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Abstract

Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence
requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized
multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells
expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral
infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS) effectors steadily accumulated
until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic
tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation,
and location of antigen-specific CD4 T cells in vivo.

Citation: Lee S-J, McLachlan JB, Kurtz JR, Fan D, Winter SE, et al. (2012) Temporal Expression of Bacterial Proteins Instructs Host CD4 T Cell Expansion and Th17
Development. PLoS Pathog 8(1): e1002499. doi:10.1371/journal.ppat.1002499

Editor: E. John Wherry, University of Pennsylvania, United States of America

Received June 29, 2011; Accepted December 7, 2011; Published January 19, 2012

Copyright: � 2012 Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the National Institutes of Health, AI055743 and AI073672 (to SJM). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sjmcsorley@ucdavis.edu

. These authors contributed equally to this work.

Introduction

Generating vaccines for current and emerging infectious

diseases remains an important goal of immunological research

[1,2]. An ideal vaccine will induce the expansion and maturation

of naı̈ve pathogen-specific lymphocyte clones that exist at low

frequency in uninfected or unimmunized individuals [3]. During

infection or immunization, pathogen-specific T cells expand

within secondary lymphoid tissues after recognition of foreign

peptides in the context of host MHC molecules. These dividing

pathogen-specific T cells acquire effector capabilities that are

tailored to combat different classes of microbial pathogen [4,5].

Following the resolution of primary infection, a cohort of these

expanded pathogen-specific T cells persists to provide robust

secondary immunity against another encounter with the same

pathogen [6].

Naı̈ve CD4 T cells can differentiate into T helper 1 (Th1), Th2,

or Th17 effector lineages depending on the instructional cues

delivered during initial activation [7]. Th1 cells express the

transcription factor T-bet, secrete IFN-c, and protect the host

against infection with intra-macrophage pathogens [8,9]. In

contrast, Th2 cells express GATA-3, secrete IL-4, and combat

large extracellular pathogens [10,11]. Th17 cells are a recently

described effector cell lineage that express RORct, secrete IL-17,

and contribute to clearance of extracellular bacterial and fungal

infections [5,12]. A number of variables can influence CD4 T

helper cell differentiation, including TCR affinity for peptide/

MHC, antigen dose, costimulatory signals, and the local

concentration of inflammatory cytokines [7].

In vivo analysis of CD4 T cell differentiation during infection

has often involved visualization of adoptively transferred TCR

transgenic T cells [13–19]. Although this experimental approach

allows detection of pathogen-specific T cells using conventional

methodologies, it can also introduce experimental variables that

are not present in a natural host [20–22]. The development of

peptide-MHC tetramer enrichment methodologies now allows

direct visualization of low frequency antigen-specific CD4 T cell

populations without requiring adoptive transfer of TCR transgenic

cells [23]. Using this approach, infection via the intra-nasal route

was shown to enhance development of Listeria-specific Th17 cells

while systemic infection encouraged Th1 development [24]. Most

pathogens differentially regulate their protein expression in

mucosal or systemic tissues depending on local metabolic or

virulence requirements [25,26], but it is not yet clear how this

might affect CD4 T cell expansion and differentiation to stage-

specific antigens expressed in different tissues.

Here, we examined this issue using peptide-MHC tetramers and

ELISPOTs that allow simultaneous tracking of CD4 T cell

responses to Salmonella flagellin and type-III-secretion system

(TTSS) effector proteins. We found that flagellin-specific CD4 T

cells undergo early expansion and contraction and after oral

infection generate Th17 cells that localize to infected mucosal

tissues. In contrast, CD4 T cells responding to TTSS effector

proteins expanded and accumulated over several weeks and
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primarily differentiated to a Th1 lineage localized in systemic

tissues. Thus, an infected host simultaneously develops distinct

populations of CD4 effector lineages that detect stage-specific

antigens and have divergent anatomical localization.

Results

Identification of novel class-II Salmonella epitopes
I-Ab epitopes have been identified within Salmonella flagellin

[27,28], and these remain the only confirmed class-II epitopes for

examining CD4 response to Salmonella in C57BL/6 mice [29].

However, flagellin is an unusual antigen that can be directly

detected by the innate immune system, and is also rapidly down-

regulated as bacteria transition to intracellular growth [30–32]. In

order to uncover antigens that are recognized by CD4 T cells

during intracellular bacterial growth, we used a bioinformatic

approach to identify novel Salmonella I-Ab epitopes. Based on the

published structure of I-Ab in complex with human class-II

invariant chain peptide (CLIP) [33], we used a positional-specific

scoring matrix (PSSM) and Hidden Markov Model (HMM) to

interrogate all open reading frames in the Salmonella genome for I-

Ab epitopes. Although this yielded numerous epitopes that were

then confirmed by peptide immunization (Table 1 and Figure 1A),

none were found to be natural epitopes during murine Salmonella

infection or after immunization with heat-killed Salmonella (data

not shown). Since many of these candidate peptides were derived

from cytoplasmic proteins that are unlikely to enter the class-II

presentation pathway, we modified our approach to focus on outer

membrane or secreted Salmonella proteins, (Table 2), many of

which are required for bacterial persistence in vivo [34]. Using this

strategy we identified natural I-Ab epitopes in two effector proteins

that are encoded by Salmonella Pathogenicity Island 2 (SPI2) TTSS,

SseI and SseJ (Figure 1B and Table 3).

In marked contrast to flagellin, SseI and SseJ are though to be

expressed during intra-macrophage replication [35]. We con-

firmed the differential regulation of flagellin (FliC) and SseJ by

examining bacterial mRNA expression in vitro. While FliC

mRNA was highly expressed under SPI1-inducing conditions, it

was down-regulated under SPI2-inducing conditions which

simulate the intra-macrophage environment (Figure 2). In

contrast, SseJ was expressed under SPI2-inducing conditions but

down-regulated under SPI1-inducing conditions (Figure 2). Thus,

Salmonella differentially regulate the production of flagellin and

SseJ, depending on local environmental cues. Although it was

technically challenging to measure Salmonella mRNA expression in

vivo, we were able to confirm the differential regulation of FliC

and SseJ at early time points after infection. FliC mRNA was

highly expressed at 30 minutes after infection but significantly

reduced at 5 hours, while in contrast, SseJ mRNA was low at

5 minutes but expression increased at 30 minutes (Figure 2). Thus,

flagellin (FliC) and SseJ represent antigens that are differentially

regulated during the transition from extracellular to intracellular

growth.

Construction of Salmonella-specific class-II tetramers
We constructed class-II I-Ab tetramers containing flagellin427–

441 and SseJ329–341 epitopes and visualized endogenous flagel-

lin427–441-, SseJ329–341-specific CD4 T cells using a sensitive

tetramer enrichment methodology [36]. C57BL/6 mice contained

low numbers of naive flagellin- and SseJ-specific CD4 T cells, but

a population of expanded CD44Hi tetramer positive cells was

readily detected in the draining lymph nodes after immunization

with flagellin427–441 or SseJ329–341 and CFA (Figure 3). Similarly,

infection with Salmonella (BRD509) allowed detection of an

expanded population of flagellin- and SseJ-specific CD4 T cells

(Figure 3). Salmonella-specific T cells were not detected in unbound

column fractions or in CD8 T cells bound to enrichment columns

(Figure 3), demonstrating the specificity of these detection regents

and the efficiency of enrichment. We chose to focus on visualizing

CD4 T cells responding to Salmonella strain BRD509 since this

strain has been widely studied previously [37–39], and use of more

virulent strains precludes analysis at late time points after infection

of C57BL/6 mice.

Distinct kinetics of flagellin- and SseJ-specific CD4 T cell
expansion following infection

We examined the kinetics of flagellin427–441-specific and SseJ329–341

-specific CD4 T cell expansion after intravenous (IV) infection with

Salmonella. The pooled secondary lymphoid tissues of a C57BL/6

mouse contained approximately 32 flagellin427–441-specific and 30

SseJ329–341-specific CD4 T cells (Figure 4A). After Salmonella

infection, flagellin427–441-specific CD4 T cells expanded to a peak

of 410 cells at day 7 (12.9 fold expansion over naı̈ve frequency),

before contracting to 88 cells by day 160 (Figure 4A). At the peak

of clonal expansion, flagellin427–441-specific CD4 T cells decreas-

ed surface expression of CCR7 and CD27, indicating the deve-

lopment of T effector cells (Figure 4B and C). Flagellin427–441

-specific T cells started to contract as early as day 10 following

infection, and this coincided with a gradual increase in the

percentage of cells expressing CCR7 and CD27 (Figure 4A–C).

Importantly, this CD4 contraction phase occurred while bacterial

burdens remained high in vivo (Figure 4D). In marked contrast,

SseJ329–341-specific CD4 T cells expanded after infection and

continued to accumulate in secondary lymphoid tissues until day

52 post-infection, eventually reaching a peak of 5,900 cells (210-

fold expansion over naı̈ve frequency), before decreasing to 1,800

cells by day 160 (Figure 4A). In contrast to the flagellin-specific

response, SseJ329–341-specific CD4 T cells maintained low

expression of CCR7 and CD27 until bacterial clearance had

been achieved (Figure 4B–D). We also examined intracellular

expression of transcription factors associated with T helper

lineage commitment in these two populations at time points close

to peak expansion. The vast majority of expanded flagellin427–441

-specific and SseJ329–341-specific CD4 T cells expressed T-bet,

while no staining above background levels was detected using

antibodies specific for GATA-3, FoxP3, or RORct (Figure 4E

and data not shown).

In order to confirm the distinct tempo of CD4 responses to

Salmonella flagellin and TTSS effector proteins, we also examined

Author Summary

Pathogens alter protein expression in an infected host,
depending on metabolic or virulence requirements, but
the effect of these changes on the immune response is
unclear. We identified new class-II epitopes within
Salmonella type-III secretion system effector proteins and
generated a methodology to visualize endogenous T cells
responding to these epitopes. Our study shows that
Salmonella flagellin generates a mixed Th1 and Th17
response that contracts early and is enriched in mucosal
tissues. In contrast, we found that Salmonella T3SS
effectors generate a sustained Th1 response that requires
a persisting infection and is enriched in systemic tissues.
These data demonstrate that in vivo antigen regulation
substantially alters the antigen specificity, helper differen-
tiation, and anatomical location of pathogen-specific CD4
T cells.

Pathogen Antigen Expression Determines CD4 Expansion and Differentiation
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Table 1. Salmonella peptides screened for immunogenicity in C57BL/6 mice.

Protein ID
Start
Site a.a sequence Protein source

Group 1 AAL21503.1 385 ihyaapvpervvy Gifsy-1 prophage protein Position-specific scoring matrix (PSSM)

AAL21353.1 399 arypnphpllvva CPPZ-55 prophage protein

AAL19315.1 232 lyyflpvpvlvla cytochrome BD2 subunit II

AAL19990.1 525 nvyfqpvpallce aminopeptidase N

AAL22132.1 186 saylgpvavlvdt PTS family galactitol-specific enzyme IIC

AAL19496.1 255 asyitpvpggvgp 5,10-methylene-tetrahydrofolate dehydrogenase

AAL20821.1 105 daykaptpvevve putative SAM-dependent methyltransferase

AAL21007.1 177 gvyhdpkpggvsa glucose-1-phosphate transferase

AAL23362.1 74 gfyeepeaapvai primosomal protein I

AAL19397.1 636 vdyyvpvpeveki cytochrome o ubiquinol oxidase subunit I

AAL22828.1 128 igyigpvperalq proline dipeptidase

Group 2 AAL22133.1 290 mnysapwpgeewe galactitol-1-phosphate dehydrogenase

AAL23344.1 125 kdydfpvpmfvlp endonuclease R

AAL20285.1 298 aiylypsplicna putative MFS family transport protein

AAL20249.1 92 mdylsprpldahn putative cytoplasmic protein

AAL19903.1 50 alyfipyalivgq putative APC family, amino-acid transporter

AAL19268.1 56 psyhspiaklvqn putative glutamine amidotransferase

AAL20131.1 208 spylapvphrgke putative metal-dependent hydrolase

AAL23330.1 137 gayhvpsptitgs isoaspartyl dipeptidase

AAL23343.1 149 gqyftprplikti DNA methylase M, host modification

AAL21058.1 620 saypdpqaligrq methionine tRNA synthetase

AAL20683.1 272 tgyhnpvalklgl putative invasin

Group 3 AAL20248.1 73 fwynsptpnfqgs putative regulator

AAL19422.1 499 wlyskplpatafi putative diguanylate cyclase/phosphodiesterase
domain 2

AAL19504.1 23 cryhsptpqifdr putative regulatory protein

AAL19892.1 475 qgvdtplgnhasr cytochrome-related transporter Hidden Markov model (HMM)

AAL23273.1 511 qewhpphikgqwq trehalose-6-P hydrolase

AAL22827.1 697 plyevpeglrnka 3-hydroxyacyl-coA dehydrogenase of 4-enzyme
FadB protein

AAL22180.1 118 vgfedpelgtsil pyruvate ABC superfamily transport protein

AAL22114.1 247 ygydisrparnaq pyruvate formate-lyase 4

AAL19485.1 16 adyrqpwqmsgvw putative cytoplasmic protein

AAL23296.1 398 msnhnplahelig aminopeptidase A

AAL19180.1 213 slylgavaatvre 30S ribosomal subunit protein S2

Group 4 AAL20696.1 55 glytsavagivia putative SulP family transport protein

AAL19899.1 653 eiysqaladiaat anaerobic dimethyl sulfoxide reductase, subunit A

AAL19178.1 370 lfirepqailrmf uridylyltransferase

AAL22968.1 304 grydtsaldemk outer membrane receptor for transport of vitamin B12

AAL21333.1 130 tlfhvpvtemacq putative membrane carboxypeptidase

AAL20667.1 559 vmyehpethfeel iron-dependent alcohol dehydrogenase sn-glycerol-3-
phosphate dehydrogenase (anerobic)

AAL21186.1 349 qhffdpqpwqqfg membrane anchor subunit

AAL22520.1 163 evfswaatqvvta D-xylose isomerase

AAL21756.1 110 pvvvvsppapqpt invasion genes transcription activator

AAL19161.1 20 ggygsaqaaiapd putative periplasmic fimbrial chaperone

AAL22804.1 36 hgyrgavasiagl homoserine/homoserine lactone efflux protein

doi:10.1371/journal.ppat.1002499.t001
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CD4 T cell responses by ELISPOT. IFN-c-producing CD4 T cells

were detected seven days after Salmonella infection and were found

to predominantly focus on flagellin, rather than TTSS effector

epitopes (Figure 5). In marked contrast, 40 days after infection,

larger pools of IFN-c-producing CD4 T cells were detected

responding to SseI and SseJ epitopes rather than flagellin

Figure 1. Discovery of novel Salmonella I-Ab epitopes. (A) C57BL/6 mice were immunized with a mixture of 4 groups of 11 peptides from
Table 1 at 5 mg/peptide in CFA. Eight days later, draining lymph nodes were isolated and purified CD4 T cells restimulated with individual peptides
(Table 1) in the presence of irradiated splenocytes. IFN-c production was measured 24–36 hours later by ELISPOT. (B) 129Sv mice were orally infected
with virulent 5x107 Salmonella (SL1344) and spleens harvested 11 weeks later. Purified CD4 T cells were restimulated with peptides from Table 2 for
24–36 h in the presence of irradiated splenocytes and IFN-c production measured by ELISPOT. ConA and no peptide wells constitute the positive and
negative controls respectively. Each plate is representative of 2–3 individual experiments.
doi:10.1371/journal.ppat.1002499.g001

Pathogen Antigen Expression Determines CD4 Expansion and Differentiation
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(Figure 5). No Th2 or Th17 CD4 T cell response was detected at

either of these time points after intravenous infection (data not

shown). Together, these data demonstrate distinct temporal

differences in the targeting of flagellin and TTSS effector proteins

by Salmonella-specific CD4 T cells.

Bacterial persistence is required for accumulation of SseJ-
specific T cells

We hypothesized that the temporal difference in the CD4 T cell

response to flagellin and SseJ was due to the maintenance of SseJ

expression in vivo by persistent bacteria. However, it was also

possible that these different kinetics reflected T cell-intrinsic

variables that were completely unrelated to antigen persistence.

We therefore examined the clonal expansion of SseJ-specific T

cells in mice that were administered antibiotics to clear bacteria,

beginning five days after infection. Although SseJ-specific T cells

were clearly detected in both treated and untreated mice, clonal

expansion was significantly reduced in mice that had been treated

with antibiotics (Figure 6). Thus, the continued accumulation of

SseJ-specific CD4 T cells at later time points after infection

required bacterial persistence.

Enrichment of flagellin-specific Th17 CD4 T cells in
mucosal tissues after oral infection

Next, we used ELISPOTs to examine the CD4 T cell response

to oral Salmonella infection and closely monitored Th1, Th2, and

Th17 responses to flagellin and TTSS effector proteins in mucosal

and systemic tissues. We used three oral doses of Salmonella

(BRD509) as this was required for optimal priming of effector CD4

T cell responses. Consistent with the absence of Th2 responses

after IV infection, IL-4 production was not detected in either

mucosal or systemic tissues (data not shown). In contrast, IFN-c-

producing CD4 T cells were detected in intestinal (mesenteric

lymph nodes, MLNs, and lamina propria, LP) and systemic (spleen

and liver) tissues (Figure 7A). SseI and J-specific CD4 Th1 cells

were more numerous in the spleen and liver, while flagellin-

specific CD4 Th1 cells were predominantly detected in intestinal

tissues (Figure 7A). Furthermore, IL-17A-producing CD4 T cells

were also detected and this response was notably focused on the

flagellin epitopes and occurred in mucosal tissues (Figure 7B).

Indeed, flagellin-specific CD4 T cells in intestinal tissues had a

higher ratio of Th17:Th1 cells, while in contrast SseI and J-specific

CD4 T cells in systemic tissues had a higher ratio of Th1:Th17

cells (Figure 7C). In order to confirm the preferential generation of

flagellin-specific Th17 cells in the intestine, we also examined IL-

22 production by CD4 T cells recovered from the spleen or MLN

of Salmonella-infected mice. Consistent with the ELISPOT data,

IL-22 was detected after stimulation of CD4 T cells from the MLN

but not the spleen of infected mice, and was directed towards

flagellin427–441 rather than T3SS effectors (Figure 8).

Discussion

This study describes the first examination of endogenous CD4

T cell responses to multiple Salmonella epitopes using tetramer and

ELISPOT assays. Previous analysis of Salmonella-specific CD4 T

cells has been severely limited by the lack of defined epitopes and

has largely focused on the response to a single I-Ab epitope within

flagellin [13,40,41]. Our ability to track multiple epitope-specific

CD4 responses in this study has revealed that in vivo regulation of

bacterial antigen expression is a critical factor in orchestrating

both the tempo and effector maturation of Salmonella-specific CD4

T cells at mucosal and systemic sites. High expression of flagellin is

reported from extracellular bacteria but this is rapidly decreased

after infection of macrophages, and flagelin cannot be detected in

the spleen of infected mice [32,42]. In contrast, expression of SPI-

2 genes is initiated within the phagolysosome of infected

macrophages and is required for bacterial survival in vivo [35].

Our data confirm these findings and demonstrate differential

expression of FliC and SseJ mRNA in response to environmental

cues, both in vitro and in vivo. Thus, naı̈ve Salmonella-specific CD4

T cells will encounter flagellin only during the early stage of

infection within the intestine, whereas SPI-2 TTSS effector

Table 2. List of outer membrane and secreted Salmonella
class-II epitopes tested.

Protein_ID Start_site a.a. sequence Protein source

AAL20026.1 71 nnfswplpetamr PipD

AAL20026.1 355 iaygmpslsvylp PipD

AAL22477.1 183 psylppqlaqyfs endo-1,4-D-
glucanase

AAL22477.1 195 srfgapwstlret endo-1,4-D-
glucanase

AAL19497.1 22 avaadptpvsvsg FimA

AAL19497.1 162 arykataaattpg FimA

AAL20501.1 166 aynalpqalgaip SteA

AAL20501.1 180 leyyiarasnmqe SteA

AAL19906.1 90 keyanpsqqdrfv SopD2

AAL19906.1 257 qaykpslssdlie SopD2

AAL20777.1 219 tlylgafagvfgi PagO

AAL20777.1 201 wfferpqvstfsv PagO

AAL20549.1 9 qgyftssissekf SseJ

AAL20549.1 331 cyyetadafkvim SseJ

AAL19985.1 245 snlngplilsade SseI

AAL19985.1 270 liyytdfsnssia SseI

AAL20174.1 52 yryeddspvsfis PagC

AAL20174.1 164 vgyegsnisstki PagC

AAL21040.1 35 ptlsppssghvsf SseK2

AAL21040.1 88 npylnniinaaii SseK2

AAL20322.1 43 egygvllillmvi SseB

AAL20322.1 35 lsqqnpfaegygv SseB

AAL21825.1 193 rpaeapdhplvew SopD

AAL21825.1 13 qnytlnesrlahl SopD

AAL21169.1 345 styvdykinlldk OmpC

AAL21169.1 231 rlygngdratvyt OmpC

AAL21169.1 201 ltyaigegfsvgg OmpC

doi:10.1371/journal.ppat.1002499.t002

Table 3. Natural Salmonella class-II epitopes used in this
study.

Salmonella protein Sequence

Flagellin1 427–441 VQNRFNSAITNLGNT

Flagellin2 455–469 DSDYATEVSNMSRAQ

SseI 268–280 LIYYTDFSNSSIA

SseJ 329–341 CYYETADAFKVIM

doi:10.1371/journal.ppat.1002499.t003
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proteins accumulate as more intracellular bacteria replicate in the

systemic tissues of the spleen and liver.

Interestingly, our tetramer data reveal a pattern of CD4 T cell

expansion and contraction to flagellin and SseJ that corresponds

closely to their relative temporal abundance during in vivo growth.

In particular, we detected early contraction of flagellin-specific T

cells, while SseJ-specific T cell responses remained elevated for

several weeks. There may be T cell-intrinsic factors that determine

the peak clonal expansion of FliC- and SseJ-specific T cells since

SseJ-specific T cells exhibit greater clonal expansion. However,

this issue does not explain the maintenance of the SseJ response for

several weeks after infection. Furthermore, the elimination of

bacteria using antibiotics severely dampened the CD4 T cell

response to SseJ, indicating that antigen persistence is essential for

sustained clonal expansion of this population. Although antibiotics

can affect adaptive response indirectly via effects on commensal

flora, it is more likely that the reduction in the SseJ response is due

to a direct effect on bacterial persistence. Together, these data

suggest that CD4 T cells are surprisingly dependent upon local

antigen availability even after clonal expansion has occurred and

indicate that clearer definition of in vivo protein expression by

pathogens might be critical for identification of protective

antigens, especially for pathogens that reside in multiple tissues

or have distinct life-cycle stages. Indeed, a correlation between

temporal antigen expression and in vivo activation of protective

CD4 T cell responses has recently been observed during M.

tuberculosis infection [43,44]. Furthermore, a requirement for

sustained antigen expression for the generation of optimal CD4

T cell responses has also been identified in other model systems

[45,46].

Our data also demonstrate divergent CD4 T cell helper

development to flagellin and TTSS effector proteins. After

intravenous infection, CD4 T cells responding to each of these

antigens expressed T-bet and produced IFN-c following in vitro

restimulation, thus Salmonella generates distinct antigen-specific Th1

cell populations that appear at different stages of infection. This

finding may help explain why Th1 cells can be detected within days

of Salmonella infection but do not appear to actively participate in

bacterial clearance until several week later [47]. If the majority of

the early Salmonella-specific Th1 response is largely focused on

antigens that are transiently expressed, such as flagellin or SPI-1

gene products, then intracellular bacteria can evade detection by the

initial wave of Th1 effector cells. In contrast, a second wave of Th1

cells that are specific for highly expressed intracellular antigens such

as T3SS effectors would be more likely to participate in the later

stages of bacterial clearance from systemic tissues. A similar model

of bacterial antigen regulation and effector T cell evasion has been

proposed in mycobacterial infection [43,48], and may be a common

feature of persistent bacterial infection.

After oral infection with Salmonella, we detected Th17 cells

specific for flagellin epitopes and these were particularly enriched

in the intestine. TGF-b is abundant in mucosal tissues and plays an

important role in the generation of both Treg and Th17 cells [5].

Intestinal IL-6 production is induced by Salmonella infection and is

likely to drive Salmonella-specific differentiation towards a Th17

lineage in the intestine [49,50]. Indeed, flagellin is a ligand for

Figure 2. Differential regulation of bacterial Flagellin (FliC) and SseJ in vitro and in vivo. For in vitro detection of bacterial mRNA,
Salmonella (BRD509) were cultured under SPI1-inducing conditions (LB broth, for 3hours) or SPI2-inducing conditions (modified N minimal medium,
for 6hours) (Top). For in vivo detection, C57BL/6 mice were infected intravenously with 5X105 Salmonella (BRD509), and spleens harvested 30 min or
5 hours later (Bottom). Bacterial RNA was isolated as described in Materials and Methods. Expression of Flagellin (FliC) or SseJ mRNA was quantified by
real-time qPCR. Bar graphs show the mean number 6 SEM of Flagellin (FliC) or SseJ mRNA transcripts normalized to the respective amount of 16S
rRNA in each sample. Data are pooled from two separate experiments (in vitro) or three separate experiments using a total of nine mice (in vivo).
Numbers above indicate statistical significance and show the p value of a comparison between the groups.
doi:10.1371/journal.ppat.1002499.g002

Pathogen Antigen Expression Determines CD4 Expansion and Differentiation
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TLR5 and can directly induce IL-6 production in vitro and in vivo

[38,51]. This may explain why Th17 cells specific for flagellin

epitopes found only in infected intestinal tissues while Th17

responses to T3SS effector proteins are largely absent. Th17 cells

are thought to provide protective immunity during extracellular

bacterial infections via upregulation of anti-bacterial mediators

and neutrophil recruitment [5,52]. Since Salmonella grow intracel-

lularly in vivo [53], a protective role for Salmonella-specific Th17

CD4 T cells during primary infection is not immediately obvious.

However, Th17 cells may be vital for mobilizing local innate

defenses against secondary infection after bacteria penetrate

intestinal epithelium. Indeed, it may be particularly important

that these mucosal Th17 cells recognize bacterial antigens such as

flagellin that are expressed by the initial bacterial burden.

In summary, this study has identified new Salmonella I-Ab epitopes

in T3SS effectors and used peptide-MHC tetramers and ELIPOT

assays to simultaneously track multiple CD4 T cell responses during

Salmonella infection for the first time. These data show that an

infected host develops distinct CD4 effector lineages that are tightly

regulated by bacterial antigen expression patterns in vivo, a finding

that may assist the generation of vaccines directed against microbial

pathogens that replicate in mucosal and systemic tissues.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

University of Minnesota and University of California Davis are

accredited by the Association for Assessment and Accreditation of

Laboratory Animal Care (AAALAC). All animal experiments were

approved by University of Minnesota Institutional Animal Care

and Use Committee (IACUC) (Protocol numbers: 1011A93173

and 1004A80157) or UC Davis IACUC Protocol 16612.

Mice and bacterial strains
C57BL/6 and 129Sv mice were purchased from the National

Cancer Institute (Frederick, MD) and used at 6–16 weeks of age.

All mice were maintained in accordance with University of

Minnesota or University of California Davis Research Animal

Resource guidelines. Salmonella enterica serovar Typhimurium

strains SL1344 and BRD509 (AroA2D2) were kindly provided

by Dr. D. Xu (University of Glasgow, Glasgow, U.K).

Salmonella infection and antibiotic treatment
S. Typhimurium were cultured overnight in Luria-Bertani (LB)

broth without shaking, and diluted in PBS after estimation of

bacterial concentration using a spectrophotometer. Mice were

infected intravenously in the lateral tail vein with 5X105 BRD509.

For oral infection, mice were administered 0.1ml of 5% sodium

bicarbonate to neutralize stomach pH before oral infection with

5x109 BRD509. The actual bacterial dose administered was

confirmed by plating serial dilutions of the original culture onto

MacConkey agar plates counting the number of colonies that grew

Figure 3. Expansion of endogenous flagellin427–441- or SseJ329–341-specific CD4 T cells after peptide immunization or Salmonella
infection of mice. C57BL/6 mice were immunized sub-cutaneously with either 100 mg of flagellin427–441 or SseJ329–341 peptide in the presence of
CFA or infected with 5x105 Salmonella (BRD509). On day 7, inguinal, axillary, and brachial lymph nodes were isolated from peptide-immunized mice
(Immunized). On day 35, spleens were harvested from C57BL/6 mice infected intravenously with Salmonella BRD509 (Infected). Endogenous
flagellin427–441- or SseJ329–341-specific CD4 T cells were detected using Flagellin:I-Ab or SseJ:I-Ab tetramers, enriched with anti-fluorochrome
microbeads, stained with antibodies to several surface markers, and examined by flow cytometry. CD4 T cells from naive, immunized, and Salmonella-
infected mice, were detected among CD11c2CD11b2F4/802B2202CD3+ cells, and further analyzed for expression of CD44 and Flagellin:I-Ab or SseJ:I-
Ab tetramer positive cells. CD4 T cells from the unbound column fraction and CD8 T cells within the bound fraction are also shown as controls. FACS
plots are representative of three mice per group and three replicate experiments.
doi:10.1371/journal.ppat.1002499.g003
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after overnight culture at 37uC. In some experiments mice were

administered Enrofloxacin (Baytril) at 2mg/ml in their drinking water,

beginning on 5 days post-infection, as previously described [54].

Salmonella I-Ab epitope discovery
The crystal structure of the murine I-Ab molecule in complex

with human class II invariant chain-associated peptide (CLIP)

[33], was used to identify potential I-Ab epitopes from S.

Typhimurium. Based on the proposed alignment, the likelihood

of a particular amino acid residue appearing in a specific position

in the MHC class-II binding groove was assigned a numerical

score. We focused on binding positions 1, 4, 6, 7, and 9 as these

were the most likely to contribute to MHC class-II binding. For

example, a tyrosine at position 1 was found in 30 out of 75 core

residues examined and was assigned a score of 30. An overall score

total was calculated by adding individual scores from each

potential binding residue, with 109 being the highest possible

score. This scoring approach was applied bioinformatically to each

open reading frame of Salmonella using 9-mers overlapping by one

(a total of 995,592 peptides). Two algorithms were then applied to

this data; the first was a position-specific scoring matrix (PSSM)

[55], and the second a hidden Markov model (HMM) [56]. The

epitopes with highest PSSM (25 epitopes from 105 to 84) and

HMM scores (19 epitopes from 82 to 43) were tested for

Figure 4. Kinetics of endogenous Salmonella flagellin427–441-, and SseJ329–341-specific CD4 T cells after Salmonella infection. C57BL/6
mice were infected intravenously with 56105 Salmonella (BRD509). At various time points, endogenous CD4 T cells were stained using Flagellin:I-Ab

or SseJ:I-Ab tetramers, enriched using magnetic selection, and examined by flow cytometry. CD4 T cells were gated from CD11c2CD11b2F4/
802B2202CD3+ cells, and further analyzed for Flagellin:I-Ab or SseJ:I-Ab tetramer positive cells. (A) The number of endogenous flagellin427–441- or
SseJ329–341-specific CD4 T cells was calculated based on FACS analysis. Graph shows the mean number 6 SEM of flagellin427–441- or SseJ329–341-
specific CD4 T cells. (B and C) Line graphs show the mean percentage 6 SEM of tetramer specific CD4 T cells positive for CCR7 (B) or CD27 (C)
expression. (D) The number of viable Salmonella determined in the spleen at various time points. These data were pooled from several experiments
and represent at least 3–5 mice at each time point. (E) Endogenous flagellin427–441- or SseJ329–341-specific CD4 were enriched from day 6 or day 48
Salmonella-infected mice, and stained intracellularly with antibodies specific for T-bet.
doi:10.1371/journal.ppat.1002499.g004
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immunogenicity using an IFN-c ELISPOT assay. Briefly, four

groups of eleven peptides were mixed in equal amounts (5 mg/

peptide) emulsified in complete Freund’s adjuvant (CFA) and

injected subcutaneously into groups of C57BL/6 mice. Draining

lymph nodes were harvested eight days later, CD4 T cells enriched

by negative selection, and mixed 1:1 with irradiated splenocytes in

IFN-c ELISPOT plates. Duplicate wells were stimulated for

36 hours with individual peptides and spot forming cells (SFC) per

1x106 total cells enumerated. Although 88% (PSSM) and 74%

(HMM) of peptides induced a CD4 T cell response in HKST/

CFA-immunized mice, no response to these epitopes was detected

after infection with Salmonella. The approach was therefore

modified using PSSM to identify the two highest scoring candidate

peptides from a combination of 13 outer membrane and secreted

proteins. These epitopes were tested using purified CD4 T cells

from the spleen and mesenteric lymph nodes of 129Sv mice orally

infected 11 weeks previously with 5x107 Salmonella (SL1344). In

these peptide identification experiments, genetically resistant

129Sv mice were used so that CD4 responses to virulent

(SL1344) bacteria could be examined at late time points when

C57BL/6 mice would normally succumb to infection.

Quantifying Flagellin (FliC) and SseJ mRNA
For SPI1 or SPI2-inducing cultures, Salmonella BRD509 were

grown overnight at 37uC in LB broth, diluted in either LB broth

for SPI1-inducing conditions or modified N minimal medium [57]

for SPI2-inducing conditions, and grown for either 3 hours for

SPI1 or 6 hours for SPI2 conditions. For in vivo detection of

mRNA expression, C57BL/6 mice were infected intravenously

with 5X105 BRD509 and spleens were harvested at either

30 minutes or 5 hours after infection. Total RNA was isolated

using Aurum Total RNA Mini Kit (Bio-Rad, Hercules, CA) or

TRI reagent (Applied Biosystems/Ambion, Austin, TX) according

to the manufacturer’s protocol. To enrich bacterial RNA from

infected splenocytes, the MICROBEnrich kit (Ambion) was used,

and traces of genomic DNA eliminated using DNA-free DNase

treatment kit (Ambion) according to manufacturer’s recommen-

dations. To quantitate expression of Salmonella Flagellin (FliC) or

SseJ by real-time qPCR, 1 mg of bacterial RNA was used as a

template and cDNA synthesis by random hexamers was

performed using TaqMan reverse transcription reagents (Applied

Biosystems). SYBR Green (Applied Biosystems) based real-time

qPCR was carried out based on published procedures [58]. The

following primers were used in this study; 16S rRNA, 59-

tgttgtggttaataaccgca-39 and 59-gactaccagggtatctaatcc-39 [59]; FliC,

59-gtaacgctaacgacggtatc-39 and 59-atttcagcctggatggagtc-39 [58];

SseJ, 59-tattacgagactgccgatgc-39 and 59-gcccgtggtgagtataagggt-39

(GeneScript’s real-time PCR primer design tool). Data was

acquired using a ViiA 7 Real-time PCR system (Applied

Biosystems) and analyzed using comparative Ct method (Applied

Figure 5. Salmonella-specific Th1 cells target flagellin and T3SS effectors at different time points after infection. C57BL/6 mice were
infected intravenously with 56105 Salmonella (BRD509). On day 7 or day 40 post-infection, CD4 T cells from the spleens were purified and
restimulated with 10 mM of various peptides (Table 3) for 16 h in the presence of irradiated splenocytes. IFN-c production was measured by ELISPOT
assay. (Top) Representative images from IFN-c ELISPOT plates using CD4 T cells from Salmonella-infected mice at day 7 or day 40 after infection.
(Bottom) Scatter graphs show the number of IFN-c-producing CD4 T cells per infected mouse. Numbers above indicate statistical significance and
show p value of a comparison between media alone (no stimulation) and peptide stimulation group.
doi:10.1371/journal.ppat.1002499.g005
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Biosystems). Transcripts of Flagellin (FliC) or SseJ were normal-

ized to the respective amounts of 16S rRNA in each sample.

Tracking Salmonella specific endogenous CD4 T cell
response using class-II tetramers

Endogenous Salmonella specific flagellin427–441 - or SseJ329–341 -

CD4 T cell responses were monitored using a previously described

methodology. Biotinylated I-Ab monomers with an attached

peptide derived from Salmonella flagellin427–441 (Flagellin:I-Ab) or

SseJ329–341 (SseJ:I-Ab) were produced in S2 Drosophila insect cells

cultured using a Wave Bioreactor (GE Healthcare Biosciences,

Pittsburgh, PA). Purified monomers were tetramerized using

fluorochrome-conjugated streptavidin and batch-tested for optimal

binding to CD4 T cells from day 7 peptide-immunized mice, as

previously described [36]. Briefly, C57BL/6 mice were immu-

nized with either 100 mg of flagellin427–441 or SseJ329–341 peptide in

the presence of CFA (Sigma-Aldrich, St. Louis, MO). On day 7,

the inguinal, axillary, and brachial lymph nodes were harvested

from naı̈ve or peptide-immunized mice and stained with respective

class-II tetramers in the presence of Fc block (culture supernatant

from the 24G2 hybridoma, 2% mouse serum, 2% rat serum, and

0.01% sodium azide). Cells were incubated with anti-fluoro-

chrome microbeads (Stem cell technologies, Vancouver, Canada)

and tetramer-specific cells enriched using a magnet. Bound and

unbound fractions were stained with fluorochrome-conjugated

Figure 6. Bacterial persistence is required for optimal expansion of SseJ-specific CD4 T cells. C57BL/6 mice were infected intravenously
with 56105 Salmonella (BRD509). Some mice were treated with Enrofloxacin (Baytril) (2mg/ml in drinking water), beginning 5 days post-infection. At
day 30 post-infection, endogenous SseJ-specific CD4 T cells were stained with SseJ:I-Ab tetramers, enriched, and examined by flow cytometry. (A)
Representative FACS plots from control (without, left) or antibiotic-treated mice (with, right). Tetramer-specific CD4 T cells were gated from
CD11c2CD11b2F4/802B2202CD3+. (B) Scatter plots show the number of SseJ329–341-specific CD4 T cells in control (without) or treatment group
(with). Data are pooled from three separate experiments. Numbers above indicate statistical significance and show p value of a comparison between
control and treatment group.
doi:10.1371/journal.ppat.1002499.g006
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Abs specific for CD3, CD4, CD8, CD11b, CD11c, B220, F4/80,

CCR7, and CD27 (eBioscience, or BD Bioscience, San Diego,

CA). For transcription factor staining, cells were surface stained,

and then treated with Foxp3 staining buffer set (eBioscience).

Permeabilized cells were stained with fluorochrome-conjugated

Abs specific for T-bet, GATA3, RORcT, or Foxp3. Cells were

then analyzed by flow cytometry using an LSR II (BD Bioscience)

or FACS Canto (BD Bioscience). Endogenous tetramer specific

CD4 T cells were identified using a previously described gating

strategy [36]. Tetramer specificity was confirmed by the absence

of tetramer binding CD8 T cells in the bound fraction and in CD4

T cells within the unbound fraction. All the data were analyzed

using FlowJo software (Tree Star, San Carlos, CA).

Cell processing for ELISPOT assay
Spleen and MLN, including Peyer’s patches, were crushed

through nylon mesh, and then RBC in spleen was lysed with ACK

lysis buffer (Lonza, Walkersville, MD). For nonlymphoid tissue

processing, we followed published methods [60]. Livers were

perfused, crushed through a cell strainer (BD Biosciences), and

resuspended in 35% Percoll (Sigma-Aldrich). After centrifugation,

pelleted cells were treated with ACK lysis buffer and then washed

with 2% FBS/PBS. For Lamina propria (LP) lymphocytes, small

intestine was dissected, and washed with 2% FBS/CMF (Ca2+ and

Mg2+ free HBSS with 1mM HEPES, and 2.5mM NaHCO3). The

intestine pieces were then stirred at 37uC for 30 min in CMF

containing 10% FBS and 1mM dithioerythritol. The epithelial

cells were removed by stirring the pieces in 1.3 mM EDTA/HBSS

solution at 37uC for 30 min. The intestinal tissues were then

treated with collagenase (Invitrogen, Carlsbad, CA) in RPMI 1640

(with 1mM CaCl2, 1mM MgCl2, and 5% FBS) at 37uC for 1 h.

Cells were washed in 2% FBS/PBS, and then centrifugated on a

44%/67% Percoll gradient (GE Healthcare Biosciences). Viable

cells at the interface were collected, and these cells are LP

lymphocytes.

Examining Salmonella specific endogenous CD4 T cell
response using ELISPOT assay

MultiscreenHTS ELISPOT plate (Millipore, Billerica, MA) was

coated with either purified anti-mouse IFN-c (BD Bioscience) or

IL-17A (eBioscience). Total CD4 T cells from each tissue were

isolated using EasySep Mouse CD4 T cell enrichment kit (Stem

cell technologies) according to the manufacturer’s protocol. The

purity of CD4 T cells were measured by flow cytometry and was

typically .90% for splenocytes and MLN, and .70% for non-

lymphoid tissues. Purified CD4 T cells (105 cells/well) were added

to ELISPOT plates in the presence of 46105 cells irradiated

splenocytes. Cells were restimulated with 10 mM peptides (Table 3)

at 37uC overnight. Bound IFN-c or IL-17A was detected by

biotin-conjugated anti-mouse IFN-c (BD Bioscience) or IL-17A

Figure 7. Detection of flagellin-specific CD4 Th17 cells in intestinal tissues. C57BL/6 mice were infected three times orally with 56109

Salmonella (BRD509) at one-month intervals. On day 7 after the third infection, CD4 T cells from the spleens, MLN, including Peyer’s patches, livers
(LV), and laminar propria (LP) were purified. Isolated CD4 T cells (16105) were restimulated with 10 mM of various peptides (Table 3) for 16 h in the
presence of irradiated splenocytes. (A) IFN-c or, (B) IL-17A production was measured by ELISPOT. Scatter graphs show the number of (A) IFN-c or, (B)
IL-17A-producing CD4 T cells in infected tissues from individual mice. (C) Bar graphs show the mean ratio of IFN-c to IL-17 production after in vitro
stimulation. Numbers above indicate statistical significance and show p value of a comparison between media alone (no stimulation) and peptide
stimulation group.
doi:10.1371/journal.ppat.1002499.g007
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(eBioscience), followed by AP-conjugated streptavidin (BD Biosci-

ence). Bound antibodies were visualized using One-step NBT-

BCIP substrate (Thermo, Rockford, IL), and plates analyzed using

an ELISPOT reader ImmunoSpot (Cellular Technology, Shaker

Heights, OH).

IL-22 ELISA
Purified CD4 T cells (16105 cells/well) from spleens and MLN,

including Peyer’s patches, were restimulated with 10 mM peptides

(Table 3) in the presence of 46105 irradiated splenocytes for 16 h.

IL-22 secretion was measured from culture supernatant using

mouse IL-22 ELISA Ready-SET-Go kit (eBioscience). Briefly,

High-protein binding plates (Costar, Corning, NY) were coated

overnight with capture IL-22 antibody. After incubation in Assay

Diluent for 1 hour at room temperature, plates were washed twice

before culture supernatant was added. After incubation for

2 hours, plates were washed and biotin-conjugated detection IL-

22 antibody added. After 1 hour, plates were washed and

incubated for 30 min with avidin-HRP. Bound antibody was

visualized using TMB substrate and after 15 min, the reaction

stopped by adding 50 ml of 2N H2SO4. Plates were analyzed using

a spectrophotometer (SpectraMax M2, Molecular Devices,

Sunnyvale, CA).

Statistical analysis
Statistical differences between groups of normally distributed

data were examined using Prism (GraphPad Software, La Jolla,

CA). Data in each group were compared using an unpaired t test

and were considered significantly different with a p,0.05.

Figure 8. Mucosal flagellin-specific CD4 T cells produce IL-22 upon restimulation. C57BL/6 mice were infected three times orally with
56109 Salmonella (BRD509) at one-month intervals. On day 7 after the third infection, CD4 T cells from spleen and MLN, including Peyer’s patches,
were isolated. Purified CD4 T cells were restimulated with 10 mM peptide (Table 3) for 16 h in the presence of irradiated splenocytes. Culture
supernatants were collected and IL-22 production measured by ELISA. Data show IL-22 production in culture supernatants as scatter plots
representing individual mice. Data are pooled from three separate experiments. Numbers above each group indicate statistical significance and show
the p value of a comparison between media alone (no stimulation) and peptide stimulation group.
doi:10.1371/journal.ppat.1002499.g008
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