
Crystal Structure of Reovirus Attachment Protein s1 in
Complex with Sialylated Oligosaccharides
Dirk M. Reiter1, Johnna M. Frierson2,3, Elizabeth E. Halvorson2,3¤a, Takeshi Kobayashi3,4¤b, Terence S.

Dermody2,3,4*, Thilo Stehle1,4*

1 Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany, 2 Departments of Pathology, Microbiology, and Immunology, Vanderbilt University

School of Medicine, Nashville, Tennessee, United States of America, 3 Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville,

Tennessee, United States of America, 4 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America

Abstract

Many viruses attach to target cells by binding to cell-surface glycans. To gain a better understanding of strategies used by
viruses to engage carbohydrate receptors, we determined the crystal structures of reovirus attachment protein s1 in
complex with a-2,3-sialyllactose, a-2,6-sialyllactose, and a-2,8-di-siallylactose. All three oligosaccharides terminate in sialic
acid, which serves as a receptor for the reovirus serotype studied here. The overall structure of s1 resembles an elongated,
filamentous trimer. It contains a globular head featuring a compact b-barrel, and a fibrous extension formed by seven
repeating units of a triple b-spiral that is interrupted near its midpoint by a short a -helical coiled coil. The carbohydrate-
binding site is located between b-spiral repeats two and three, distal from the head. In all three complexes, the terminal
sialic acid forms almost all of the contacts with s1 in an identical manner, while the remaining components of the
oligosaccharides make little or no contacts. We used this structural information to guide mutagenesis studies to identify
residues in s1 that functionally engage sialic acid by assessing hemagglutination capacity and growth in murine
erythroleukemia cells, which require sialic acid binding for productive infection. Our studies using s1 mutant viruses reveal
that residues 198, 202, 203, 204, and 205 are required for functional binding to sialic acid by reovirus. These findings provide
insight into mechanisms of reovirus attachment to cell-surface glycans and contribute to an understanding of carbohydrate
binding by viruses. They also establish a filamentous, trimeric carbohydrate-binding module that could potentially be used
to endow other trimeric proteins with carbohydrate-binding properties.
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Introduction

Viral infections are initiated by specific attachment of a virus

particle to receptors at the surface of the host cell. This process,

which serves to firmly adhere the virus to its cellular target, is

rarely a bimolecular interaction between one viral attachment

protein and one receptor. In most cases, several receptors are

employed, and recognition events are frequently accompanied by

substantial structural rearrangements that serve to expose new

binding sites, strengthen the initial interaction, and prime the virus

for cell entry. Structure-function analyses of virus-receptor

interactions have provided detailed insights into the attachment

strategies of viruses belonging to several different families [1–18].

However, much less is known about structure-function interrela-

tionships between different binding sites for distinct receptors on

the same viral attachment molecule.

Reoviruses are useful experimental models for studies of virus-

receptor interactions and viral pathogenesis. Moreover, the recent

development of plasmid-based reverse genetics for reovirus

provides an opportunity to manipulate these viruses for oncolytic

and vaccine applications. Reoviruses form icosahedral particles

approximately 850 Å in diameter. At the virion five-fold symmetry

axes, the trimeric attachment protein, s1, extends from penta-

meric turrets formed by the l2 protein. A similar arrangement of a

trimeric attachment protein inserted into a pentameric base is also

observed for the adenovirus attachment protein, fiber. The s1

protein is about 400 Å long and consists of three discrete domains,

termed tail, body, and head [19]. Residues 1 to 160 encompass the

tail domain, which partially inserts into the virion capsid [20–22].

This region of the molecule is predicted to form an a-helical

coiled-coil structure. The body domain encompasses residues 170

to 309 and contains b-spiral repeat motifs [22]. Lastly, the globular

head domain incorporates residues 310 to 455 and folds into an 8-

stranded b-barrel [22,23].

Reovirus attachment is thought to proceed via a two-step

adhesion-strengthening mechanism, in which s1 first engages

widely distributed carbohydrate receptors with lower affinity. The

three prototype reovirus strains, type 1 Lang (T1L), type 2 Jones
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(T2J), and type 3 Dearing (T3D) recognize different carbohydrate

structures, which may account for the serotype-specific differences

in routes of spread in the host and end-organ tropism. In the case

of serotype 3 (T3) reoviruses, the carbohydrate bound is a-linked

sialic acid [24–26]. This initial contact, which has lower affinity

and may allow for lateral diffusion of the particle at the membrane

[27], is followed by high-affinity interactions with junctional

adhesion molecule-A (JAM-A) [28], a component of tight junctions

[29–31]. All reoviruses, including prototype and field-isolate

strains, use JAM-A as a high-affinity receptor [28,32,33]. Firm

adherence to the cell triggers uptake of the particle, which is

dependent on b1 integrins [34,35].

Discrete regions of s1 mediate binding to its cell-surface

receptors. Structural and functional analyses show that the s1

head, which projects farthest from the virus capsid, engages JAM-

A [33,36,37]. In contrast, sequences in the s1 body bind to

carbohydrates [38]. Sequence analysis of reovirus variants

identified three residues, Asn198, Arg202, and Pro204, as likely

critical for the interaction of T3 s1 with sialic acid. These residues

lie near the midpoint of the protein, at the lower end of the body

domain, about 100 Å away from residues in the head that interact

with JAM-A. Earlier structural analyses of T3D s1 [22,23,36]

were based on constructs that did not include this putative

carbohydrate-binding site. It is therefore currently unclear how s1

achieves its specificity for sialic acid, whether the large distance

between the two receptor-binding sites on s1 is relevant for

binding, or whether s1 undergoes rearrangements after engaging

its carbohydrate receptor.

To enhance an understanding of mechanisms by which viral

attachment proteins engage cell-surface glycans, we determined

the crystal structure of T3D s1 in complex with a-2,3-

sialyllactose, a-2,6-sialyllactose, and a-2,8-disiallylactose. All three

carbohydrates terminate in sialic acid but feature different linkages

that are present in various physiologic glycans. In addition, we

used plasmid-based reverse genetics to engineer reoviruses that

express mutagenized forms of s1 to define residues required for

functional binding to sialic acid. These studies shed light on the

structural basis of s1-sialic acid interactions and define a new

carbohydrate-binding structural motif in a viral attachment

protein.

Results

Construct Design and Structure Determination
The s1 protein belongs to a class of fiber proteins constructed

from triple b-spirals, a motif that was first identified in the

adenovirus fiber [39]. In a previous study, we crystallized a smaller

region of s1, spanning residues 246 to 455 and containing three b-

spiral repeats as well as the globular head domain [22]. While this

structure provided no insights into the carbohydrate-binding

region of s1, it served as a basis to predict that b-spiral repeats

form the entire body domain of the protein (residues 167–309)

[22]. Near residue 170, the body domain transitions into a long a-

helical coiled-coil region that forms the N-terminal tail domain

(residues 1–156).

To determine the structure of a longer fragment of s1 including

the predicted sialic-acid binding residues 198, 202, and 204, we

designed a construct for the expression of residues 170–455. This

construct excluded the long a-helical coiled-coil region to simplify

protein expression, purification, and crystallization. Prototype

strain T3D s1 is sensitive to trypsin-mediated cleavage after

Arg245 [40]. However, a sequence polymorphism occurring in the

majority of T3 field-isolate strains, Thr249Ile, renders the protein

resistant to trypsin [40]. A construct containing Ile249 was

therefore used in our study. Trimerization was promoted by using

a hexahistidine-tagged trimerization domain, a modified GCN4

sequence [41], at the N-terminus of the expressed protein. This

domain was proteolytically removed before final purification and

crystallization.

Overall Structure of s1
The structure of s1 residues 170 to 455 reveals a highly

elongated, symmetric trimer that measures about 200 Å in length

(Table 1 and Figure 1A,B). Tail residues N-terminal to amino acid

170, which were not included in the crystallized protein, are

predicted to form an a-helical coiled-coil structure that adds

another 200 Å in length to the protein (Figure 1C). As expected,

Author Summary

Human reoviruses bind first with low affinity to a
carbohydrate receptor that brings the virus in close
proximity to the host cell. This interaction then facilitates
high-affinity binding to a second receptor, the tight junction
component junctional adhesion molecule-A (JAM-A). While
all human reoviruses bind JAM-A, they differ in carbohy-
drate receptor specificity, and this difference may influence
the distinct disease patterns of reovirus serotypes. We
present here the structure of the attachment protein of type
3 reovirus in complex with carbohydrates that naturally
occur on human cells. Our results show that the protein
forms an elongated trimer, with the carbohydrate binding
site being located close to the midpoint of the molecule in a
fiber-like region. Our findings provide insights into mech-
anisms of reovirus attachment to cell-surface glycans and
contribute to an understanding of carbohydrate binding by
viruses. They also establish a filamentous, trimeric carbohy-
drate-binding module that could potentially be used to
introduce carbohydrate-binding properties into other
trimeric proteins.

Table 1. Data collection and refinement statistics.

s1 in complex with a-2,3-sl a-2,6-sl a-2,8-di-sl

Space group P21212 P21212 P21212

Unit cell dimensions (Å) a = 87.15 a = 87.61 a = 87.19

b = 333.18 b = 333.06 b = 331.84

c = 58.49 c = 58.29 c = 58.13

Unit cell angles (u) a=b= c= 90 a= b= c= 90 a= b= c= 90

Resolution range (Å) 38.6–2.25 48.05–2.79 48.06–2.28

Completeness (%) 95.37 98.65 96.03

Total reflections 369038 547842 277926

Unique reflections 78324 43203 75913

Rmerge (%)# 10.8 6.2 9.6

I/sI 13.5 18.6 18.6

Rwork (%)* 15.77 15.69 17.31

Rfree (%)* 19.89 20.48 22.03

r.m.s.d. bond lengths (Å) 0.006 0.007 0.006

r.m.s.d. bond angles (u) 0.960 1.12 1.01

r.m.s.d., root-mean-square deviation. sl, sialyllactose.
*Rwork = Rfree = S| |Fobs(hkl) | - |Fcalc (hkl) | |/S |Fobs (hkl). Rfree was calculated
with 5% of the data.
#Rmerge = S | I - ,I. |/SI
doi:10.1371/journal.ppat.1002166.t001
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the structure of the globular head domain (residues 310 to 455) is

essentially identical to that described previously [22]. However,

the body domain displays a number of unusual features. Although

sequence-based predictions suggested that this region would be

composed of eight consecutive triple b-spiral repeats [22], we find

that the body domain contains a mixture of a-helical coiled-coil

and b-spiral repeats (Figure 1). Four b-spiral repeats at the N-

terminus (b1–b4, residues 170 to 235) are followed by a short a-

helical coiled-coil (cc, residues 236 to 251) and three additional b-

spiral repeats (b5-b7, residues 252 to 309) (Figure 2). Inspection of

the sequence indicates a likely reason for the deviation from the b-

spiral fold at the center of the body (Figure 2B). Three hydrophilic

residues (Thr236, Ser244, and Ser252) are located at positions that

are typically occupied by hydrophobic side chains in b-spirals.

Moreover, Ser241 replaces a characteristic proline or glycine at

the turn in a b-spiral repeat. While some deviations from the b-

spiral consensus sequence can be tolerated, even residues replacing

the glycine or proline (e.g., residues Gln224 or Thr278), the

cumulative effect of the four non-consensus residues results in a b-

spiral no longer being the optimal fold. The a-helical coiled-coil

structure contains two heptad-repeat sequences, starting with

Phe239 and ending with Gln251 (Figure 2A,C).

Structure of s1 in Complex with a-2,3-Sialyllactose
To elucidate the structural basis of the interaction of the

reovirus attachment protein s1 with its carbohydrate coreceptor,

we prepared a complex by soaking crystals of s1 with 10 mM a-

2,3-sialyllactose, a compound that terminates in a-linked sialic

acid. The subsequent structure, determined at 2.25 Å resolution

(Table 1), unambiguously demonstrated the location of the

carbohydrate in an unbiased difference electron-density map

(Figure 3A). The oligosaccharide binds in a shallow groove next to

the loop connecting the second and third b-spiral repeats. The s1

protein contains three identical binding sites, one on each chain,

and all three are occupied by a-2,3-sialyllactose molecules, with

the sialic acid making identical and extensive contacts in each

chain (Figure 3B,C). The lactose moieties face different directions,

probably as a result of internal flexibility and participation in

crystal contacts (Figure 3C).

Sialic acid contains four characteristic functional groups: a

carboxylate at C1, a hydroxyl group at C4, an N-acetyl group at

C5, and a glycerol chain at C6. All four groups are recognized by

s1 (Figure 3B). Arg202 forms a bidentate salt bridge with the

carboxyl group. A single hydrogen bond links the hydroxyl group

at C4 to the carbonyl of Gly205. The amide of the N-acetyl group

Figure 1. Structure of T3D s1. (A) Ribbon drawing of the T3D s1 body and head domains in complex with a-2,3-sialyllactose. The s1 monomers
are shown in red, blue, and yellow. The body domain consists of seven triple b-spiral repeats (b1–b7) and an a-helical coiled-coil domain (cc) that is
inserted between b-spiral repeats b4 and b5. The bound a-2,3-sialyllactose is shown in stick representation and colored in orange. (B) Molecular
surface of the s1 structure, shown in semitransparent white coloring. (C) Model of full-length s1, including a computer-generated trimeric a-helical
coiled coil structure spanning s1 residues 1–160 at the N-terminus.
doi:10.1371/journal.ppat.1002166.g001
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is engaged in a hydrogen bond with the backbone carbonyl of

Leu203, and the N-acetyl methyl group is facing into a partially

hydrophobic cavity. The glycerol chain lies parallel to the peptide

backbone, forming direct hydrogen bonds with the backbone

carbonyl of Ile201 and the amide nitrogen of Leu203 and in some

of the binding sites water-mediated hydrogen bonds with the

Asn210 side chain and the amide nitrogen of Ile211. We note that

Arg202, which was previously shown to influence sialic acid

binding [42], provides a key contact to the ligand. Moreover,

Pro204, which also had been implicated in sialic acid binding [42],

is part of a structure that shapes the ligand-binding site.

Structures of s1 in Complex with a-2,6-Sialyllactose and
a-2,8-Disialyllactose

As contacts in the complex of s1 with a-2,3-sialyllactose

exclusively involve the sialic acid moiety, we hypothesized that s1

should be capable of binding sialic acid in different naturally

occurring linkages, including a-2,6- and a-2,8-linked sialic acid.

We therefore determined crystal structures of s1 in complex with

a-2,6-sialyllactose (Figure 4A) and a-2,8-disialyllactose (Figure 4B).

Refinement statistics for both structures are provided in Table 1.

In each case, only two of the binding sites are occupied, as the

third is partially blocked by crystal contacts. For the a-2,6-

sialyllactose complex, the electron density allowed us to unam-

biguously identify all three sugar residues (Figure 4A). The

electron density for the a-2,8-disialyllactose complex did not allow

us to model the terminal glucose. Comparison of these structures

with each other and with the a-2,3-sialyllactose complex shows

that the terminal sialic acid is bound in the same conformation and

with identical contacts in all three cases. However, the remaining

moieties of the glycans differ in conformation and contacts with

s1. The a-2,3-sialyllactose and a-2,8-disialyllactose ligands

assume an elongated shape in which the lactose groups face away

from the protein (Figure 3C, Figure 4B). Inspection of the a-2,8-

disialyllactose complex shows that the N-acetyl group of the

second sialic acid forms a hydrogen bond to the side chain of

Ser195. In contrast, s1 binds a-2,6-sialyllactose in a folded-back

conformation (Figure 4A). This conformation is stabilized by an

Figure 2. Structural features of the T3D s1 body domain and sequence alignments with T1L and T2J s1. (A) Close-up view of the a-
helical coiled-coil that separates b-spirals 4 and 5 in the T3D s1 body domain. The coiled-coil region is shown as a stick model, while the adjacent b-
spiral repeats are depicted as a ribbon drawing. A simulated annealing omit difference map for one chain is shown with a radius of 2.2 Å and a
contour level of 3s. (B) The residues are aligned according to the triple b-spiral consensus sequence (a–o), with typically hydrophobic residues (c, e, g,
k, and m) indicated in cyan and the position in the b-turn usually occupied by proline or glycine (j) in green. (C) Sequence analysis of the coiled-coil
region in the body domain. Residues 239–252 are organized in heptads (a–g), and the coiled-coil consensus is indicated with typically hydrophobic
residues (a and d) highlighted in cyan.
doi:10.1371/journal.ppat.1002166.g002
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intramolecular hydrogen bond and the galactose O2 and O3

hydroxyl groups, which form hydrogen bonds to the backbone

carbonyl atoms of Ser195 and Leu194, respectively.

Residues in Reovirus s1 Required for Sialic Acid Binding
To identify sequences that influence sialic acid binding, we used

plasmid-based reverse genetics [43,44] to introduce point

mutations into the s1 protein of reovirus strain T3D. Mutant

viruses were isolated following co-transfection of murine L929 cells

with RNA-encoding plasmids corresponding to the T3D L1-L3,

M1-M3, and S2-S4 genes and a plasmid corresponding to the s1-

encoding S1 gene incorporating site-specific mutations. Thus, each

recombinant virus is isogenic, with the exception of the S1 gene

and its protein product, s1. Guided by the structure of the s1-

sialic acid complexes, we engineered individual alanine substitu-

tions of amino acids ranging from Asn189 to Asn210. By their

location in the structure, we hypothesized that these residues

would be required for functional sialic acid binding. In addition,

substitutions N198D, R202W, and P204L, which have been

implicated in sialic acid binding by sequence comparisons of

reovirus strains that differ in sialic acid utilization [26,45] and

genetic analysis of reovirus mutants adapted to growth in murine

erythroleukemia (MEL) cells [42], were engineered to define the

effect of these polymorphisms in an otherwise isogenic

background.

After confirming the s1-encoding S1 gene nucleotide sequenc-

es, the mutant viruses were tested for hemagglutination (HA)

capacity (Figure 5) and growth in L929 cells and MEL cells

(Figure 6). In comparison to rsT3D, rsT3D-s1N198D, rsT3D-

s1R202A, rsT3D-s1R202W, rsT3D-s1L203A, rsT3D-

s1P204A, rsT3D-s1P204L, and rsT3D-s1G205A produced little

or no agglutination of calf erythrocytes, a sensitive assay for sialic

acid binding [26]. However, rsT3D-s1N189A, rsT3D-s1S195A,

and rsT3D-s1N210A produced HA titers that were comparable

to those of wild-type rsT3D. Each of the point-mutant viruses

produced approximately 1000-fold yields of viral progeny after

growth in L929 cells (Figure 6), a cell line that does not require

sialic acid binding for reovirus to replicate [45]. In contrast, those

containing mutations N198D, R202A, R202W, L203A, P204A,

P204L, and G205A displayed attenuated growth in MEL cells

(Figure 6), a cell line permissive only to sialic acid binding reovirus

strains [45]. These findings indicate that viruses with mutations of

residues 198, 202, 203, 204, and 205 are altered in sialic acid

binding efficiency, suggesting that these residues serve a functional

role in T3D s1-sialic acid interactions.

Discussion

Although all known reovirus strains engage cells by binding to

the tight junction protein JAM-A [33], the major reovirus

serotypes differ in the routes of dissemination in the host and

Figure 3. Interactions between s1 and sialic acid. (A) Simulated
annealing omit difference density map contoured at 3s and displayed
with a radius of 2.2 Å around the bound a-2,3-sialyllactose. The sugar
moieties are labeled Sia (sialic acid), Gal (galactose), and Glc (glucose)
here and in subsequent figures. (B) Detailed interactions between s1
and the terminal sialic acid of a-2,3-sialyllactose. Residues in the binding
region are drawn in ball and stick representation, while the rest of the

protein is shown as a ribbon drawing. The s1 residues forming
hydrogen bonds or salt bridges with the ligand are shown in green, and
residues forming van der Waals contacts are shown in cyan. The side
chain of Asn189 (colored dark blue) is contributed by a neighboring s1
monomer (see also Figure 1A). Sialic acid is shown in ball-and-stick
representation, with carbons colored orange, oxygens colored red, and
nitrogens colored blue. Bridging waters are shown as orange spheres.
Hydrogen bonds and salt bridges are represented with broken lines. (C)
Superposition of all three bound ligands into a single binding site. The
superposition was performed using s1 residues only. While the
orientation of the terminal sialic acid is nearly identical, the lactose
moieties are facing in different orientations as a result of their
participation in different crystal contacts.
doi:10.1371/journal.ppat.1002166.g003
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tropism for host tissues [46–48]. These differences are linked to the

s1-encoding S1 gene segment and most likely attributable to

serotype-specific interactions of s1 with different cell-surface

receptors. T3 reoviruses require sialic acid as a coreceptor, but the

context in which sialic acid is bound is unknown. To define this

interaction, we determined crystal structures of reovirus s1 in

complex with three sialylated glycans that incorporate a terminal

sialic acid moiety in different linkages. These structural analyses

were complemented with mutagenesis experiments that establish

the physiologic relevance of the observed interactions.

The s1 protein uses a complex network of contacts to engage

terminal sialic acid, which is a common feature of all three glycans

studied here. The interactions involve s1 residues at the lower end

of the body domain, between b-spirals 2 and 3. At this location,

the sialic acid moiety docks into a shallow pocket that is formed

mainly by residues in the third b-spiral. All four functional groups

of sialic acid make contacts with s1 through an elaborate network

of hydrogen bonds and van der Waals interactions. Mutations that

alter these contacts lead to significantly reduced sialic acid binding

as assessed by HA profiles and diminished infection of MEL cells.

Although all three ligands used for complex formation with s1

contain additional carbohydrates, these make very few interac-

tions. The complex with a-2,8-disialyllactose identified a hydrogen

bond between the N-acetyl group of the second sialic acid and the

side chain of Ser195 (Figure 4B). However, the results from

mutagenesis experiments demonstrate that a Ser195A mutation

has no effect on either HA capacity or viral growth. Therefore, the

observed contact is unlikely to have physiologic relevance. The

interactions between s1 and a-2,6-sialyllactose identified two

hydrogen bonds that link the galactose to the protein and may help

to stabilize the folded-back conformation of the ligand (Figure 4A).

As both contacts involve main chain atoms of s1, their functional

significance cannot be easily probed by site-directed mutagenesis.

Nevertheless, it is likely that the observed contacts lead to a modest

increase in the affinity of s1 for compounds terminating in a-2,6-

linked sialic acid. It is unclear if such an increase is biologically

significant.

Naturally occurring sequence variability at three amino acid

positions (residues 198, 202, and 204) has been linked to the sialic

acid-binding capacity of T3 s1 [26,42]. Our structures readily

identify two of these residues, Arg202 and Pro204, as key

Figure 5. HA assay of T3D s1 point mutants. Purified reovirus
virions (1011 particles) were serially diluted in 0.05 ml of PBS in 96-well
U-bottom microtiter plates. Bovine erythrocytes were washed twice
with PBS and resuspended at a concentration of 1% (vol/vol) in PBS.
Erythrocytes (0.05 ml) were added to wells containing virus and
incubated at 4uC for at least 2 h. HA titer is expressed as 1011 particles
divided by the number of particles/HA unit. One HA unit equals the
number of particles sufficient to produce HA. *, P,0.05 in comparison
to T3D (Student’s t test).
doi:10.1371/journal.ppat.1002166.g005

Figure 4. s1 in complex with sialic acid in different linkages. (A)
View into the carbohydrate-binding site of the complex of s1 with a-
2,6-sialyllactose. (B) View into the carbohydrate-binding site of the
complex of s1 with a-2,8-disialyllactose. The orientation in panel (A)
differs by 60 degrees along a vertical axis from the orientations shown
in panel (B) and Figure 3 to provide a clearer view into of the binding
site. In both panels, s1 residues directly contacting the ligand are
shown in green, and surrounding residues making van der Waals
contacts are shown in cyan. The ligands are shown in ball-and-stick
representation, with carbons colored orange, oxygens colored red, and
nitrogens colored blue. Hydrogen bonds are represented with broken
black lines. The maps are simulated annealing omit difference density
maps contoured at 3s and displayed with a radius of 2.2 Å around the
ligands.
doi:10.1371/journal.ppat.1002166.g004
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determinants of sialic acid binding. The side chain of Arg202

forms a salt bridge with the sialic acid carboxylate group, while the

Pro204 side chain stacks against the Arg202 guanidinium group.

Moreover, the carbonyl oxygen in the peptide bond linking

Leu203 and Pro204 forms a hydrogen bond with the sialic acid.

Substitutions of either Arg202 or Pro204, as seen in the R202W

and P204L variants, would decrease the affinity for sialic acid, and

this is confirmed by the mutagenesis data. In contrast, the critical

role of residue 198 in ligand recognition is not apparent from the

crystal structures. Our mutagenesis data (Figure 5 and Figure 6), in

conjunction with previous results [42], clearly demonstrate that

Asn198 is required for successful sialic acid-dependent infection,

with viruses carrying an N198D mutation having substantially

reduced infectivity in MEL cells. However, the crystal structures

show that Asn198 is not involved in direct or water-mediated

contacts to any of the three oligosaccharides. Furthermore, the

Asn198 side chain is solvent-exposed, forming a single hydrogen

bond with the Asn189 side chain. Mutation of Asn189 to alanine

does not affect sialic acid binding (Figure 5 and Figure 6),

suggesting that the observed Asn198-Asn189 hydrogen bond is not

relevant for ligand recognition. It is possible that the introduction

of a negatively charged side chain at position 198, as is the case

with the N198D mutation, leads to long-range electrostatic effects

or structural rearrangements that indirectly affect receptor

binding. However, given the distance of Asn198 from the binding

site and its surface-exposed location, this possibility appears

remote. We think it more likely that Asn198 serves as a contact

point with a part of the functionally relevant glycan, which has not

been included in the structural analysis. Although our results

define the interactions of s1 with terminal sialic acid, the actual

receptor may be a more complex sialylated glycan, perhaps

carrying several branches. Such complex receptor structures,

which can be attached to proteins or lipids, have recently been

identified as the true ligands for several adenovirus and

polyomavirus capsid proteins [16–18]. Therefore, Asn198 may

well define a second receptor contact point for reovirus s1.

A large collection of structures of viruses or viral attachment

proteins in complex with sialylated oligosaccharide receptors is

available, and these have produced significant insights into

mechanisms of sialic acid binding, receptor specificity, and viral

pathogenesis [1–3,5,9,11,14,16–18,49–52]. However, the interac-

tions observed between T3D s1 and sialic acid differ in important

ways from those found in all other virus-receptor complexes,

offering new insights into the parameters that guide viral

attachment and specificity. In all cases in which structures are

available, the receptors are bound by a globular domain in a

region that projects farthest from the viral capsid and is easily

accessible for interactions with the cell surface. In contrast, the

highly elongated T3D s1 protein engages its carbohydrate ligand

at its midpoint, about 150 Å away from the region that projects

farthest from the virion. Although the s1 protein possesses some

flexibility at defined regions [19,22], the location of the sialic acid-

binding site would not appear optimal for engagement of

membrane-bound receptors that feature sialylated ligands close

to the membrane. The region of JAM-A that is engaged by the s1

head domain is fairly close to the membrane [36]. Even when

allowing for considerable flexibility between the s1 head and

body, it is difficult to envision a conformation in which the tail of

s1 is still inserted into the virus and the sialic acid binding site can

closely approach the membrane. However, s1 could more easily

engage sialic acid that projects far above the membrane, perhaps

by being located on a large protein or projecting from prominent

loops.

Prior to this study, structural information had been available

only for the C-terminal portion of the s1 protein [22]. Based on

analysis of that structure, as well as sequence comparisons with the

related adenovirus fiber protein, full-length s1 was predicted to

fold into three distinct regions: an N-terminal a-helical coiled coil

(termed the tail), a region containing eight consecutive b-spiral

repeats (the body), and a globular b-barrel (the head). Our

structural analysis of a fragment comprising the body and head

domains show that this model must be revised, as we find an

insertion of a short a-helical coiled coil that interrupts the b-spiral

sequence in the body, replacing one b-spiral repeat with a helical

structure. Thus, it is clear that the structure of s1 features several

transitions between a-helical and b-spiral regions. This topological

relationship differs from that of the adenovirus fiber, in which the

shaft domain is thought to consist entirely of b-spiral repeats [39].

Examination of the T3D body domain sequence shows that it

contains a nearly perfect heptad repeat pattern, which is typical for

a-helical coiled coils, in a short stretch of 14 residues (Figure 2). A

similar pattern is observed in the T1L and T2J s1 sequences, but

a proline residue within the consensus makes it unlikely that these

proteins also feature a continous a-helical coiled coil at the

equivalent location.

To our knowledge, the structures presented here are the first

examples of any fibrous viral protein engaging a ligand via its

repetitive fiber region. Other viral attachment proteins contain

fibrous- or stalk-like structures, but they usually engage receptors

with globular head domains placed on top of these structural

elements, as observed in complexes of adenovirus fiber proteins

with their receptors [7,15,18]. Globular head domains offer higher

variability in engaging ligands and can more easily create recessed

binding pockets suitable for high-affinity binding. Instead, fiber-

like structures generally feature short connections between their

repeating units and a relatively flat surface, limiting binding

options. However, inspection of the b-spirals in s1 reveals subtle

modifications in a single repeat that allow it to create a shallow

binding site for sialic acid. One of the hallmarks of b-spirals is a

highly conserved b-turn between two strands, involving residues at

positions g, h, i, and j (Figure 2). The residue at position j is usually

a proline or glycine. This turn is enlarged by two amino acids in

the s1 repeat that engages sialic acid, transforming the turn into a

small loop (Figure 7). Interestingly, Pro204 introduces a kink after

a b-strand, causing the chain to deviate from the b-spiral motif at

this position to provide a pocket for the ligand. Thus, alteration of

the typical repeating motif identifies a ligand-binding site in the

case of s1. It is conceivable that similar aberrations in other

fibrous protein sequences might also indicate binding sites. The

location of a sialic acid binding site in an elongated fiber-like

structure also raises the possibility of creating a small sialic acid

binding cassette that could be transferred into a variety of trimeric

fiber-like proteins constructed from a-helical coiled coils or b-

spirals. Our work thus enhances an understanding of reovirus-

Figure 6. Identification of s1 residues required for binding to cell-surface sialic acid. (A) Infection of murine fibroblast (L929) cells or (B)
murine erythroleukemia (MEL) cells by wild-type or point-mutant viruses. Cells were adsorbed with virus at an MOI of 1 PFU/cell. Following
incubation at room temperature for 1 h, the inoculum was removed, and cells were incubated at 37uC for 24 and 48 h. Viral titers were determined
by plaque assay. The results are expressed as viral yields (log10 titer at t = 24 or 48 h minus log10 titer at t = 0 h) for triplicate samples. Error bars
indicate S.D. *, P,0.05 in comparison to T3D (Student’s t test).
doi:10.1371/journal.ppat.1002166.g006
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glycan interactions and may also guide the construction of new

sialic acid binding platforms to facilitate structure-function

analyses and sialic acid-mediated cell targeting.

Materials and Methods

Protein Expression and Purification
The expression of soluble and properly folded T3D s1 trimers

was facilitated by appending a trypsin-cleavable trimerization

domain based on the GCN4 leucine zipper [41] N-terminally to a

cDNA encoding the entire s1 body and head domains (amino

acids 170–455). The construct was cloned into the pQE-80L

expression vector, which encodes a non-cleavable N-terminal

hexahistidine-tag. The protein was expressed in E. coli Rosetta 2

DE3 (Novagen) at 20uC for 16 h post-induction or by autoinduc-

tion at 20uC for 48–72 h. Bacteria were lysed by two passages

through an EmulsiFlex (Avestin) homogenizer and purified by Ni-

IMAC using His-Trap-FF columns (GE-Healthcare). The immo-

bilized protein was eluted by on-column digestion with 0.1 mg/ml

trypsin at a flowrate of 0.1 ml/min for 12 h. Size-exclusion

chromatography (Superdex-200, GE-Healthcare) was used as the

final purification step.

X-ray Structure Determination
Crystals were grown using 15% PEG200, 0.1 M MES (pH 6.5)

as a precipitant. The crystals belong to space group P21212 and

contain one trimer in the asymmetric unit. Complexes with

carbohydrate ligands were prepared by soaking crystals with the

respective carbohydrate prior to data collection. The crystals were

transferred into mother liquor supplemented with 10 mM

carbohydrate, incubated for 5 min, and cryoprotected by

incubation for 15 s in 35% PEG200, 0.1 M MES, 10 mM

carbohydrate (pH 6.5).

Diffraction data were collected at the beamlines PXI (SLS) and

ID14-4 (ESRF). Diffraction data were integrated and scaled using

XDS [53], and the structure was solved by molecular replacement

with AMoRe [54] using the structure of the T3D s1 head (PDB

ID 1KKE) as a search model. Refinement was performed with

Refmac5 [55] and Phenix [56], and model building was done in

Coot [57]. Ligands were fitted into weighted Fo-Fc difference

density maps at a contour level of 3s and refined using the CCP4

library and user-defined restraints. Coordinates and structure

factors for all three complexes have been deposited in the PDB

data bank (www.rcsb.org) with accession codes 3S6X (complex

with a-2,3-sialyllactose), 3S6Y (complex with a-2,6-sialyllactose)

and 3S6Z (complex with a-2,8-di-sialyllactose).

Cells
L929 cells [58] were maintained in Joklik’s minimum essential

medium (Sigma-Aldrich) supplemented to contain 5% fetal bovine

serum, 2 mM L-glutamine, 100 U/ml of penicillin, 100 mg/ml of

streptomycin, and 25 ng/ml of amphotericin B. MEL cells,

previously designated T3cl.2 cells [59], were maintained in Ham’s

F-12 medium (CellGro) supplemented to contain 10% fetal bovine

serum, 2 mM L-glutamine, 100 U/ml penicillin, 100 mg/ml

streptomycin, and 25 ng/ml amphotericin B.

Viruses
Recombinant reoviruses were generated by plasmid-based

reverse genetics [43,44]. Reovirus strains rsT3D (wild type),

rsT3D-s1N198D, rsT3D-s1R202W, and rsT3D-s1P204L were

recovered using monolayers of L929 cells at approximately 90%

confluence (36106 cells) in 60-mm dishes (Costar) infected with

rDIs-T7pol [60] at an MOI of ,0.5 TCID50. At 1 h post-

infection, cells were co-transfected with ten plasmid constructs

representing the cloned T3D genome using 3 ml of TransIT-LT1

transfection reagent (Mirus) per mg of plasmid DNA [43]. Reovirus

strains rsT3D-s1N189A, rsT3D-s1S195A, rsT3D-s1R202A,

rsT3D-s1L203A, rsT3D-s1P204A, rsT3D-s1G205A, and

Figure 7. Structural adaption of the binding site. (A) Superposition of all seven b-spiral repeats. Repeat b3, which is shown in darker shading,
interacts with sialic acid and deviates markedly in its structure from the other repeats. Conserved hydrophobic residues are colored in blue, the
position in the b-turn that is usually occupied by proline or glycine is shown in magenta. Arg202 and Pro204, which are part of repeat b3, are
highlighted in red and yellow, respectively. (B) Superposition of a prototypical b-spiral repeat (b6) onto the sialic acid binding repeat b3. Amino acids
are shown in ball and stick representation, and residues Arg202 and Pro204 in b3 are labeled. Panel B is enlarged to provide a clearer view.
doi:10.1371/journal.ppat.1002166.g007
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rsT3D-s1N210A were recovered using BHK-T7 cells at 90%

confluence (approximately 36106 cells) seeded in 60-mm dishes.

Cells were co-transfected with five plasmids representing the

cloned T3D genome using 3 ml of TransIT-LT1 transfection

reagent (Mirus) per mg of plasmid DNA [44]. The amount of each

plasmid used for transfection was identical to that described for

L929 cell transfections. Following 3 to 5 days of incubation,

recombinant viruses were isolated from transfected cells by plaque

purification using monolayers of L929 cells [61]. For the

generation of s1 mutant viruses, pT7-S1T3D [43] was altered

by QuikChange (Stratagene) site-directed mutagenesis. To con-

firm sequences of the mutant viruses, viral RNA was extracted

from purified virions and subjected to Onestep RT-PCR (Qiagen)

using L1- or S1-specific primers. (Primer sequences are available

from the corresponding authors upon request.) The purified PCR

products were subjected to sequence analysis for the presence of

the introduced mutation in the S1 gene segment and the

noncoding signature mutation in the L1 gene segment [43].

Purified reovirus virions were prepared using second-passage

L929-cell lysate stocks of twice plaque-purified reovirus as

described [20]. Viral particles were Freon-extracted from infected

cell lysates, layered onto CsCl gradients, and centrifuged at

62,000 6 g for 18 h. Bands corresponding to virions (1.36 g/cm3)

[62] were collected and dialyzed in virion-storage buffer (150 mM

NaCl, 15 mM MgCl2, 10 mM Tris-HCl pH 7.4). The concen-

tration of reovirus virions in purified preparations was determined

from an equivalence of one OD unit at 260 nm equals 2.161012

virions [62]. Viral titers were determined by plaque assay using

L929 cells [61].

HA Assay
Purified reovirus virions (1011 particles) were distributed into 96-

well U-bottom microtiter plates (Costar) and serially diluted

twofold in 0.05 ml of PBS. Calf erythrocytes (Colorado Serum

Co.) were washed twice with PBS and resuspended at a

concentration of 1% (vol/vol). Erythrocytes (0.05 ml) were added

to wells containing virus particles and incubated at 4uC for at least

2 h. A partial or complete shield of erythrocytes on the well

bottom was interpreted as a positive HA result; a smooth, round

button of erythrocytes was interpreted as a negative result. HA

titer is expressed as 1011 particles divided by the number of

particles/HA unit. One HA unit equals the number of particles

sufficient to produce HA. HA titers from three independent

experiments were compared using an unpaired Student’s t test as

applied in Microsoft Excel. P values of less than 0.05 were

considered statistically significant.

Reovirus Infection of L929 and MEL Cells
L929 cells or MEL cells (26105 cells/well) were plated in 24-

well plates (Costar) and incubated at 37uC for at least 2 h. Cells

were adsorbed with reovirus strains at an MOI of 1 PFU/cell.

Following incubation at room temperature for 1 h, cells were

washed three times with PBS and incubated at 37uC for 24 or

48 h. Samples were frozen and thawed twice, and viral titers were

determined by plaque assay [61]. For each experiment, samples

were infected in triplicate. Mean values from three independent

experiments were compared using an unpaired Student’s t test as

applied in Microsoft Excel. P values of less than 0.05 were

considered statistically significant.
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