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Abstract

Merkel cell polyomavirus (MCV or MCPyV) appears to be a causal factor in the development of Merkel cell carcinoma, a rare
but highly lethal form of skin cancer. Although recent reports indicate that MCV virions are commonly shed from apparently
healthy human skin, the precise cellular tropism of the virus in healthy subjects remains unclear. To begin to explore this
question, we set out to identify the cellular receptors or co-receptors required for the infectious entry of MCV. Although
several previously studied polyomavirus species have been shown to bind to cell surface sialic acid residues associated with
glycolipids or glycoproteins, we found that sialylated glycans are not required for initial attachment of MCV virions to
cultured human cell lines. Instead, glycosaminoglycans (GAGs), such as heparan sulfate (HS) and chondroitin sulfate (CS),
serve as initial attachment receptors during the MCV infectious entry process. Using cell lines deficient in GAG biosynthesis,
we found that N-sulfated and/or 6-O-sulfated forms of HS mediate infectious entry of MCV reporter vectors, while CS
appears to be dispensable. Intriguingly, although cell lines deficient in sialylated glycans readily bind MCV capsids, the cells
are highly resistant to MCV reporter vector-mediated gene transduction. This suggests that sialylated glycans play a post-
attachment role in the infectious entry process. Results observed using MCV reporter vectors were confirmed using a novel
system for infectious propagation of native MCV virions. Taken together, the findings suggest a model in which MCV
infectious entry occurs via initial cell binding mediated primarily by HS, followed by secondary interactions with a sialylated
entry co-factor. The study should facilitate the development of inhibitors of MCV infection and help shed light on the
infectious entry pathways and cellular tropism of the virus.
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Introduction

The viral family Polyomaviridae consists of a diverse group of non-

enveloped DNA viruses that infect humans as well as a range of

other vertebrates. The family name is derived from the observation

that murine polyomavirus causes tumors in various tissues in

experimentally infected animals. The apparently broad tissue

tropism of murine polyomavirus is consistent with the widespread

distribution of its primary infectious entry receptors, a group of sialic

acid-bearing glycolipids known as gangliosides [1]. Other well-

studied polyomaviruses, such as the human polyomavirus BKV and

its close relative, simian virus-40 (SV40), also employ gangliosides

for infectious entry into cells (reviewed in [2]). Another BKV

relative, JCV, has recently been shown to bind a specific sialylated

pentasaccharide, known as LSTc, that decorates either proteins or

gangliosides on a restricted range of cell types [3]. This is consistent

with the much narrower cellular tropism of JCV [4,5].

Although it has been suggested that initial attachment to sialic

acid residues may be a universal infectious entry step for all

polyomaviruses, the infectious entry pathways used by most

members of the family have not yet been extensively investigated.

Members of other non-enveloped virus families, such as the

Parvoviridae, have been found to use a wide range of cellular

receptors. For example, the primary cellular attachment receptors

for adeno-associated viruses (AAVs) of the parvovirus genus

Dependovirus range from gangliosides (bovine AAV; [6]), to protein-

linked sialic acids (AAV4 and 5; [7]) or a very different type of

carbohydrate side-chain, heparan sulfate (AAV2; [8]) (reviewed in

[9]). Heparan sulfate (HS) is a type of glycosaminoglycan (GAG)

that rarely contains sialic acid [10], but is instead characterized by

specific patterns of N- and O-linked sulfate modifications [11].

AAV6 can bind to both sialylated polysaccharides and to HS on

cells, and both interactions appear to modulate transduction into

various tissues [12,13]. In light of the Dependovirus precedent, the

hypothesis that all polyomaviruses use sialic acid residues for initial

attachment to cells should be viewed with caution.

Seven of the nine polyomavirus species known to infect humans

were discovered within the past four years [14,15,16,17,18,19].

Perhaps the most intriguing of these new discoveries is a human

polyomavirus species named Merkel cell polyomavirus (MCV or

MCPyV). MCV is believed to play a causal role in Merkel cell

carcinoma (MCC), a highly lethal form of skin cancer (reviewed in

[20]). An emerging view is that, unlike BKV and JCV, which

commonly infect the urinary epithelium, MCV establishes a chronic

productive infection in the skin of most adults [17,21,22]. It remains

unclear which of the dozen or so different cell types that can be

found in the skin are the primary source of shed MCV virions.

In an initial effort to better understand the cellular tropism of

MCV, we set out to determine which receptors mediate initial

attachment of the virion to the cell surface. A previous report by
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Erickson, Garcea and Tsai showed that recombinant MCV VP1

capsid protein subunits produced in bacteria can bind sialylated

components of cell extracts, including the ganglioside GT1b [23].

Erickson and colleagues’ data support speculation that MCV

might follow an entry pathway similar to that of BKV, which has

been shown to require GT1b or related complex gangliosides for

infectious entry [24]. To further investigate this hypothesis, we

employed MCV- and BKV-based reporter vectors (also known as

pseudoviruses) as models for infectious entry into cultured cell lines

[25]. To confirm the reporter vector-based results, we developed a

system for titering the infectivity of native MCV virions.

Our results support a model in which MCV uses GAGs, likely in

the form of HS, as initial attachment receptors. The initial GAG-

mediated binding appears to be followed by interactions between

the MCV virion and sialylated host cell factors. The use of GAGs,

such as HS, as attachment receptors for MCV infectious entry is

strikingly reminiscent of a different family of non-enveloped viruses,

the Papillomaviridae, which are exclusively tropic for keratinocytes, a

cell type that forms the epidermal layers of the skin and mucosa.

The results suggest a possible example of convergent adaptation to

exploitation of the epidermis as an infectious niche.

Results

Hemagglutination activities of MCV and BKV capsids
Hemagglutination assays (HA) are a classic method for

investigating the interaction of virions with the cell surface.

Hemagglutination is typically mediated by interactions between

virion surface proteins and sialylated glycans displayed on red

blood cells (RBCs). Erickson and colleagues have previously shown

that recombinant MCV VP1 capsid protein subunits produced in

bacteria can hemagglutinate sheep RBCs [23]. Using purified,

fully-assembled MCV capsids produced in human cells (see below)

[25,26] we confirmed Erickson and colleagues’ sheep RBC HA

results (Figure 1). In contrast to MCV, BKV capsids did not

display HA activity against sheep RBCs.

Many virus types show differential abilities to hemagglutinate

RBCs from different animal species. This is thought to reflect

differences in the display of different forms of sialylated glycans or

other binding targets on the surface of RBCs from different

animals [27]. BKV HA assays typically employ human RBCs [28].

Consistent with previous results, recombinant BKV capsids

induced robust HA of human RBCs. In contrast, MCV capsids

showed a surprising lack of HA activity against human RBCs

(Figure 1). The results show that MCV and BKV engage mutually

distinct attachment factors on RBCs.

Sialylated glycans are dispensable for MCV attachment to
cultured cells but required for a post-attachment entry
step

When the MCV major and minor capsid proteins (VP1 and

VP2, respectively) are co-expressed in human embryonic kidney-

derived 293TT cells, they can spontaneously co-assemble around

transfected reporter plasmids [26]. This results in the formation of

reporter vector particles (also known as pseudovirions) that

physically resemble native polyomavirus virions [26] and are

capable of delivering encapsidated reporter plasmids to fresh

target cells [25]. Similar systems have been developed for

production of reporter vectors based on other polyomaviruses

[5,29] and for papillomaviruses [30]. Using MCV, BKV and

human papillomavirus type 16 (HPV16) reporter vectors, we

sought to identify candidate receptor or co-receptor molecules that

are used by MCV for infectious entry into cultured cells.

In a comparative analysis of MCV and BKV reporter vector

transduction efficiency in over sixty different cell lines from various

human tumors, we determined that the human lung epithelial cell

line A549 was among the most MCV-transducible lines in the

panel (unpublished results). A549 cells were chosen for initial

experiments because they also have the convenient feature of

being readily transducible with BKV and HPV16 reporter vectors,

allowing comparisons to these better-studied virus types.

To examine the binding of MCV or BKV capsids to cultured

cells, we conjugated recombinant capsids to Alexa Fluor 488 to

allow monitoring of cell binding by flow cytometry. The

fluorochrome-conjugated capsids exhibited HA titers similar to

unconjugated capsids (Figure S1A), suggesting that the dye

conjugation process did not cause dramatic alterations in the cell

binding properties of the capsids. Similarly, the dye conjugation

procedure did not significantly affect the transducing potential of

MCV reporter vectors (Figure S1B). In an initial series of

experiments, we examined the binding of fluorochrome-conjugat-

ed MCV and BKV capsids to A549 cells. As shown in Figure 2

(and Figure S2), the binding of MCV to A549 cells was not

significantly affected by pre-treatment of the cells with a broad-

spectrum neuraminidase from Arthrobacter ureafaciens that is capable

of hydrolyzing most forms of sialic acid linkage [31]. BKV capsid

binding to A549 cells was, as expected, sensitive to neuraminidase.

The transduction of a GFP reporter plasmid into A549 cells via

MCV or BKV vectors in the presence or absence of neuramin-

idase mirrored the binding results (Figure 2 and Figure S2).

Keratinocytes and melanocytes are the two most abundant cell

types in the epidermal layer of the skin. Based on the speculative

assumption that MCV might productively infect one of these cell

types in vivo, we examined a variety of melanocyte and

keratinocyte-derived cell lines for transducibility with MCV,

BKV and HPV16 reporter vectors. The human melanoma-

derived line SK-MEL-2, as well as primary adult human

epidermal keratinocytes (HEKa cells) were found to be readily

transducible with both MCV and BKV reporter vectors.

Neuraminidase treatment of both SK-MEL-2 cells and HEKa

cells resulted in inhibition of BKV transduction, but had little

Author Summary

Strong evidence suggests that Merkel cell polyomavirus
(MCV or MCPyV) is a causative factor in the development
of a large proportion of cancers arising from epidermal
Merkel cells. While Merkel cell carcinoma is rare, it appears
that infection with MCV is common, and many healthy
people chronically shed MCV virions from the surface of
their skin. In an effort to better understand the factors
controlling MCV tissue tropism, we sought to characterize
the cellular receptors that mediate MCV attachment to
cultured cells. Several previously-examined polyoma-
viruses utilize sialic acid-containing glycolipids and glyco-
proteins to mediate cell binding and infectious entry. Our
results show that, in contrast to other polyomaviruses,
MCV does not require sialic acid-bearing glycans for
attachment to cells, but instead uses a different group of
carbohydrates called glycosaminoglycans for the initial
attachment step of the infectious entry process. Interest-
ingly, although sialic acid-bearing glycans are dispensable
for initial attachment to cells, data using cells deficient in
sialylated glycans suggest that sialic acids may form an
essential element of a possible co-receptor that is engaged
after the initial attachment of MCV to the cell via
glycosaminoglycans.

MCV Receptor
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effect on MCV transduction (Figure S3), consistent with results

observed using A549 cells.

It is known that some sialic acids, such as the single sialic acid

residue on the ganglioside GM1 (which serves as a receptor for

SV40), are resistant to digestion with neuraminidase [32]. To

address the possibility that MCV attachment to cells is mediated

by a sialylated glycan that is resistant to neuraminidase, we used a

cell line deficient in biosynthesis of sialylated glycans. The line,

known as Lec2, is a Chinese hamster ovary (CHO)-based mutant

that lacks a functional gene for SLC35A1, a CMP-sialic acid

transporter required for sialylation of glycoprotein and glycolipid

ectodomains in the lumen of the Golgi [33]. A control line, Lec2-

mslc, was engineered to stably express a wild-type SLC35A1 allele.

As seen in Figure 3, restoration of the SLC35A1 gene resulted in a

12-fold increase in BKV capsid binding, confirming that the

introduced gene restored the production of sialylated glycans. In

contrast to BKV, there was no effect on HPV16 and only a slight

improvement in MCV binding to the Lec2-mslc line. The results

indicate that MCV capsid attachment to this cell line is largely

independent of sialylated glycans.

All CHO-based cell lines are deficient in complex gangliosides,

such as GT1b [34,35]. Thus, restoration of the SLC35A1 sialic

acid carrier to Lec2 cells would only be expected to restore

sialylation of proteoglycans and simple gangliosides. Consistent

with their lack of complex gangliosides, parental CHO-K1 cells

(data not shown) and the CHO-based Lec2 cells with or without

the restored SLC35A1 gene are highly resistant to BKV

transduction (Figure 3). Despite the fact that MCV capsids readily

bind to Lec2 cells, the line was surprisingly resistant to

transduction by MCV reporter vectors (Figure 3). Reintroduction

of the functional SLC35A1 allele rendered the line permissive for

MCV transduction. A simple model that could explain the results

would be that, while sialylated factors are not required for the

initial attachment of MCV to the cell surface, the virus appears to

require sialylation of a cellular factor for an entry step that occurs

after stable attachment to the cell. The ability of MCV to

transduce CHO-K1 and Lec2-mslc cells suggests that complex

gangliosides are not necessary for MCV transduction. Indeed,

while pre-treatment of cells with exogenous GT1b rescued BKV

transduction of Lec2 cells, exogenous GT1b had little or no effect

on MCV transduction (Figure S4). One way to reconcile the Lec2

line transduction results with the results observed for neuramin-

idase-treated A549 (Figure 2) would be to imagine that MCV

attachment to a non-sialylated cellular factor allows the capsid to

loiter on the cell surface until a hypothetical sialylated entry co-

factor is regenerated after removal of the neuraminidase.

MCV attachment to cultured cells depends on GAGs
Our past experience studying HPV binding and entry through

interactions with HS led us to test the ability of purified protein-

free GAGs, including heparin and chondroitin, to inhibit MCV

infection. We found that, heparin can indeed block MCV

transduction of A549 cells in a dose-dependent manner, with a

50% effective dose (EC50) of 4.2 mg/ml (Figure 4). Interestingly,

moderate doses of heparin (,1 mg/ml) appeared to increase the

infectivity of MCV by up to two-fold in some experimental

replicates. In contrast to heparin, chondroitin-A/C preparation

was a much more effective inhibitor of MCV transduction

(EC50 = 135 ng/ml) and did not appear to enhance MCV

infectivity. Consistent with previous reports [36,37], the transdu-

civity of an HPV16 reporter vector was blocked more effectively

by soluble heparin (EC50 = 1.2 mg/ml), while chondroitin-A/C

only weakly inhibited HPV transduction. Comparable results were

observed for MCV using the kidney-derived neuroblastoid line

293TT [30,38] (heparin EC50<12 mg/ml, chondroitin-A/C

EC50<0.3 mg/ml). The melanoma-derived line SK-MEL-2 and

HEKa also showed similar GAG inhibition profiles for MCV

reporter vectors (SK-MEL-2 heparin EC50<3 mg/ml, chondroi-

tin-A/C EC50<0.1 mg/ml; HEKa heparin EC50<2 mg/ml, chon-

droitin-A/C EC50<0.05 mg/ml). As expected, BKV transduction

of A549 cells was unaffected by either of the GAG compounds

(Figure 4). Other soluble GAGs, such as dermatan sulfate and

chondroitin-A, were found to be poor inhibitors of the

transduction of all three reporter vectors on A549 cells (data not

shown). Since chondroitin-A alone lacked inhibitory efficacy, it is

likely that the chondroitin-C (chondroitin-6-sulfate) in the

chondroitin-A/C preparation used here was primarily responsible

for mediating inhibition of MCV transduction.

Heparin has been shown to inhibit HPV entry by preventing

binding of the virus to HS on the cell surface or extracellular

matrix [37,39]. To examine the mechanism through which

heparin and chondroitin-C inhibit MCV entry into A549 cells,

we measured the binding of Alexa Fluor-labeled MCV, HPV16 or

BKV capsids to A549 cells in the presence of increasing

concentrations of these GAGs. HPV and MCV binding to A549

cells was inhibited in a dose-dependent manner by both heparin

Figure 1. Hemagglutination assays. Serial dilutions of BKV or MCV capsids were mixed with sheep or human red blood cells (RBCs) in PBS and
allowed to settle in round-bottom wells at 4uC overnight.
doi:10.1371/journal.ppat.1002161.g001
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and chondroitin (Figure S5), suggesting that these GAGs inhibit

transduction, at least in part, by preventing cell attachment. As

expected, heparin and chondroitin had little effect on BKV

binding.

Treatment of cell cultures with sodium chlorate inhibits the

addition of sulfate groups to GAGs [40], reviewed in [41].

Although chlorate treatment can be toxic to some cell lines (for

example, 293TT and HEKa cells do not appear to tolerate

50 mM chlorate), culture of A549 cells in 50 mM chlorate for

several weeks did not appear to have noticeable effects on cell

morphology or growth rate (data not shown). A549 cells

maintained in 50 mM chlorate were extremely resistant to MCV

transduction as well as binding (Figure 5). Chlorate-treated A549

cells were likewise resistant to HPV transduction. In contrast,

BKV transduction of A549 cells was enhanced by chlorate

treatment, confirming that the chlorate-treated cultures were

healthy enough to support expression of reporter plasmids

delivered via polyomavirus-based vectors. Similar chlorate treat-

ment results were obtained with the melanoma cell line SK-MEL-

2 (Figure S6). The data show that sulfate modifications, likely in

the form of GAGs, are essential targets of MCV attachment and

infectious entry.

To examine the specificity of MCV interaction with different

GAG types and to clarify the role of various GAG forms in

infectious entry, cell surface HS and/or chondroitin sulfate (CS)

were enzymatically removed using heparinase (HSase) and

chondroitinase (CSase) enzymes. Enzyme activity and specificity

was verified by immunofluorescent staining and flow cytometric

analysis of cell surface HS and CS following treatment of A549

cells (Figure S7). Given the superior inhibitory effects of

chondroitin-A/C relative to heparin, we expected that CSase

treatment would have a greater impact on MCV binding and

transduction than HSase treatment. Surprisingly, CSase treatment

alone had little effect on MCV binding or transduction, while

Figure 2. Neuraminidase treatment of A549 cells. The binding of Alexa Fluor 488-conjugated capsids (top panel) or reporter vector-mediated
delivery of a GFP reporter gene (bottom panel) to A549 cells treated with neuraminidase was measured by flow cytometry. Results were standardized
to mock-treated A549 cells. The average of three separate experiments is shown and error bars represent the standard deviation. See also Figure S2,
which shows unstandaradized raw data for an individual experimental replicate.
doi:10.1371/journal.ppat.1002161.g002
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HSase caused a modest decrease in MCV binding and

transduction (Figure 6). Combination HSase/CSase treatments

synergistically inhibited MCV binding and transduction. The

response of HPV to these treatments was very similar to MCV,

while BKV was unaffected.

Combination HSase/CSase treatments were also necessary to

effectively inhibit MCV transduction of SK-MEL-2 cells and

HEKa cells, confirming the importance of cell surface GAGs for

MCV entry into skin-derived cell types (Figure S8). Neither CSase

nor HSase alone significantly inhibited or enhanced MCV

transduction of SK-MEL-2 or HEKa cells.

MCV transduction of CHO lines depends on HS but not
CS

A traditional approach to investigation of the role of particular

GAG modifications in viral entry has been to compare the

infectability of cell lines carrying mutations in the genes responsible

for various steps in GAG biosynthesis [11,42,43,44,45]. These cell

lines range from having no GAGs to simply lacking sulfate or other

modifications at specific positions. We found that pgsA-745 cells,

which are deficient in both HS and CS, did not bind MCV capsids

efficiently and were transduced very poorly in comparison to the

parental CHO-K1 line (Figure 7). Similarly, pgsD-677 cells, which

lack HS but produce more CS than the parental cells, were highly

resistant to MCV transduction. This suggests that HS, and not CS,

is of primary functional relevance for MCV-mediated transduction

of this cell type.

Two other CHO mutant cell lines are deficient in the biosynthesis

of specifically sulfated types of HS. Heparan sulfate modifications

occur sequentially and, as a result, disruption of early modification

events inhibits downstream modifications as well [11,46]. Normally,

the first step in HS modification involves N-deacetylation and N-

sulfation of N-acetylglucosamine (GlcNAc) residues in the HS core

chain. A subsequent modification step involves epimerization of

glucuronic acid residues to iduronic acid. After these modifications,

the HS sequentially becomes an appropriate substrate for 2-O-, 6-

O- and 3-O-sulfotransferases. Thus, pgsE-606 cells, which lack

GlcNAc N-deacetylase/N-sulfotransferase activity [42], produce

HS that is deficient in all forms of modification. Another mutant cell

line, pgsF-17, is deficient in 2-O-sulfotransferase function and thus

expresses HS that carries N-sulfate and iduronic acid modifications,

but lacks 2-O- and 3-O-sulfate modifications [45]. In addition to N-

sulfated HS, pgsF-17 cells also produce HS carrying 6-O-sulfate

modifications. MCV reporter vectors readily bound and transduced

Figure 3. Binding and transduction of sialic acid-deficient cells. Binding of Alexa Fluor 488-labeled capsids (top panel) or transducing activity
of reporter vectors (bottom panel) on sialic acid-deficient Lec2 cells or Lec2 cells stably expressing the sialic acid transporter SLC35A1 (Lec2-mslc). The
average values and standard error of the mean from three separate experiments are shown.
doi:10.1371/journal.ppat.1002161.g003
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pgsF-17 cells but not pgsE-606 cells, (Figure 7) indicating that HS

epimerization, N-sulfation and/or 6-O-sulfation are required to

support MCV-mediated transduction, while HS 2-O- and 3-O-

sulfation are dispensable. In comparison to HPV16, we found that

the GAG type preferences of the two reporter vectors differ

somewhat, as pgsF-17 cells show reduced HPV transduction, while

the MCV reporter vector readily transduced this line. This result is

consistent with previous reports indicating that 2-O-sulfate groups

Figure 4. Inhibition of transduction by soluble GAGs. Reporter vector-mediated transduction of A549 cells was measured in the presence of a
four fold dilution series of heparin or chondroitin-A/C. The average relative percent inhibition of GFP expression is shown. The curves were fitted
using Prism software and error bars represent the standard deviation for three separate experiments.
doi:10.1371/journal.ppat.1002161.g004
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on HS are required for efficient transduction of cultured cells with

HPV16 vectors [47].

Because many cell surface proteins display GAG-binding motifs,

most cell types have substantial capacity to bind free GAGs non-

covalently [48]. Non-covalently associated GAG chains, including

exogenously-provided heparin, can participate in a wide variety of

biological functions. For example, free heparin can serve as a

functional ‘‘bridge’’ between vascular endothelial growth factor

164 and its co-receptor neuropilin 1 [49,50]. Consistent with this

type of bridging effect, we found that provision of exogenous

heparin increased the transducibility of GAG-deficient pgsA-745

cells in a dose-dependent manner. At an apparent optimal

concentration of heparin in the media of around 20 mg/ml,

pgsA-745 cells became 10-fold more transducible than untreated

parental CHO-K1 cells (Figure 8). MCV-mediated transduction of

CHO-K1 cells was also enhanced by exogenous heparin, but the

most effective dose was lower, presumably reflecting a reduced

need for exogenous heparin due to the presence of native GAGs.

Transduction of pgsD-677 and pgsE-606 cells was similarly

enhanced by exogenously-supplied heparin, confirming that a

heparin-like GAG is the primary missing factor required for

MCV-mediated transduction of these HS modification mutant

CHO lines (data not shown). Moderate doses of chondroitin-A/C

also increased MCV transduction of GAG-deficient cells slightly,

but the effect was very small in comparison to the effect of heparin

(data not shown). In contrast to the GAG mutant CHO cell lines,

MCV transduction of Lec2 cells was not rescued by exogenously-

supplied heparin, suggesting that the block to MCV transduction

in Lec2 cells occurs downstream of HS binding (data not shown).

The rescue of MCV transduction of pgsA-745 cells by exogenous

heparin correlated with an improvement in capsid binding to the cell

(Figure 8). Surprisingly, neither pre-incubation of pgsA-745 cells with

Figure 5. Sulfation is required for MCV binding and entry. A549 cells were propagated for several days in 50 mM sodium chlorate. Binding
(top panel) to these cells by Alexa Fluor 488-conjugated capsids was compared to A549 cells cultured without chlorate (mock). Standardized reporter
vector-mediated GFP transduction (bottom panel) of A549 cells cultured with or without chlorate. The average of four separate experiments is shown
and error bars represent the standard deviation.
doi:10.1371/journal.ppat.1002161.g005
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heparin nor pre-incubation of reporter vector stocks with heparin

showed dramatic effects on MCV binding or transduction (data not

shown). A possible explanation for this finding might be that one or

more interactions in a hypothetical termolecular complex between

heparin, MCV and cell surface binding targets may be of low overall

affinity and relatively transitory. To test the idea that limitation of the

ability of MCV to loiter on the cell surface might curtail access to a

hypothetical sialylated co-receptor, we performed MCV binding and

transduction assays on pgsA-745 cells supplied with exogenous

heparin and treated with or without neuraminidase. Although

neuraminidase treatment again had no effect on MCV binding in

these experiments, the treatment modestly suppressed MCV

transduction (Figure S9). The results are consistent with the idea

that limitation of the ability of MCV to loiter on the cell surface

reduces the engagement of a sialylated entry co-factor that

regenerates after neuraminidase treatment.

Analysis of MCV interaction with immobilized HS
The results shown above suggest that attachment to cell surface

HS is a critical step in MCV vector-mediated reporter gene

transduction. However, the strong inhibition of MCV entry by

soluble chondroitin-A/C raises questions surrounding the precise

interaction of MCV with different GAG types. In an effort to

better understand the physical interaction between MCV and

GAGs, an ELISA-style binding assay was developed using a

commercially available GAG-rich basement membrane extract

(BME) derived from murine Engelbreth-Holm-Swarm tumor to

coat the surface of 96-well protein-binding plates. Since the

binding of VP1-specific antibodies might be affected by GAG-

capsid interactions, we elected to detect bound reporter vector

particles using Quant-iT PicoGreen stain [51] to render

encapsidated DNA carried within the particles fluorescent.

Increasing concentrations of HPV16 or MCV capsids in the

BME-coated wells correlated with an increase in fluorescence

(Figure 9A). BKV capsids bound the BME-coated wells very

poorly (data not shown), suggesting the BME displays few binding

sites for BKV.

To determine whether capsid binding to the BME was the result

of interactions with GAGs, BME-coated wells were pre-treated

with increasing doses of HSase or CSase. Only HSase treatment of

Figure 6. Enzymatic removal of cell surface glycosaminoglycans. A549 cells were treated with chondroitinase ABC (CSase) or with heparinase
I/III (HSase), or with both HSase and CSase prior to inoculation with Alexa Fluor 488-conjugated capsids (top panel) or reporter vector (bottom panel).
The average of three separate experiments is shown and error bars represent the standard deviation.
doi:10.1371/journal.ppat.1002161.g006
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the BME resulted in major dose-dependent decreases in binding

by MCV and HPV, and the highest concentration of HSase

resulted in nearly complete abrogation of binding (Figure 9B),

indicating that both viruses predominantly bind HS displayed on

BME.

The slope of the MCV capsid dose-response curve for binding

to BME (Figure 9A) is relatively shallow, with a Hill coefficient of

0.6460.14. A simple explanation for the occurrence of Hill slopes

of less than one is that the assay is simultaneously measuring

multiple binding interactions with differing affinities. This

explanation is consistent with the fact that native GAGs are

heterogenous and carry complex modifications that can dramat-

ically alter their affinity for GAG-binding proteins. To circumvent

this problem, we measured the ability of the more homogenous

preparations of heparin and chrondroitin-A/C to interfere with

the binding of MCV to BME. Interestingly, although high doses of

chondroitin-A/C were able to entirely block the binding of MCV

capsids to the BME, apparently saturating doses of heparin

reduced MCV binding by only about 75% (Figure 9C). A model

for these observations would be that the BME displays two distinct

targets for MCV binding and the capsid carries two distinct

glycan-binding motifs. Under this model, chondroitin-A/C is

capable of blocking both of the glycan-binding motifs on the

capsid surface, while heparin is capable of blocking only one

binding motif.

Confirmation using a native MCV infection assay
Systems for culturing MCV have not yet been developed. We

have previously speculated that the relative inactivity of recom-

binant MCV genomes transfected into cultured cells may reflect

Figure 7. Infection of and binding to GAG-deficient cells. CHO-K1 cells (parental line), pgsA-745 (heparan sulfate (HS) and chondroitin sulfate
(CS) deficient), pgsD-677 (HS deficient), pgsE-606 (HS N-sulfate deficient), and pgsF-17 (HS 2-O-sulfate deficient) cells were subjected to a binding
assay using Alexa Fluor 488-conjugated capsids (top panel) or transduced with reporter vector (bottom panel). The average of five separate
experiments (top panel) or three separate experiments (bottom panel) is shown and error bars represent the standard deviation.
doi:10.1371/journal.ppat.1002161.g007
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regulation of the viral life cycle in a manner reminiscent of the

extensive regulatory controls on the papillomavirus life cycle

[17,52]. Although we have previously shown that the genomic

DNA of MCV primary isolates can drive the production of low

levels of native virions after transfection into 293TT cells, the yield

of native virions was relatively poor [17]. We found that virion

yield can be improved substantially if the cloned genome is co-

transfected together with expression plasmids encoding MCV

small and large T antigen cDNAs (data not shown). To monitor

the infectivity of native MCV virions, we generated a 293TT-

based line, named 293-4T, which stably expresses the MCV small

and large T antigen proteins. The stable line supports the

replication of MCV genomes delivered by infection with native

MCV virions, allowing monitoring of the infection using

quantitative PCR (qPCR). The extent of MCV replication

observed over several days varied between experiments, ranging

from 7.5 fold to 70 fold. In separate experiments, we found that

purified native MCV virions can be propagated in 293-4T cells

(Figure S10).

Using the native virion/293-4T infection system and enzymatic

removal of cell surface GAGs, we confirmed that GAGs are

required for MCV infection. qPCR analysis of 293-4T cells

harvested immediately after viral inoculation and washing of cells

treated with or without HSase/CSase revealed a 90–93%

reduction in the number of cell-bound virions in the HSase/

CSase treatment condition (Figure 10). The failure of the virus to

Figure 8. Enhancement of MCV binding and infection by exogenous heparin. CHO-K1 cells (parental line) or pgsA-745 cells (HS and CS
deficient) were used to examine binding of Alexa Fluor 488-conjugated MCV capsids in the presence of the indicated concentration of heparin (top
panel). Fluorescent intensity of the cells was standardized to CHO-K1 cells incubated with conjugated capsids in the absence of heparin. The average
of three separate experiments is shown and error bars represent the standard deviation. CHO-K1 and pgsA-745 cells were plated, and six hours later
treated with the indicated dose of heparin and MCV reporter vector (bottom panel). The percent of cells GFP+ 72 hours after inoculation was
standardized to CHO-K1 cells incubated with reporter vector in the absence of heparin. The extent of the observed enhancement mediated by
heparin varied from one experiment to the next and depended on the level of infection achieved in the heparin-untreated culture. However, the
trend was always the same in five independent experimental repeats. A representative experiment performed in triplicate is shown with error bars
representing the standard deviation.
doi:10.1371/journal.ppat.1002161.g008
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bind efficiently to the HSase/CSase treated cells was reflected by a

comparable decrease (76–83%) in the number of replicated viral

genomes observed after 5–6 days of cell growth. To control for cell

health after enzyme treatment, parallel experiments were

performed to measure the number of genome copies for native

BKV virions. As expected, native BKV infection was either

unaffected by HSase/CSase treatment or, in one of the three

replicates, modestly enhanced by the enzyme treatment.

Native MCV virions were also used for a panel of additional

confirmatory experiments (data not shown) on cell types that do

not appear to support the replication of MCV genomes delivered

by native virions. For these experiments we made the simplifying

assumption that failure to bind the cell would result in failure to

infect the cell. Native virion binding was measured using qPCR of

viral genomes stably associated with cells. In an initial control

experiment, we found that monoclonal antibodies specific for

assembled MCV capsids [53] blocked the binding of MCV virions

to A549 cells. Native MCV virions also failed to bind A549 cells in

the presence of chondroitin-A/C. Treatment of A549 cells with

sodium chlorate likewise prevented the binding of native MCV

virions. We also found that native MCV virions readily bind both

Lec2 and Lec2-mslc, confirming that native MCV does not

Figure 9. Kinetics of glycosaminoglycan binding. Microtiter plates were coated with GAG-rich basement membrane extract (BME) and (A) used
to examine MCV and HPV capsid affinity by varying the dose (two fold) of VP1 added to wells. (B) BME coated plates were incubated with increasing
concentrations (three fold) of heparinase I/III (‘‘HSase’’) or chondroitinase ABC (‘‘CSase’’) prior to adding a single dose of capsids to each well. (C)
Heparin or chondroitin-A/C were serially diluted (five fold) in buffer containing capsids prior to analysis of BME binding. The amount of capsid bound
to BME was determined by PicoGreen fluorescence detection of encapsidated DNA. The average of two (A), three (B) or four (C) replicates is shown.
The curves were fitted using Prism software and error bars represent the standard deviation.
doi:10.1371/journal.ppat.1002161.g009
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require sialylated carbohydrates for attachment to cells. Taken

together, the data show that native MCV virions exhibit binding

and infectivity characteristics similar to MCV reporter vectors.

Discussion

Interaction with cell surface receptors is an essential first step in

the process of viral infectious entry. Here we present multiple lines

of evidence demonstrating that the initial attachment of MCV to

cultured cells is mediated primarily by GAGs. Like HPV16, MCV

binding and infectious entry can be antagonized by soluble GAGs

and the attachment and infectivity of both viruses depends on the

presence of cell surface GAGs. Although MCV capsids can bind to

both CS and HS, experiments using CHO-based mutant cell lines

indicate that N-sulfated and/or 6-O-sulfated forms of HS are

specifically required for infectious entry. The handful of other

polyomaviruses whose infectious entry pathways have been

carefully studied all appear to utilize sialic acid-containing

receptors for the initial cell attachment step of the infectious entry

process [24,54,55,56,57]. Our studies show that sialylated glycans

are not required for initial attachment of MCV to cultured cell

lines. Further work is needed to determine whether MCV is

unusual in this regard or rather provides an example of a common

trait among the two dozen or so polyomavirus species that have

not yet been subjected to extensive scrutiny.

MCV appears to require a sialylated glycan for a post-

attachment step in the infectious entry process. It remains

uncertain whether this apparent requirement for sialylated glycans

is due to indirect or direct effects. For example, failure to sialylate a

cellular factor might impair a biological function or subcellular

localization required to support MCV entry. In this scenario,

MCV might not directly bind the sialylated glycan. A more

intriguing possibility is that MCV directly interacts with a

sialylated glycan during the infectious entry process. Although

we found no clear evidence for direct interactions between MCV

capsids and sialic acid residues on cultured human cell lines,

Erickson and colleagues have previously shown that MCV VP1

capsomers can bind neuraminidase-sensitive factors in concen-

trated extracts of sheep RBCs [23]. Erickson and colleagues also

demonstrated that MCV VP1 can bind GT1b when the

ganglioside is presented at high concentrations in a cell-free

flotation system. This suggests a possible scenario in which an

unknown sialylated factor that resembles the glycan headgroup of

GT1b serves as a co-receptor that the virion directly engages after

initial attachment to the cell via HS. This would be analogous to

the infectious entry of HIV, which generally requires the direct

Figure 10. Native MCV binding and infection of cells treated with heparinase and chondroitinase. 293-4T cells were treated with
chondroitinase ABC and heparinase I/III (HS/CSase) or mock treated prior to the addition of native MCV or BKV virions. The number of copies of cell-
associated MCV or BKV DNA was measured by qPCR 45 minutes after inoculation or 5–6 days later. The percent of bound or replicated genome
copies relative to mock treatment in three separate experiments is shown. Error bars represent the range of observed values.
doi:10.1371/journal.ppat.1002161.g010
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engagement of a chemokine co-receptor after initial attachment to

a primary attachment receptor, CD4. It is tempting to speculate

that the hypothetical sialylated co-receptor required for MCV

entry might be a ganglioside. However, the fact that CHO-based

lines, which are deficient in complex gangliosides [34,35], are

readily transducible by MCV reporter vectors would argue against

this hypothesis. Further work is needed to determine which

sialylated glycans, if any, MCV binds during infectious entry into

human cells.

Although our results using CHO cell lines indicate that HS is a

more important factor than CS for MCV infectious entry, soluble

heparin proved to be a less effective inhibitor of entry than

chondroitin-C on all tested cell lines, including CHO (Figure 4).

The results of the competitive inhibition experiments on basement

membrane extracts (Figure 9) suggest a possible explanation for

the apparently greater efficacy of chondroitin-C for inhibiting

MCV infection. These analyses indicate that although MCV has

higher affinity for heparin, chondroitin-C may be a better

infection inhibitor because it blocks a secondary glycan binding

site on the MCV virion surface that the highly homogenous

heparin preparation cannot saturate. This model could explain the

observation that chondroitin-A/C is a more effective inhibitor of

MCV transduction.

Although heparin doses .10 mg/ml effectively inhibited MCV

transduction of several human cell lines, lower doses of heparin

showed variable enhancement of MCV transduction of these lines

(Figure 4 and data not shown). For CHO-based lines, heparin only

enhanced infectivity, even at 20 mg/ml doses (Figure 8). The

variable ability of heparin to either inhibit or enhance infectivity

on various cell types is reminiscent of models for antibody-

dependent neutralization or enhancement of the infectivity of

flaviviruses (reviewed in [58]). In this model, antibodies that can

neutralize flaviviruses when bound at high occupancy can also

enhance infection when bound at low occupancy. It is thought that

this effect reflects the ability of some antibodies to serve as a bridge

between the partially occluded virion and antibody-Fc receptors

expressed on the surface of some cell types. Analogously, heparin

might serve as a bridge in a termolecular complex between

heparin-binding proteins on the cell surface and heparin binding

motifs on the surface of the MCV capsid. A similar model has

recently been proposed for the infectious entry of human T-cell

leukemia virus-1 (HTLV-1) [59]. It is also conceivable that, rather

than forming a physical bridge between the MCV capsid and cell

surface GAG-binding factors, heparin might induce a reversible

change in the capsid structure that, in turn, permits direct binding

of the capsid to a cellular co-receptor moiety. This would be

reminiscent of conformational changes that are thought to occur

in HPV capsids during infectious entry (reviewed in [60]). In either

event, it is clear that the effectiveness of GAG inhibition of MCV

reporter vectors can vary dramatically between cell lines.

Resolution of this issue will require more detailed knowledge of

the cellular factors that support the post-attachment steps of MCV

infectious entry.

Polyomaviruses have a long and complex history as suspected

agents of human cancer [61]. The data implicating MCV as a

cause of cancer in epidermal Merkel cells appears to be the

strongest case yet described for a polyomavirus. That MCV

particles can be isolated from human skin surfaces and cause

tumors is reminiscent of certain aspects of HPV biology. Our data

clearly show that both of these viruses require initial attachment to

specific forms of HS, followed by transfer to poorly understood co-

receptors for infectious entry to occur. Whether this is coincidence

is difficult to determine, but it will be interesting to learn if these

unrelated viruses share other aspects of their biology.

Methods

Cells and plasmids
A549 cells and SK-MEL-2 cells were obtained from the

Developmental Therapeutics Program (NCI/NIH) and maintained

in RPMI medium (Invitrogen) supplemented with 5% FBS (Sigma)

and Glutamax-I (Invitrogen). HEKa (human epidermal keratino-

cytes, adult) were purchased from Invitrogen and maintained in

Medium 254 supplemented with HKGS. CHO-K1 cells, pgsA-745,

pgsD-677, pgsE-606, Pro5, and Lec2 cells were obtained from

ATCC and maintained in DMEM (Invitrogen) with 10% FBS,

Glutamax-I and MEM non-essential amino acids (D10 medium).

pgsF-17 cells (a kind gift from Jeff Esko [45]) were maintained in D10

medium. Medium for the Lec2-mslc cells was supplemented with

blasticidin S (5 mg/ml; Invitrogen). 293TT cells were maintained in

D10 supplemented with hygromycin (250 mg/ml; Roche) and 293-

4T were maintained in D10 supplemented with zeocin (100 mg/ml;

Invitrogen) and blasticidin S (5 mg/ml; Invitrogen).

Plasmids reported in this study will be made available through

Addgene.org. The pMslc plasmid used to restore expression of

SLC35A1 (accession number NM_006416) in Lec2 cells was

created by transferring the human cDNA clone of SLC35A1

(OriGene, restriction enzymes XbaI and NcoI) into the expression

cassette of pMONO-blasti-msc (InvivoGen, restriction enzymes

AvrII and NcoI). 293-4T cells were created through two stable

transfection steps. In the first step, 293TT cells were transfected with

pMtB, an expression plasmid carrying the small T antigen ORF of

MCV isolate R17a (GenBank accession number HM011555, [17])

in the expression cassette of pMONO-blasti-msc. Stable blasticidin-

resistant clones were isolated by limiting dilution and analyzed for

small T antigen expression by immunofluorescence microscopy and

western blot using polyclonal serum raised against bacterially-

produced MCV small t antigen fused to a maltose binding protein

affinity tag (unpublished data). Stable expression of MCV small t

antigen appears to be relatively toxic to 293TT cells and few clones

maintained expression of the protein. One clone that stably

expressed MCV small t antigen was super-transfected with a

construct named pADL*, encoding MCV Large T antigen. The

construct was generated by first silently mutating the splice donor

and acceptor sites for the 57 kT isoform of MCV Large T antigen in

the context of expression plasmid pCDNAclt206antigen1 (p2582),

which was a generous gift from the Chang/Moore lab [62]. The

Large T antigen ORF was also modified to remove the V5 epitope

tag and proline residue 156 was mutated to serine to match the wild-

type MCV consensus at that site. The modified T antigen gene was

transferred into pMONO-zeo-mcs (InvivoGen) by restriction

enzyme-based cloning. The polyclonal pADL* population was

selected with both zeocin and blasticidin and the resulting stable line

was named 293-4T. Nucleotide maps of plasmids used in this work

and detailed protocols are available on our laboratory website

,http://home.ccr.cancer.gov/Lco/..

Reporter vector production and purification
MCV reporter vector stocks were produced using previously

reported methods [25,63]. Briefly, 293TT cells [30] were

transfected with plasmids pwM2m [53] and ph2m [25] expressing

codon-modified versions of the VP1 and VP2 genes of MCV strain

339. HPV16 reporter vectors were produced using the L1/L2

expression plasmid p16sheLL [36]. Production of BKV reporter

vectors used a mixture of four novel plasmids, pwB2b pwB3b,

ph2b and ph3b, which carry codon-modified versions of the capsid

proteins of BKV genotype IV isolate A-66H (accession number

AB369093, [64]). The capsid protein expression plasmids were co-

transfected with a mixture of two reporter plasmids, pYafw [30]
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and pEGFP-N1 (Clontech) which express GFP from recombinant

EF1a or CMV immediate early promoters, respectively. Forty-

eight hours after transfection, the cells were harvested and lysed in

Dulbecco’s phosphate buffered saline (DPBS, Invitrogen) supple-

mented with 9.5 mM MgCl2, 25 mM ammonium sulfate (starting

from a 1 M stock solution adjusted to pH 9), antibiotic-

antimycotic (Invitrogen), 0.5% Triton X-100 (Pierce) and 0.1%

RNase A/T1 cocktail (Ambion). The cell lysate was incubated at

37uC overnight with the goal of promoting capsid maturation

[65]. Lysates containing mature capsids were clarified by

centrifugation for 10 min at 50006g twice. The clarified

supernatant was loaded onto a 27–33–39% iodixanol (Optiprep,

Sigma) step gradient prepared in DPBS with a total of 0.8 M

NaCl. The gradients were ultracentrifuged 3.5 hours in an SW55

rotor at 50,000 rpm (234,0006g). Gradient fractions were

screened for the presence of encapsidated DNA using Quant-iT

Picogreen dsDNA Reagent (Invitrogen). The VP1 concentration

of Optiprep-purified reporter vectors was determined by compar-

ison to bovine serum albumin standards in SYPRO Ruby

(Invitrogen)-stained SDS-PAGE gels. The MCV reporter vector

stock contained 8.6 ng of VP1/ml, the BKV vector stock contained

4.3 ng of VP1/ml, and the HPV vector stock contained 2.9 ng of

L1/ml. In various experiments examining reporter vector-mediat-

ed transduction, 0.2–0.4 ml of MCV stock, 0.3–0.6 ml of BKV

stock, and 0.03–0.15 ml HPV stock was used per 96 well plate well.

These concentrations generally produced between 5 and 25%

GFP positivity in cell populations at the time of flow cytometric

analysis.

Recombinant capsids were produced as above, except that

Benzonase (Sigma) and Plasmid Safe (Epicentre) nucleases were

added to the lysis buffer at 0.1% each, with the goal of liberating

capsids carrying fragments of cellular DNA [63]. Hemagglutina-

tion and basement membrane extract experiments used unlabeled

capsids, while cell-binding studies used capsids covalently

conjugated to Alexa Fluor 488 using previously-reported methods

[53]. For production of Alexa Fluor 488 labeled capsids, a reporter

plasmid encoding Gaussia luciferase (phGluc; [25]) was included

in the initial transfection mixture. All conjugated capsid stocks

were between 150 and 275 ng/ml and binding experiments used

0.2–0.4 ml of stock per 56104 cells suspended in a volume of

100 ml. This generally achieved 10–30 fold fluorescence over

background in flow cytometric analyses.

Hemagglutination assays
Sheep blood in sodium citrate was purchased from Lampire

Biological Products. Human type O+ blood was collected by finger

prick immediately prior to use. Red blood cells (RBCs) were

washed and suspended in PBS without calcium or magnesium

(Invitrogen) at a final concentration of 0.5% (v/v). The suspension

was chilled on ice in round-bottom 96-well plates then mixed with

various doses of purified capsids and allowed to settle overnight at

4uC.

Reporter vector (pseudovirus) based infectivity studies
A549 cells were plated at 7,500 cells/well in 50 ml of culture

medium in a 96 well plate the day prior to infection. Stock

solutions of porcine heparin (Sigma H4784), porcine dermatan

sulfate (chondroitin sulfate B, Sigma C3788), bovine chondroitin

sulfate-A (Sigma C9819), or shark chondroitin sulfate-A/C (Sigma

C4384) were dissolved at 10 mg/ml in PBS (Invitrogen). The

GAGs were serially diluted in media to 36 the indicated

concentration and 50 ml was added to cells. Reporter vector stock

was then added to the cells+GAG mixture in a volume of 50 ml.

To minimize plate edge effects, the outer wells of the plate were

not used for the assay and were instead filled with culture medium.

Approximately 72 hrs post-infection, cells were incubated with

trypsin to detach them from the plate and transferred to an

untreated 96 well plate and suspended in wash medium (WM;

DPBS with 1% FBS, antibiotic-antimycotic, and 10 mM HEPES,

pH 8) and analyzed by flow cytometery for GFP reporter gene

expression in a FACS Canto II with HTS (BD Biosciences).

To calculate 50% effective inhibitory concentrations (EC50),

Prism software (GraphPad) was used to fit a variable slope

sigmoidal dose-response curve to values representing the percent-

age of GFP positive cells relative to untreated infected cells. Error

bars represent the standard deviation for at least three indepen-

dent experiments.

Binding to cells in the presence of GAGs
Cells were dislodged using PBS supplemented with 10 mM

EDTA, and then pipetted with an equal volume of WM. Fifty

thousand cells were added to wells of an untreated 96 well plate

and washed once with WM. Cells were then washed once with a

dilution series of GAG in WM. Next, the same dilution series of

heparin or chondroitin A/C in WM containing Alexa Fluor

conjugated capsids was added to cells, such that each well

contained about 60 ng of VP1 in the indicated concentration of

GAG. These plates were incubated at 4uC for one hour, and then

cells were washed 3 times in WM before measurement of their

fluorescence by flow cytometry.

Transduction of sodium chlorate treated cells
A549 cells were cultured in D10 supplemented with 50 mM

sodium chlorate (Sigma) for 2–6 days, then pre-plated overnight at

9,000 cells/well in 96 well plates. The next morning, half the plate

was changed into medium without chlorate to allow regeneration

of sulfate modifications. The other half of the plate was changed

into fresh chlorate-containing media. Six to eight hours later,

reporter virus was added in medium with or without sodium

chlorate to maintain the concentration of chlorate present on the

cells. Forty-eight hours later, the cells were fed by addition of

100 ml of media without chlorate. After a total of about 72 hours,

cells were harvested for analysis of GFP expression by flow

cytometry.

Enzymatic Removal of cell-surface sialic acids or GAGs
For experiments examining the effects of neuraminidase

treatment on reporter vector transduction, cells pre-plated in 96

well plates were washed and incubated with 50 ml of DPBS

containing 70 mU of neuraminidase from Arthrobacter ureafaciens

(NorthStar Bioproducts) per 56105 cells for 1 hour at 37uC. The

cultures were then inoculated with reporter vector stock and

incubated for an additional 2 hours at 37uC. The cultures were

then washed once and fed with 100 ml of culture medium. In some

replicates, culture medium was added directly to the neuramin-

idase-containing PBS in the culture well. Removing or washing

away the neuraminidase/reporter vector mixture did not appear

to alter the experimental outcome. After three days, the cells were

harvested and analyzed for GFP expression by flow cytometry. For

binding studies, conjugated capsids were added to 56104

neuraminidase-treated (or mock-treated) cells in suspension in an

untreated 96 well plate and incubated for 1 hour at 37uC. The

cells were then washed three times prior to analysis of fluorescence

by flow cytometry.

Heparinase I (50 units, Sigma) and heparinase III (5 units,

Sigma) were solubilized in 100 ml each of resuspension buffer

containing 20 mM Tris, pH 7.5, 50 mM NaCl, 4 mM CaCl2 and

0.01% BSA. The two enzymes were then combined. Chondroi-
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tinase ABC (2 units, Sigma) was solubilized in 200 ml of

resuspension buffer. A549 cells plated the day prior at 7,500

cells/well in a 96 well plate, were washed once with digestion

buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 4 mM CaCl2
and 0.1% BSA), and then treated with 2.5 ml of heparinase I/III

stock, 2.5 ml of chondroitinase stock (or both) in 50 ml of digestion

buffer. Cells were incubated in digestion buffer with or without

enzyme for 2 hours at 37uC. Various doses of reporter vector stock

were then added to the wells in 50 ml of OptiMEM-I (Invitrogen)

and incubated for an additional 1 hour at 37uC. The cells were

washed twice with culture medium, and then incubated in 150 ml/

well culture medium for three days. Cells were then analyzed for

GFP expression by flow cytometry, as above. For binding analyses,

26105 cells dislodged using PBS and 10 mM EDTA, were treated

with 3.5 ml each enzyme in digestion buffer for 1.5 hours at 37uC.

Alexa Fluor conjugated capsids diluted in Opti-MEM were then

added to the cells and incubated for an additional one hour at

37uC prior to washing and flow cytometric analysis.

Comparison of CHO-K1 and GAG mutant cell infection
and effect of exogenous GAGs

CHO-K1, pgsA-745, pgsD-677, pgsE-606, and pgsF-17 cells were

plated at a density of 10,000 cells/well in 50 ml culture medium in a

96 well plate. Binding and infectivity studies to analyze the effect of

exogenous GAGs were performed as above, except that cells were

pre-plated and infected the same day in order to avoid changes in cell

number resulting from slightly differing rates of growth.

Basement membrane extract (BME) binding assay
Cultrex BME PathClear (Trevigen #3432-005-02), a BME

preparation derived from murine Engelbreth-Holm-Swarm tu-

mor, was aliquoted and stored according to manufacturer’s

instructions. Black Microfluor 2 ELISA plates (Thermo) were

coated overnight with 1 mg of BME per well in a volume of 150 ml.

Coated plates were emptied and treated with 200 ml/well of 16
Blocker BSA (Pierce) in PBS. The block was incubated for 2 hours,

with rocking, at room temperature. The plate was then washed

twice with PBS plus 0.05% Tween 20 (PBS/Tween; BioRad).

To examine direct virus binding to BME, a two-fold dilution

series of HPV or MCV capsids beginning at 5 mg of VP1/well in

150 ml PBS/Tween was examined for binding to BME-coated

plates. Binding reactions were conducted for two hours at room

temperature, with rocking. To analyze the binding of capsids to

BME for all experiments, the plate was washed three times with

PBS/Tween, and then treated with 150 ml/well Quant-iT Pico-

Green dsDNA Reagent (Invitrogen) in TE buffer supplemented

with 0.1% Proteinase K stock (Qiagen). The plate was incubated

in a 65uC oven for 1 hour, and then cooled for 15 min at room

temperature in the dark before measuring fluorescence in a BMG

Labtech POLARstar Optima microplate reader.

To analyze the effect of enzymatic cleavage of GAGs on virus

binding, a three fold dilution series of heparinase or chondroitinase

(prepared as described above in the section on enzymatic removal

of cell-surface sialic acids or GAGs) beginning with 4.5 ml of

enzyme stock per well in 150 ml of digestion buffer was added to

the prepared plate and incubated for 2 hours at 37uC. The plates

were then washed twice with PBS/Tween, and 100 ng/well of

capsids in 150 ml of PBS/Tween was added to all treated and

mock-treated control wells.

To measure competitive inhibition of capsid binding with

heparin and chondroitin A/C, a five fold dilution series of each

GAG, beginning with 100 mg of GAG per well was mixed with

50 ng of capsids in 150 ml of PBS/Tween, and then added to the

BME-coated plate.

Native MCV production and purification
MCV virions were produced by co-transfecting 293TT cells [30]

with recombinant MCV isolate R17a genomic DNA, reconstituted

by intramolecular re-ligation at 4 mg of plasmid DNA per ml using

T4 DNA ligase (NEB). The re-ligated MCV genomic DNA was co-

transfected with expression plasmids carrying the MCV Large T

(pADL*) and small t (pMtB) antigen genes. Cells were expanded for

five days after transfection and virions were harvested using the

methods outlined above for recombinant capsid production. The

virions were purified by Optiprep gradient centrifugation, as above,

and fractions were screened for the presence of encapsidated DNA

using Quant-iT Picogreen dsDNA Reagent (Invitrogen) and by

western blot for MCV VP1. The characteristics of a representative

stock of native virions are shown in Figure S10.

Native MCV infection of 293-4T cells and quantitative
PCR analysis of replication

293-4T cells were detached with trypsin and 26105 cells/well

were added to an untreated 96 well plate. Cells were washed once

with digestion buffer (see above section on enzymatic removal of cell-

surface GAGs), and then incubated for 45 minutes at 37uC with or

without 5 ml each of heparinase and chondroitinase stock solution in

150 ml digestion buffer/well. Next, native MCV virions (production

described above) or BKV virions (kindly provided by Gene Major,

NINDS, NIH [66]) diluted in 50 ml OptiMEM were added and the

cell suspensions were incubated at 37uC for an additional

45 minutes. Cells were then washed once with culture medium

and again with either PBS or culture medium. The PBS suspension

was collected and frozen immediately, with the goal of establishing

the initial baseline number of bound MCV genomes derived from

the virus inoculum. The culture medium suspension was plated in a

24 well plate and cultured for 5 to 6 days. The cultured population

was trypsinized and harvested for modified Hirt extraction ([67]

protocol at our laboratory website) to isolate low molecular weight

DNA. Baseline samples were also subjected to modified Hirt extract.

One-fiftieth of the eluted DNA sample was used in a twenty

microliter reaction with DyNAmo HS SYBR Green Kit (New

England Biolabs) according to manufacturer’s instructions in a

7900HT Fast RT PCR System (Applied Biosystems) with ROX

reference dye. The primers targeting the MCV genome are 59-

GCTTGTTAAAGGAGGAGTGG-39 and 59-GATCTGGAGAT-

GATCCCTTTG-39. The BKV-specific primers are 59-

TGGTGCTCCTGGGGCTATTGC-39 and 59-GCCATGCCT-

GATTGCTGATAGAGG-39. A dilution series of known quantities

of MCV and BKV genomic DNA were analyzed simultaneously and

used to form a standard curve and calculate the number of genome

copies present in each sample. An average of 12 million copies of

MCV DNA and 29 million copies of BKV DNA were measured

from mock-treated baseline samples collected 45 minutes after

inoculation of native virions. An average of 465 million copies of

MCV DNA and 895 million copies of BKV DNA were measured 5

or 6 days later. Net values conclusively showing viral amplification

were calculated by subtracting the baseline number of bound viral

genomes observed 45 minutes after inoculation from the number of

viral genomes observed after 5 or 6 days.

Accession numbers
Annotated nucleotide maps of all plasmids used in this work are

posted on our laboratory website , http://home.ccr.cancer.gov/

Lco/plasmids.asp.. The plasmids and their sequences will also be

made available via Addgene.org. Accession numbers for previ-

ously-reported sequences are: MCV-R17a (HM011555), BKV-A-

66H (AB369093), SLC35A1 (NM_006416).
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Supporting Information

Figure S1 Validation of Alexa Fluor 488 conjugated
capsids. (A) A hemagglutination assay of unconjugated capsids

versus capsids conjugated to Alexa Fluor 488 demonstrates that the

Alexa Fluor conjugation procedure does not dramatically alter the

binding properties of the capsid. (B) MCV or BKV reporter vector

stocks carrying a Gaussia luciferase reporter plasmid were harvested

using standard procedures or subjected to Alexa Fluor 488

conjugation then purified. The VP1 content of the resulting

conjugated or unconjugated stock was determined by stained SDS-

PAGE analysis, and various doses of VP1 (x-axis) were applied to

A549 cells in 96 well plates for three days. Supernatants were

monitored for Gaussia luciferase activity (relative light units (RLU), y-

axis) using a Biolux Assay Kit (NEB). The graph shows representative

results from one of two experiments. The results indicate that the

transducing potential of MCV reporter vectors is not dramatically

affected by the Alexa Fluor 488 conjugation procedure.

(TIF)

Figure S2 Examples of experimental outcomes. (A) One

representative flow cytometry experiment demonstrating the

effects of neuraminidase treatment of A549 cells on MCV versus

BKV binding. (B) One representative experiment demonstrating

the effect of neuraminidase treatment of A549 cells on MCV

versus BKV reporter vector-mediated transduction of a GFP

reporter gene. Blue = capsids or reporter vector on mock treated

cells, green = capsids or reporter vector on neuraminidase treated

cells, red = mock treated cells without virus, and orange = neur-

aminidase treated cells without virus.

(TIF)

Figure S3 Effect of neuraminidase on transduction in a
melanoma cell line and primary keratinocytes. Reporter

vector-mediated delivery of a GFP reporter gene in SK-MEL-2

cells or HEKa cells treated with neuraminidase was measured by

flow cytometry. Results were standardized to mock-treated cells.

The average of two (SK-MEL-2) or three (HEKa) separate

experiments is shown and error bars represent the standard

deviation.

(TIF)

Figure S4 Transduction of Lec2 or Lec2-mslc cells pre-
loaded with GT1b. Lec2 and Lec2-mslc cells were incubated

overnight with various concentrations of the ganglioside GT1b

diluted in culture medium. Cells were then washed and a single

dose of GFP reporter vector for the virus type indicated was added

for three days. One representative experiment of three is shown.

(TIF)

Figure S5 Inhibition of binding to A549 cells by soluble
GAGs. A549 cells were treated with roughly 50 ng Alexa Fluor

488-labled capsids pre-mixed with 0, 0.16, 4, or 100 mg/ml of

heparin or chondroitin A/C in 100 ml total volume. The average

relative percent mean fluorescence from three separate experi-

ments is shown. Error bars represent the standard deviation.

(TIF)

Figure S6 Sulfation is required for MCV transduction in
a melanoma cell line. SK-MEL-2 cells were adapted to growth

in 50 mM sodium chlorate. MCV and BKV transduction in SK-

MEL-2 cells grown in medium with our without chlorate was

compared side-by-side using the same dose of reporter vector. The

average percent of GFP positive cells after three days from three

separate experiments is shown and error bars represent the

standard error of the mean.

(TIF)

Figure S7 Verification of enzyme activity and specific-
ity. A549 cells were resuspended with PBS supplemented

with10 mM EDTA, washed and treated with chondroitinase

ABC (‘‘CSase’’) or with heparinase I/III (‘‘HSase’’), or with both.

Monoclonal antibodies to HS (10E4) or CS (CS-56) were then

incubated with the treated cells. The cells were then washed,

incubated with a fluorescently-conjugated secondary antibody,

then subjected to flow cytometric analysis. The mean fluorescence

relative to ‘‘Mock’’ treatment was determined and the average of

two separate experiments is shown. Error bars represent standard

deviation.

(TIF)

Figure S8 MCV entry requires cell surface glycosami-
noglycans on melanoma cells and keratinocytes. SK-

MEL-2 cells or HEKa cells were treated with chondroitinase ABC

(‘‘CSase’’) or with heparinase I/III (‘‘HSase’’), or with both HSase

and CSase prior to inoculation with reporter vectors. The average

of three (SK-MEL-2) or four (HEKa) separate experiments is

shown and error bars represent the standard deviation.

(TIF)

Figure S9 Neuraminidase treatment of pgsA-745 cells.
The binding of Alexa Fluor 488-conjugated capsids (A) or reporter

vector-mediated delivery of a GFP reporter gene (B) to GAG-

deficient pgsA-745 cells treated with neuraminidase was measured

by flow cytometry. MCV binding and transduction were

performed in the presence of 20 mg/ml heparin. Results were

standardized to mock treatment. The average of three separate

experiments is shown and error bars represent the standard

deviation.

(TIF)

Figure S10 Propagation of native MCV. A subconfluent

75 cm2 flask of 293-4T cells was infected with 50 ml (approxi-

mately 50 billion genome copies) of purified MCV virions

produced by transfection of 293-TT cells with recombinant

MCV isolate R17a genomic DNA. The infected cells were

expanded into in two 225 cm2 flasks. At each time point shown, 4/

5ths of the culture was harvested and virions were extracted from

the cells and subjected to Optiprep gradient purification. The

remaining 1/5th of the culture was subjected to ongoing

propagation. Fractions of Optiprep gradients were collected and

screened by Western blot for the presence of VP1 and by qPCR

for the presence of MCV genomic DNA. The peak fractions were

collected and pooled. A 10 ml aliquot of each pool of peak fractions

was examined by Western blot for VP1 alongside a 10 ml aliquot of

the native virus used to infect the 293-4T cells (‘‘Input MCV’’).

Known quantities of recombinant MCV capsids were also

compared in this Western blot. Samples of each harvest were

also digested with proteinase K and the DNA was purified for

analysis of genome copy number by qPCR.

(TIF)
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