the future will be to define how innate sensing pathways integrate to dis-
tinguish pathogenic from commensal microorganisms. Understanding the full breadth of
innate immune sensors, their microbial targets, and the context in which they are engaged is
essential to achieving this goal. In this respect, HBP serves a flexible indicator of a diverse col-
lection of bacterial species and lifestyles. It can function as an indicator of pathogenicity by sig-
naling the presence of bacterial proliferation; alternatively, it can be interpreted as an indicator
of bacterial death, since bacterial lysis or phagolysosomal degradation within macrophages
may also liberate HBP (Fig 1B). Access to the cytosol is the limiting factor that determines
whether HBP engages the TIFA signaling axis, and the amount of freely accessible HBP likely
determines the immunological interpretation. Specifically, extracellular release may allow low
level alert that gram-negative bacteria are in the tissues, bacteriolysis within the phagosome
would allow a pulse alarm as HBP is released into the cytoplasm, while HBP generation during
intracellular bacterial proliferation could permit accumulation and concentration in the cytosol
creating an increasingly urgent signal. In this respect, the dose-dependent nature of HBP sig-
naling that differs notably from the “all-or-nothing” response of inflammasome activating sti-
muli like cytosolic LPS [24] permits HBP to serve as a unique rheostat for bacterial
proliferation.
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