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Abstract

Molecular interactions between killer immunoglobulin-like receptors (KIRs) and their MHC class I ligands play a central role
in the regulation of natural killer (NK) cell responses to viral pathogens and tumors. Here we identify Mamu-A1*00201
(Mamu-A*02), a common MHC class I molecule in the rhesus macaque with a canonical Bw6 motif, as a ligand for Mamu-
KIR3DL05. Mamu-A1*00201 tetramers folded with certain SIV peptides, but not others, directly stained primary NK cells and
Jurkat cells expressing multiple allotypes of Mamu-KIR3DL05. Differences in binding avidity were associated with
polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05, whereas differences in peptide-selectivity mapped to the D1
domain. The reciprocal exchange of the third predicted MHC class I-contact loop of the D1 domain switched the specificity
of two Mamu-KIR3DL05 allotypes for different Mamu-A1*00201-peptide complexes. Consistent with the function of an
inhibitory KIR, incubation of lymphocytes from Mamu-KIR3DL05+ macaques with target cells expressing Mamu-A1*00201
suppressed the degranulation of tetramer-positive NK cells. These observations reveal a previously unappreciated role for
D1 polymorphisms in determining the selectivity of KIRs for MHC class I-bound peptides, and identify the first functional
KIR-MHC class I interaction in the rhesus macaque. The modulation of KIR-MHC class I interactions by viral peptides has
important implications to pathogenesis, since it suggests that the immunodeficiency viruses, and potentially other types of
viruses and tumors, may acquire changes in epitopes that increase the affinity of certain MHC class I ligands for inhibitory
KIRs to prevent the activation of specific NK cell subsets.
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Introduction

Natural killer (NK) cells are able to lyse infected or malignant

cells without prior antigenic stimulation, and thus provide an

important innate defense against infectious agents and tumors

[1,2]. NK cell activation in primates is regulated in part through

interactions between the highly polymorphic killer immunoglob-

ulin-like receptors (KIRs) expressed on NK cells and their MHC

class I ligands on target cells [1,2]. KIRs are type I integral

membrane proteins with either two or three immunoglobulin (Ig)-

like extracellular domains (2D or 3D) that transduce either

inhibitory or activating signals via long (L) or short (S) cytoplasmic

domains, respectively. Engagement of inhibitory KIRs by MHC

class I molecules on healthy cells normally suppresses NK cell

activation [1,3,4]. However, if these interactions are perturbed, for

instance as a result of MHC class I downregulation by HIV-1 Nef

[5,6], or presentation of a peptide antagonist [7], this inhibition is

lost resulting in NK cell activation and target cell lysis.

In contrast to the T cell receptor, which is highly specific for a

given peptide-MHC complex, KIRs typically recognize subsets of

MHC class I molecules with common amino acid motifs in their

a1 domains. Based on serological epitopes that correspond to

defined sequences at positions 77-83, all HLA-B molecules, and

some HLA-A molecules, can be classified as either Bw4 or Bw6

allotypes [8]. Allotypes of KIR3DL1 have broad specificity for

HLA-Bw4 ligands [9], whereas KIRs specific for HLA-Bw6 have

not been identified. All inhibitory KIRs that have been examined

thus far also exhibit selectivity for peptides bound by their MHC

class I ligands [10,11,12,13,14,15,16]. These observations are

consistent with crystal structures of KIR2DL1 and KIR2DL2 in

complex with their HLA-C ligands showing that KIR residues

contact surfaces of the HLA class I a1 and a2 domains in an

orthogonal orientation across C-terminal residues of the bound

peptide [17,18]. However, the molecular basis for the selectivity of

KIRs for different peptides bound by a particular MHC class I

ligand has not been defined.
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Genetic evidence suggests that polymorphic differences in the

KIR and HLA class I genes play an important role in determining

the course of infection for a number of human viral pathogens,

including HIV-1 [19,20], hepatitis C virus [21], human papillo-

mavirus [22] and cytomegalovirus [23]. In the case of HIV-1,

combinations of both activating and inhibitory KIR3DL1/S1 and

HLA-Bw4 alleles have been associated with delayed progression to

AIDS [19,20]. NK cells expressing KIR3DS1 were also shown to

suppress the in vitro replication of HIV-1 in target cells expressing

HLA-Bw4 [24]. While these observations point to a role for KIR-

MHC class I interactions in determining the outcome of HIV-1

infection, studies to address the functional significance of these

interactions have been limited, in part, by the lack of a suitable

animal model.

Simian immunodeficiency virus (SIV) infection of the rhesus

macaque is an important animal model for lentiviral pathogenesis

and for AIDS vaccine development [25]. Rhesus macaques

express MHC class I molecules that correspond to products of

the classical HLA-A and -B genes (Macaca mulatta; Mamu-A and -B),

but not the HLA-C gene [26,27]. Consistent with the co-evolution

of KIR and MHC class I molecules, genes for the two-domain

KIRs specific for HLA-C have not been identified in macaques

[28,29]. Instead, macaques have an expanded repertoire of

KIR3DL genes characterized by extensive polymorphism and gene

duplication [28,29,30,31,32].

Here we identify Mamu-A1*00201, a common rhesus macaque

MHC class I molecule with a Bw6 motif, as a ligand for multiple

allotypes of Mamu-KIR3DL05. We show that the binding of

Mamu-KIR3DL05 to Mamu-A1*00201 is peptide-dependent,

and that the relative avidity and peptide-selectivity of binding is

determined by polymorphisms in the D0 and D1 domains. We

also demonstrate that target cells expressing Mamu-A1*00201

suppress the degranulation of primary Mamu-KIR3DL05+ NK

cells. These observations reveal a previously unappreciated role for

D1 polymorphisms in determining the selective recognition of

MHC class I-bound peptides by KIRs, and define the first

functional KIR-MHC class I interaction in the rhesus macaque.

Results

Peptide-dependent tetramer staining of primary rhesus
macaque NK cells

Samples of peripheral blood from Mamu-A1*00201+ rhesus

macaques were stained with Mamu-A1*00201 tetramers folded

with SIV peptides to establish baseline CD8+ T cell responses

prior to beginning a vaccine study. To our surprise, Mamu-

A1*00201 in complex with the Gag71-79 GY9 peptide stained a

subset of CD8+CD3– lymphocytes from one animal (Mm 337-07).

Plasma from this animal tested negative for SIV RNA and for

antibodies to viral antigens, indicating that this animal had not

been previously exposed to SIV. The majority of tetramer-

positive cells expressed CD8a and CD16, characteristic of NK

cells that are capable of mediating cytolytic activity [33], as well

as additional NK cell markers including NKp46, NKG2A, and

NKG2D (Fig. 1A). A subset of these cells also cross-reacted with

an antibody to human KIR2D (Fig. 1A). Although most of the

tetramer-positive cells were CD16+CD3– NK cells, staining was

also observed for CD8+CD3+ T cells (Fig. 1B). A longitudinal

comparison of the frequency of tetramer-positive CD8+CD3+

versus CD16+CD3– lymphocytes revealed that these two

populations were relatively stable in this animal over more than

a year, ranging from 0.16% to 0.69% for CD8+ T cells and from

5.1% to 9.8% for CD16+ NK cells. To investigate the

contribution of the peptide bound by Mamu-A1*00201 to

this unusual pattern of tetramer staining, whole blood was

stained with Mamu-A1*00201 tetramers folded with peptides

corresponding to eight different CD8+ T cell epitopes of SIV

[34]. In addition to Gag71-79 GY9, staining was also observed for

Env788-795 RY8, but not for any of the other tetramers (Fig. 1C).

Thus, the tetramer staining observed for primary NK cells and

CD8+ T cells from Mm 337-07 was dependent on the peptide

bound by Mamu-A1*00201.

Identification of Mamu-KIR3DL05 as a receptor for
Mamu-A1*00201

Since KIRs are known to be expressed on subsets of human NK

cells and CD8+ T cells [4,35,36], we hypothesized that this pattern

of tetramer staining might reflect Mamu-A1*00201 binding to a

rhesus macaque KIR. Full-length KIR cDNA sequences were

therefore cloned from the PBMCs of Mm 337-07 and sequenced.

Six KIR3DL alleles, three KIR3DS alleles and two KIR2DL04 alleles

were identified in this animal, and their predicted amino acid

sequences are shown in Fig. 2.

To identify the receptor for Mamu-A1*00201, Jurkat cells were

transfected with constructs expressing each of the KIR alleles

cloned from Mm 337-07 and stained with Mamu-A1*00201

tetramers. To differentiate transfected from untransfected cells, the

KIR alleles were expressed from a bicistronic vector that co-

expresses enhanced green fluorescent protein (eGFP). Since not all

KIRs are well expressed on the cell surface, and antibodies are not

available to macaque KIRs, an HA tag was introduced at the

N-terminus of the D0 domain of each KIR. Our rationale for

introducing the HA tag at this position is based on a recent three-

dimensional model showing that the N-terminus of KIR3DL1 is

free and oriented away from surfaces that are predicted to con-

tact the peptide-MHC class I complex [37], and experiments

demonstrating that the introduction of an epitope tag at the

N-terminus of the D0 domain does not interfere with ligand

recognition [38]. Following the electroporation of Jurkat cells with

these KIR expression constructs, the cells were stained with

Mamu-A1*00201 tetramers and with a monoclonal antibody to

the HA tag. Transfected cells were identified by gating on the

Author Summary

NK cells provide an important first line of defense against
infectious diseases and tumors by virtue of their ability to
kill infected or malignant cells without prior sensitization.
NK cell activation is regulated in part through interactions
between KIRs expressed on the surface of NK cells and
their MHC class I ligands on target cells. Here we identify
Mamu-A1*00201 (Mamu-A*02), a common MHC class I
molecule in the rhesus macaque, as a ligand for Mamu-
KIR3DL05. We show that this interaction is peptide-
dependent, since soluble Mamu-A1*00201 tetramers
folded with certain SIV peptides, but not others, stained
cells expressing Mamu-KIR3DL05. Differences in binding
avidity were associated with polymorphisms in the D0 and
D1 domains of Mamu-KIR3DL05, whereas differences in
peptide-specificity mapped to the D1 domain. These
observations reveal a previously unappreciated role for
D1 polymorphisms in determining the selectivity of KIRs
for MHC class I-bound peptides, and identify the first
functional KIR-MHC class I interaction in the rhesus
macaque. These observations suggest that SIV, and
potentially also HIV-1, may acquire changes in epitopes
that increase the avidity of MHC class I ligands for
inhibitory KIRs as a mechanism of immune evasion to
prevent the activation of certain NK cell subsets.

Peptide-Selective Binding of KIR3DL to MHC Class I
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eGFP+ population, the surface expression of each KIR was verifi-

ed by HA staining, and binding to Mamu-A1*00201 in complex

with Gag71-79 GY9 versus Nef159-167 YY9 was assessed by tetramer

staining.

All of the KIRs were expressed on the cell surface under the

conditions of this assay, as indicated by HA staining (Fig. 3).

However, only Mamu-KIR3DL05*008 resulted in a detectable

level of staining with the Gag71-79 GY9 tetramer (Fig. 3A). At

higher levels of surface expression, staining was also observed for

Nef159-167 YY9, indicating that this tetramer can bind to Mamu-

KIR3DL05*008 under conditions of protein over expression

(Fig. 3A). These results identify Mamu-KIR3DL05*008 as a

receptor for Mamu-A1*00201, and indicate that the peptide

bound by Mamu-A1*00201 can modulate this interaction.

Polymorphic differences among allotypes of Mamu-
KIR3DL05 modulate the relative avidity and peptide-
selectivity of binding to Mamu-A1*00201

Phylogenetic comparisons of macaque KIR3DL sequences revealed

that Mamu-KIR3DL05*008 belongs to a group of similar alleles found

in both rhesus and cynomolgus macaques [29]. To determine if other

allotypes of Mamu-KIR3DL05 could also bind to Mamu-A1*00201,

Jurkat cells were transfected with constructs expressing six additional

Mamu-KIR3DL05 alleles, as well as six Mamu-KIR3DL07 alleles. The

transfected cells were then stained with Mamu-A1*00201 tetramers

folded with four different SIV peptides to assess binding; Gag71-79

GY9, Env788-795 RY8, Nef159-167 YY9 and Vif89-97 IW9.

One, or more, of the Mamu-A1*00201 tetramers bound to cells

expressing each of the Mamu-KIR3DL05 alleles. Cells express-

ing Mamu-KIR3DL05*004, -KIR3DL05*003, -KIR3DL05*010,

-KIR3DL05*008 and -KIR3DL05*005 stained with Gag71-79 GY9,

Env788-795 RY8 and Nef159-167 YY9, whereas cells expressing

Mamu-KIR3DL05*001 and mmKIR3DL05x stained only with

Gag71-79 GY9 or Nef159-167 YY9 (Fig. 4A). In contrast, none of these

KIRs bound to the Vif89-97 IW9 tetramer (Fig. 4A). Furthermore,

none of the Mamu-KIR3DL07 alleles resulted in a detectable level of

staining for any of the Mamu-A1*00201 tetramers (Fig. S1). Hence,

this interaction is dependent on the peptide bound by Mamu-

A1*00201 and is specific for Mamu-KIR3DL05.

Mamu-KIR3DL05*003, -KIR3DL05*008 and -KIR3DL05*010,

were indistinguishable in their pattern of tetramer staining (Fig. 4A).

This is reflected by the similarity in their values for the mean

fluorescence intensity (MFI) of tetramer staining divided by the MFI

of HA staining, which are provided in Table 1 as a quantitative

comparison of tetramer binding corrected for differences in surface

expression for each KIR. In accordance with the rank order of

tetramer staining observed for primary NK cells (Fig. 1C), staining

was highest for Gag71-79 GY9, followed by Env788-795 RY8, and then

Nef159-167 YY9 (Fig. 4A and Table 1). With the exception of a single

amino acid difference in the first position of the D0 domain of Mamu-

KIR3DL05*010, each of these KIRs have identical Ig-like domains

(Fig. 4B).

Relative to Mamu-KIR3DL05*008, Mamu-KIR3DL05*004

exhibited an increase in the intensity of tetramer staining for

Gag71-79 GY9 (1.3 fold), Env788-795 RY8 (2.0 fold) and Nef159-167

YY9 (4.3 fold) (Fig. 4A and Table 1). Since the Ig-like domains of

Mamu-KIR3DL05*004 and Mamu-KIR3DL05*008 only differ

by a single amino acid at position 138 (Fig. 4B), the histidine

residue at this position accounts for the increase in Mamu-

KIR3DL05*004 binding to Mamu-A1*00201. Based on a recently

proposed three-dimensional model of KIR3DL1*015 bound to

HLA-A*2402 [37], this residue is predicted to lie at the base of the

second MHC class I-contact loop of the D1 domain, and may alter

the conformation of this loop in a way that enhances binding to

Mamu-A1*00201.

Compared to Mamu-KIR3DL05*008, decreases in the inten-

sity of tetramer staining were observed for both Mamu-

KIR3DL05*005 and -KIR3DL05*001 (Fig. 4A). The intensity

of staining for Mamu-KIR3DL05*005, which differs from

Mamu-KIR3DL05*008 by 14 amino acids (Fig. 4B), was 2.7-

fold lower for Gag71-79 GY9, 2.3-fold lower for Env788-795 RY8

and 3.0-fold lower for Nef159-167 YY9 (Table 1). A much greater

reduction in the intensity of tetramer staining was observed

for Mamu-KIR3DL05*001. Tetramer staining for Mamu-

KIR3DL05*001 was only detectable with Gag71-79 GY9 at an

intensity that was 75-fold lower than for Mamu-KIR3DL05*008

(Table 1). Since Mamu-KIR3DL05*001 and -KIR3DL05*008

differ by ten amino acids in D0, but are otherwise identical in D1

and D2 (Fig. 4B), this reduction in the avidity of binding to

Figure 1. Peptide-dependent tetramer staining of primary NK
cells and CD8+ T cells from an unimmunized, uninfected rhesus
macaque. (A) To identify the tetramer-positive cells, whole blood was
stained with Mamu-A1*00201 Gag71-79 GY9 followed by monoclonal
antibodies to the indicated cell type-specific markers. (B) The frequency
of tetramer-positive CD8+ T cells versus CD16+ NK cells was determined
by gating sequentially on CD8 followed by CD3 (I) or CD16 (II). (C) To
determine if tetramer staining is dependent on the peptide bound by
Mamu-A1*00201, whole blood was stained with Mamu-A1*00201
tetramers folded with eight different SIV peptides, Gag71-79 GY9
(GSENLKSLY), Env788-795 RY8 (RTLLSRVY), Env317-325 KM9 (KTVLPVTIM),
Nef248-256 LM9 (LTARGLLNM), Nef159-167 YY9 (YTSGPGIRY), Env296-304 RY9
(RTIISLNKY), Vif97-104 WY8 (WTDVTPNY), and Vif89-97 IW9 (ITWYSKNFW),
followed by monoclonal antibodies to CD3, CD8 and CD16. After gating
on CD8+ lymphocytes, the percentages of tetramer-positive CD3–

versus CD3+ cells were determined.
doi:10.1371/journal.ppat.1001316.g001

Peptide-Selective Binding of KIR3DL to MHC Class I
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Figure 2. Amino acid sequence alignments for KIR alleles cloned from a rhesus macaque with a tetramer-positive NK cell
population in peripheral blood. The predicted amino acid sequences are shown for six Mamu-KIR3DL alleles (A), three Mamu-KIR3DS alleles (B),
and two Mamu-KIR2DL04 alleles (C). Positions of amino acid identity with the consensus sequence shown at the top are indicated by a period and
translational stop sites are indicated with an asterisk.
doi:10.1371/journal.ppat.1001316.g002
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Mamu-A1*00201 is due to polymorphic differences in the D0

domain. Thus, similar to KIR3DL1-HLA-Bw4 interactions in

humans [37,39], polymorphisms in the D0 domain of Mamu-

KIR3DL05 can dramatically affect binding to MHC class I

ligands.

In the case of mmKIR3DL05x, tetramer staining was observed

for Nef159-167 YY9, but not for Gag71-79 GY9 or Env788-795 RY8

(Fig. 4A). This shift in the pattern of Mamu-A1*00201 tetramer

staining almost certainly reflects differences in D1, since

mmKIR3DL05x has a unique D1 domain, but nearly identical

D0 and D2 domains to other allotypes of Mamu-KIR3DL05

(Fig. 4B). Using cryopreserved PBMCs from the original source of

mmKIR3DL05x, we verified that mmKIR3DL05x represents a bona

fide allele, and not a PCR artifact, by independently cloning and

confirming the cDNA sequence for this allele, and by PCR

amplification of a 2.0 kb region spanning intron 4 from genomic

DNA with primers to unique sequences in exons 4 and 5.

Additional sequence comparisons revealed that the D1 domain of

mmKIR3DL05x, as well as the leader peptide and the D0 domain,

are identical to Mamu-KIR3DS02*00402 and mmKIR3DHa

(Fig. S2). Thus, mmKIR3DL05x appears to be the product of a

recombination event in which exon 4 (encoding D1) was acquired,

either by the introduction of exons 1-4 of a Mamu-KIR3DS gene

into -KIR3DL05 or by the introduction of exons 5-9 of Mamu-

KIR3DL05 into a -KIR3DS gene.

A closer examination of mmKIR3DL05x revealed that seven of

the thirteen differences in the D1 domain coincide with, or are

immediately adjacent to, loops predicted to contact surfaces of the

peptide-MHC class I complex [37]. These include a charge

difference at position 144 in the second loop (L2) and a cluster of

six residues at positions 164–170 in the third loop (L3) (Fig. 4B and

Fig. 5A). To determine if these differences account for the unique

binding pattern exhibited by mmKIR3DL05x, we constructed

recombinants in which these sequences were exchanged with the

corresponding sequences of Mamu-KIR3DL05*008, and tested

them for binding to Gag71-79 GY9 versus Nef159-167 YY9.

Reciprocal L2 substitutions affected the avidity, but not the

specificity, of tetramer binding (Fig. 5B). In contrast, exchanging

L3 residues switched the specificity, and altered the avidity, of

binding to the Mamu-A1*00201 tetramers. The 3DL05*008/xL3

recombinant bound Nef159-167 YY9, but not Gag71-79 GY9, and

the 3DL05x/*008L3 recombinant bound both Gag71-79 GY9 and

Nef159-167 YY9 (Fig. 5B). Hence, these results reveal a role for

polymorphisms in the third predicted contact loop of the D1

domain in determining the selective recognition of different

peptides bound by the same MHC class I molecule.

Figure 3. Mamu-A1*00201 is a ligand for Mamu-KIR3DL05. Jurkat cells were transfected with constructs expressing each of the six Mamu-
KIR3DL (A), three Mamu-KIR3DS (B), and two Mamu-KIR2DL04 (C) alleles cloned from Mm 337-07, and stained with Gag71-79 GY9 and Nef159-167 YY9
tetramers. The KIRs were expressed from a bicistronic vector designed to introduce a common leader peptide followed by an HA tag at the N-
terminus of the D0 domain, and to co-express eGFP from a downstream internal ribosomal entry site. Jurkat cells were electroporated with the KIR
expression constructs and stained the following day with APC-conjugated Mamu-A1*00201 tetramers, followed by a PE-conjugated antibody to the
HA tag. Tetramer versus HA staining was determined after gating on the eGFP+ cell population. Quadrant gates were set using empty vector-
transfected controls stained with tetramer and antibody to the HA tag.
doi:10.1371/journal.ppat.1001316.g003

Peptide-Selective Binding of KIR3DL to MHC Class I
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Figure 4. Polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05 modulate the avidity and peptide-selectivity of binding to
Mamu-A1*00201. (A) Jurkat cells were transfected with HA-tagged Mamu-KIR3DL05 expression constructs, and stained the next day with APC-
conjugated Mamu-A1*00201 tetramers (Gag71-79 GY9, Env788-795 RY8, Nef159-167 YY9 or Vif89-97 IW9), followed by a PE-conjugated antibody to the HA
tag. Quadrant gates were set using empty vector-transfected controls stained with tetramer and antibody to the HA tag. (B) An alignment comparing
the predicted amino acid sequences of the D0, D1 and D2 domains for seven different Mamu-KIR3DL05 alleles. Positions of amino acid identity with
the consensus sequence are indicated by a period. The shaded regions correspond to loops predicted to contact surfaces of the peptide-MHC class I
complex [37]. The plus signs beneath the alignment indicate unique residues in the D1 domain of mmKIR3DL05x that coincide with, or are
immediately adjacent to, predicted MHC class I-contact loops.
doi:10.1371/journal.ppat.1001316.g004
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Mamu-A1*00201 suppresses the activation of tetramer-
positive NK cells from Mamu-KIR3DL05+ macaques

Additional Mamu-KIR3DL05+ rhesus macaques were identified

by sequence-specific PCR and screened for tetramer-positive NK

cells and CD8+ T cells. The Gag71-79 GY9 tetramer stained

subsets of CD8+CD3– and CD8+CD3+ lymphocytes in in peri-

pheral blood from each of the Mamu-KIR3DL05+ animals, but not

from Mamu-KIR3DL05- animals (Fig. 6A and 6B). In accordance

with the complex regulation of KIR expression, which is

influenced by a number of factors including differences in gene

content on different KIR haplotypes, differences in the repertoire

of MHC class I genes and polymorphic differences in KIR genes

[40,41,42,43], there was considerable animal-to-animal variation

in the frequency and intensity of tetramer staining (Fig. 6B).

Variation in the frequency of tetramer-positive CD8+CD3+

lymphocytes, particularly in Mamu-A1*002012 animals that do

not have Gag71-79-specific CD8+ T cells, may also reflect changes

in KIR expression on memory CD8+ T cells related to age and/or

prior exposure to infectious agents, since similar changes have

been associated with age and encounters with viral pathogens in

humans [36,44,45]. Overall, these results demonstrate that the

presence of the Mamu-KIR3DL05 gene is predictive of Gag71-79

GY9 staining in peripheral blood, that this pattern of tetramer

staining is independent of Mamu-A1*00201 and SIV infection, and

that the variability of staining is typical of the heterogeneity of KIR

expression on human NK cells and CD8+ T cells [36,46].

The role of NK cells and CD8+ T cells that express Mamu-

KIR3DL05 in SIV-infected animals remains to be determined.

However, among the eight animals represented in Fig. 6B, there

were no obvious differences in the percentage of tetramer-positive

cells for either population that could be attributed to the status of

SIV infection. Indeed, of the two uninfected animals (Mm 177-05

and Mm RHAX18), the two animals infected with attenuated

SIVmac239 Dnef (Mm 350-04 and Mm 376-04), and the two

animals infected with pathogenic SIVmac239 (Mm R03035 and

Mm 20-05), each pair had among the lowest and the highest

frequencies of tetramer-positive lymphocytes (Fig. 6B). Some of the

tetramer-positive CD8+CD3+ lymphocytes in the Mamu-

A1*00201+ animals probably represent virus-specific CD8+ T

cells, since we cannot differentiate binding of the Gag71-79 GY9

tetramer to Mamu-KIR3DL05 versus the T cell receptor.

Nevertheless, in two of the three SIV-infected animals (Mm 350-

04 and Mm R02020), the percentage of tetramer-positive cells was

actually higher for the CD8+CD32 population than for the

CD8+CD3+ population (Fig. 6B). Although the explanation for this

is presently unclear, it is possible that Mamu-KIR3DL05

interactions with Mamu-A1*00201 may suppress CD8+ T cell

responses to the Gag71-79 GY9 epitope in Mamu-KIR3DL05+

animals, which could explain the inconsistent, and often weak,

CD8+ T cell responses to Gag71-79 GY9 that we and others have

observed in SIV-infected, Mamu-A1*00201+ macaques.

To investigate the functional consequences of NK cell

recognition of Mamu-A1*00201, PBMC from four Mamu-

KIR3DL05+ animals were stimulated with the MHC class I-

deficient 721.221 cell line [47], or with 721.221 cells expressing

either Mamu-A1*00201, -A1*01101 (Mamu-A*11) or -B*010101

(Mamu-B*01), and stained for CD107a as a degranulation marker.

The cells were also stained with Gag71-79 GY9 to differentiate

Mamu-KIR3DL05+ NK cells from Mamu-KIR3DL052 NK cells.

CD107a was upregulated on the surface of both tetramer-positive

and tetramer-negative NK cells in response to parental 721.221

cells and 721.221 cells expressing Mamu-A1*01101 or -B*010101

(Fig. 6C). In contrast, CD107a was suppressed on tetramer-

positive NK cells, but not on tetramer-negative NK cells, in the

presence of target cells expressing Mamu-A1*00201 (Fig. 6C). The

same pattern of NK cell activation/inhibition was also observed by

intracellular cytokine staining for IFNc (Fig. S3). Moreover,

CD107a was suppressed on tetramer-positive NK cells from both

Mamu-A1*00201+ and -A1*002012 animals (Fig. 6C), indicating

that these cells were responsive to Mamu-A1*00201 whether or

not they were educated in the presence of this MHC class I

molecule. These results are therefore consistent with the functional

inhibition of Mamu-KIR3DL05+ NK cells by Mamu-A1*00201.

Discussion

Polymorphic differences in the KIR and HLA class I genes play

an important role in determining the course of infection for HIV-1

and for a number of other viral pathogens [19,20,21,22,23,24].

However, studies to address the functional significance of KIR-

MHC class I interactions have been hampered by the lack of a

suitable animal model. In the present study, we identify Mamu-

A1*00201, an MHC class I molecule present in approximately

20% of Indian origin rhesus macaques [48], as a ligand for

multiple allotypes of Mamu-KIR3DL05. Although the frequency

Table 1. Relative binding of Mamu-A1*00201 tetramers folded with four different SIV peptides to seven allotypes of Mamu-
KIR3DL05.

Mamu-A1*00201 tetramer

Mamu-KIR3DL05 Gag71-79 GY9 Env788-795 RY8 Nef159-167 YY9 Vif89-97 IW9

Mamu-KIR3DL05*004 1.99 0.14 0.13 —

Mamu-KIR3DL05*003 1.57 0.06 0.03 —

Mamu-KIR3DL05*010 1.55 0.07 0.03 —

Mamu-KIR3DL05*008 1.49 0.07 0.03 —

Mamu-KIR3DL05*005 0.55 0.03 0.01 —

Mamu-KIR3DL05*001 0.02 — — —

mmKIR3DL05x — — 0.10 —

Jurkat cells were transfected with constructs expressing HA-tagged allotypes of Mamu-KIR3DL05 and stained the next day with one of the following Mamu-A1*00201
tetramers; Gag71-79 GY9, Env788-795 RY8, Nef159-167 YY9 or Vif89-97 IW9. The cells were then stained with a monoclonal antibody to the HA tag and analyzed by flow
cytometry. Values represent the MFI of tetramer staining divided by the MFI of HA staining for the transfected, eGFP+ cell population. Values were not calculated if the
number of tetramer-positive events was less than 1000.
doi:10.1371/journal.ppat.1001316.t001
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of specific alleles of Mamu-KIR3DL05 remains to be determined,

the Mamu-KIR3DL05 gene was present in 42% of the rhesus

macaques (43 of 103 animals) recently screened at the New

England Primate Research Center by sequence-specific PCR. This

suggests that animals expressing both Mamu-KIR3DL05 and

-A1*00201 are sufficiently common for use in future studies to

investigate the functional implications of this interaction with

respect to the pathogenesis of SIV infection.

Genotyping for Mamu-KIR3DL05 was predictive of Mamu-

A1*00201 tetramer staining for primary NK cells and CD8+ T

cells in peripheral blood. The pattern of staining observed for

subsets of CD8+CD32 and CD8+CD3+ lymphocytes from Mamu-

KIR3DL05+ animals, but not from Mamu-KIR3DL052 animals, is

consistent with the variegated expression of KIRs on human NK

cells and CD8+ T cells [4,35,36,49,50,51]. Tetramer staining was

independent of Mamu-A1*00201, reflecting the segregation of KIR

and MHC class I genes on different chromosomes, and was

detectable regardless of the status of SIV infection. Moreover, the

variability in the frequency and intensity of tetramer staining

among Mamu-KIR3DL05+ animals was typical of the heterogeneity

of KIR expression on human NK cells and CD8+ T cells [36,46].

Although tetramer staining has been reported for NK cell clones

and for transfected cells expressing human KIRs [11,12], to our

knowledge this is the first report of direct ex vivo tetramer staining

of primary NK cells.

Incubation of peripheral blood lymphocytes from Mamu-

KIR3DL05+ macaques with target cells expressing Mamu-

A1*00201 specifically suppressed the degranulation of tetramer-

positive NK cells. These results are consistent with the functional

inhibition of primary NK cells expressing Mamu-KIR3DL05 by

Figure 5. Amino acid differences in the third MHC class I-contact loop of the D1 domain account for the preferential binding of
mmKIR3DL05x to the Nef159-167 YY9 tetramer. (A) Positions in the D1 domain of mmKIR3DL05x that differ from Mamu-KIR3DL05*008 are
highlighted in a three-dimensional model of KIR3DL*015 bound to HLA-A*2402 [37]. The residues indicated in yellow are located in surface-exposed
loops in close proximity to the bound peptide. The residues indicated in red represent differences in the D1 domain at sites that do not contribute
directly to interactions with MHC class I ligands. The residues highlighted in magenta represent positions 77-83 of the a1 domain corresponding to
the Bw6 of Mamu-A1*00201. (B) Jurkat cells were electroporated with constructs expressing recombinants of Mamu-KIR3DL05*008 and
mmKIR3DL05x, for which residues of the second (L2) and third (L3) predicted MHC class I-contact loops in D1 were exchanged, and stained with APC-
conjugated tetramer (Gag71-79 GY9 or Nef159-167 YY9) followed by a PE-conjugated antibody to the HA tag. Tetramer versus HA staining was
determined after gating on the eGFP+ cell population and quadrant gates were set using control cells transfected with an empty vector.
doi:10.1371/journal.ppat.1001316.g005

Peptide-Selective Binding of KIR3DL to MHC Class I

PLoS Pathogens | www.plospathogens.org 8 March 2011 | Volume 7 | Issue 3 | e1001316



Mamu-A1*00201. Furthermore, this inhibition was observed for

tetramer-positive NK cells from Mamu-A1*002012 as well as from

Mamu-A1*00201+animals, indicating that these cells were respon-

sive to Mamu-A1*00201, whether or not they were educated in

animals that express this ligand. Although the mechanisms of NK

cell education are not fully understood [52], there is evidence that

the maturation of NK cells expressing inhibitory KIRs is

dependent on interactions with self-MHC class I molecules, and

that NK cells expressing a particular inhibitory KIR in the

absence of an appropriate MHC class I ligand are rendered

hyporesponsive [3,53,54]. Thus, the in vitro suppression of

tetramer-positive NK cells from Mamu-A1*002012 animals by

target cells expressing Mamu-A1*00201 implies that these cells

were educated for recognition of another MHC class I ligand. This

is perhaps not surprising given the complexity of the rhesus

macaque MHC class I genes [55,56], and the ability of KIRs to

recognize multiple MHC class I ligands with common amino acid

motifs in their a1 domains [9,57].

Based on haplotype modeling and phylogenetic comparisons,

Mamu-KIR3DL05 is predicted to represent a single genetic locus

[29]. Although KIR3DL05 is not orthologous to any of the

human KIR genes, interactions between Mamu-KIR3DL05 and

Mamu-A1*00201 resemble features of KIR3DL1 binding to

HLA-Bw4. A three-dimensional model of KIR3DL1*015 bound

to HLA-A*2402 was recently constructed based on a crystal

structure of KIR2DL1 in complex with HLA-C*04 [17,37]. This

model predicts that surface-exposed loops in each of the three

Ig-like domains of KIR3DL1 contact the HLA class I molecule

over the C-terminus of the bound peptide, and that the specificity

of KIR3DL1 for HLA-Bw4 is dependent on a salt bridge between

glutamate 282 in the D2 domain of KIR3DL1 and arginine 83 in

the a1 domain of HLA-Bw4 [37]. Consistent with this model,

polymorphisms in the Ig-like domains of Mamu-KIR3DL05 were

associated with differences in binding to Mamu-A1*00201.

Amino acid differences in D0 affected the relative avidity of

Mamu-KIR3DL05 binding to Mamu-A1*00201. Compared to

Mamu-KIR3DL05*003/*008, tetramer staining was diminished

for both Mamu-KIR3DL05*001 and -KIR3DL05*005, which

differ by eight and ten residues in D0 respectively. In the case of

Mamu-KIR3DL05*001, which is otherwise identical to Mamu-

KIR3DL05*003/*008 in D1 and D2, binding to Mamu-

A1*00201 was all but eliminated. These results are analogous to

previous observations showing that polymorphisms in the D0

domain of KIR3DL1 modulate the avidity of binding to HLA-

Bw4 ligands [37,39].

Polymorphisms in D1 altered the selective binding of Mamu-

KIR3DL05 to Mamu-A1*00201 in complex with different SIV

peptides. In contrast to other allotypes of Mamu-KIR3DL05,

Figure 6. Mamu-A1*00201+ target cells suppress the degranulation of tetramer-positive NK cells. (A) Primers specific for exon 5 of
Mamu-KIR3DL05 were used to amplify a 156 bp sequence from genomic DNA. Primers specific for a conserved 300 bp region of Mamu-DRB were
included as an internal control. PCR products were separated on a 1% agarose gel containing ethidium bromide and visualized by UV
transillumination. (B) Peripheral blood from two Mamu-KIR3DL052 and eight Mamu-KIR3DL05+ rhesus macaques was stained with the Gag71-79 GY9
and monoclonal antibodies to CD3, CD8 and CD16. The percentages of tetramer-positive cells were determined for CD3-CD8+ versus CD3+CD8+

lymphocytes. Of the eight Mamu-KIR3DL05+ animals, four were Mamu-A1*00201+ (Mm 177-05, Mm 350-04, Mm R02020 and Mm R95117) and four
were Mamu-A1*00201- (Mm 20-05, Mm 376-04, Mm RHAX18 and Mm R03035). With the exception of Mm AP78 and Mm AD73INF08, which were
negative for Mamu-KIR3DL05, tetramer-positive NK cells were detected in peripheral blood for each of these animals. Mm AP78, Mm AD73INF08, Mm
177-05, and Mm RHAX18 were uninfected at the time of this analysis. Mm R02020 and Mm R95117 were infected with SIVsmmE660. Mm 350-04 and
376-04 were infected with SIVmac239Dnef. Mm 20-05 and Mm R03035 were infected with SIVmac239. The SIV-infected animals are indicated with an
asterisk. (C) Freshly isolated PBMC from two Mamu-A1*00201+ and two Mamu-A1*00201- macaques were stimulated with parental 721.221 cells, or
721.221 cells expressing individual rhesus macaque MHC class I molecules. Mm 337-07 was uninfected at the time of this analysis. The cells were
incubated overnight at a 5:1 PBMC to target cell ratio in the presence of a monoclonal antibody to CD107a. Following stimulation, the cells were
stained with the Gag71-79 GY9 tetramer and antibodies to CD3, CD8, CD16 and NKG2A. After gating on CD3-NK2GA+ lymphocytes, the upregulation of
CD107a on tetramer-positive versus tetramer-negative NK cells was determined.
doi:10.1371/journal.ppat.1001316.g006

Peptide-Selective Binding of KIR3DL to MHC Class I

PLoS Pathogens | www.plospathogens.org 9 March 2011 | Volume 7 | Issue 3 | e1001316



mmKIR3DL05x preferentially bound to Mamu-A1*00201 folded

with Nef159-167 YY9 rather than Gag71-79 GY9. This difference in

peptide preference mapped to six amino acids in the third D1 loop

predicted to contact surfaces of the peptide-MHC class I complex.

These results support a recent three-dimensional model of

KIR3DL1*015 bound to HLA-A*2402 [37], and reveal a role

for polymorphisms in the D1 domain in determining the selectivity

of KIRs for MHC class I-bound peptides. Interestingly,

mmKIR3DL05x appears to be the product of a recombination

event in which exon 4 sequences coding for the D1 domain were

derived from a KIR3DS gene; an observation that is consistent with

domain shuffling as a mechanism of KIR evolution in primates

[58].

Unlike previously identified ligands for human KIRs, the a1

domain of Mamu-A1*00201 contains a Bw6 motif. In contrast to

Bw4, the Bw6 motif has a glycine rather than an arginine at

position 83 (N77LRNLRG83). Yet, Mamu-KIR3DL05 retains a

glutamate at position 285, which corresponds to glutamate 282 of

KIR3DL1. Since the peptides recognized by Mamu-KIR3DL05

each contain a positively charged residue at position 6 or 8

(Gag71-79 GSENLKSLY, Env788-795 RTLLSRVY and Nef159-167

YTSGPGIRY), it is conceivable that glutamate 285 may form an

alternative salt bridge with the peptide that accounts for the

peptide-dependence of Mamu-KIR3DL05. However, a charge at

this position does not appear to be sufficient for binding, since the

Vif89-97 IW9 peptide, which also contains a lysine at position 6

(ITWYSKNFW), did not result in detectable Mamu-A1*00201

tetramer staining. While the molecular interactions underlying the

binding of Mamu-KIR3DL05 to Mamu-A1*00201 remain to be

fully defined, these observations offer a potential explanation for

the contribution of the peptide to this interaction, and perhaps

suggest a more prominent role for certain peptides in KIR

recognition of other Bw6 ligands.

The extent to which KIR recognition of Bw6 ligands has been

elaborated in the rhesus macaque is presently unclear. However,

since this motif is retained in the MHC class I molecules of

humans and macaques, the absence of human KIRs that

recognize HLA-Bw6 appears to reflect the loss of receptors of

this specificity during the course of human evolutionary history.

While the reason for this is not understood, it may be related to the

expansion of the lineage III KIR genes coding for KIR2DL/S

receptors with a D1-D2 configuration, and a greater dependence

on the regulation of NK cell activation through interactions with

their HLA-C ligands.

The identification of inhibitory KIRs that bind with high

avidity to a common MHC class I molecule in the rhesus

macaque in complex with SIV-derived peptides suggests a

potential mechanism of immune evasion. The Nef proteins of

HIV-1 and SIV selectively downregulate MHC class I molecules

from the surface of infected cells to evade destruction by virus-

specific CD8+ T cells [6,59]. However, the removal of these

molecules from the cell surface increases the susceptibility of

infected cells to elimination by NK cells [6]. By acquiring changes

in CD8+ T cell epitopes that increase the binding of MHC class I

ligands to inhibitory KIRs, the virus may prevent the activation

of NK cells under conditions of incomplete downregulation by

Nef. This possibility is supported by recent evidence that peptides

can modulate NK cell activation by varying the affinity of HLA

ligands for inhibitory KIRs [7]. Whereas Fadda et al. show that

antagonistic peptides that disrupt MHC class I interactions with

inhibitory KIRs leads to NK cell activation [7], our data suggests

that viruses may acquire changes in epitopes that stabilize these

interactions to suppress NK cell activation in a way that favors

virus replication.

KIRs are also expressed on subsets of memory CD8+ T cells in

HIV-1 infected individuals, and have been associated with a

decrease in the responsiveness to TCR-dependent stimulation

[44,60]. Thus, peptides that stabilize interactions with inhibitory

KIRs may also suppress CD8+ T cell activation. Deleterious

combinations of KIR and MHC class I alleles may therefore select

for changes in epitopes of HIV-1 and SIV that inhibit certain NK

cell and CD8+ T cell responses; a scenario that may further

undermine the host’s ability to contain virus replication. Consis-

tent with this hypothesis, a single nucleotide polymorphism was

recently identified as a marker for two Mamu-KIR3DL05 alleles

that were more prevalent among SIV-infected rhesus macaques

with high viral loads in animals [61].

The identification of Mamu-A1*00201 as a ligand for Mamu-

KIR3DL05 now affords an opportunity to investigate the

functional implications of KIR-MHC class I interactions. Using

KIR- and MHC class I-defined animals, experiments can now be

designed to examine the phenotypic changes that occur in a

specific population of NK cells during the course of virus infection

in a way the was previously only possible for CD8+ T cells.

Characterization of the molecular interactions underlying the

binding of Mamu-KIR3DL05 to Mamu-A1*00201 also promises

to yield fundamental insights regarding the role of viral peptides in

modulating KIR recognition of MHC class I ligands. The binding

of Mamu-KIR3DL05 to Mamu-A1*00201 in complex with SIV

peptides suggests that these interactions may be particularly

important in determining the course of SIV infection.

Materials and Methods

Ethics statement
All of the animals used for these studies were Indian origin

rhesus macaques (Macaca mulatta). These animals were housed at

the New England Primate Research Center (NEPRC) and were

maintained in accordance with standards of the Association for

Assessment and Accreditation of Laboratory Animal Care and the

Harvard Medical School Animal Care and Use Committee.

Animal experiments were approved by the Harvard Medical Area

Standing Committee on Animals and conducted according to the

principles described in the Guide for the Care and Use of Laboratory

Animals [62].

KIR nomenclature and Genbank accession numbers
Rhesus macaque KIR sequences were submitted to Genbank

and to the Immuno-Polymorphism Database (www.ebi.ac.uk/ipd/

kir/) [63]. Sequences that have been assigned official names are

indicated with the prefix Mamu-KIR. In cases where official names

have not yet been assigned, sequences are referred to using a

provisional nomenclature indicated by the prefix mmKIR. The

names and Genbank accession numbers for each of the KIR alleles

in this study are listed in Table S1.

Phenotypic analysis of tetramer-positive lymphocytes
Whole blood was stained with Mamu-A1*00201 tetramers

folded with the SIV peptides Gag71-79 GY9, Env788-795 RY8,

Env317-325 KM9, Nef248-256 LM9, Nef159-167 YY9, Env296-304

RY9, Vif97-104 WY8, or Vif89-97 IW9 (30 min, 37uC) followed by

antibodies to cell type-specific markers (30 min, 20uC). Mamu-

A1*00201 tetramers were obtained from David Watkins’ labora-

tory (Wisconsin National Primate Research Center), and the

quality of each tetramer lot was verified by staining CD8+ T

lymphocytes from SIV-infected rhesus macaques. For polychro-

matic assays, samples were stained with anti-CD3-Pacific blue

(SP34-2, BD Pharmingen), anti-CD4-AmCyan (L200, BD Phar-
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mingen), anti-CD16-FITC (3G8, BD Pharmingen), anti-HLA-

DR-PE Texas Red (Immu-257, Immunotech), anti-CD20 PE-

Cy5.5 (L27, BD Pharmingen), anti-CD56 PE-Cy7 (NCAM16.2,

BD Pharmingen), anti-CD8a-Alexa 700 (RPA-T8, BD Pharmin-

gen), anti-CD14-APC-Cy7 (MphiP9, BD Pharmingen), and either

anti-NKG2A-PE (Z1999, Beckman Coulter), anti-NKp46-PE

(BAB21, Immunotech), anti-KIR2D-PE (NKVFS1, Miltenyi

Biotec Inc.), or anti-NKG2D-PE (BAT221, Miltenyi Biotec Inc.)

For four-color assays, samples were stained with anti-CD3-FITC

(SP34-2, BD Pharmingen), anti-CD16-PE (3G8, BD Pharmingen),

and anti-CD8a-PerCP (SK1, BD Pharmingen). Samples were

treated with FACS Lysing solution (BD Biosciences) to eliminate

red blood cells, washed and fixed in 2% paraformaldehyde PBS.

Data was acquired using a LSRII flow cytometer (BD Biosciences)

and analyzed using FlowJo 8.8.6 (Tree Star Inc.).

Cloning and sequencing of rhesus macaque KIR alleles
Peripheral blood lymphocytes were isolated over Ficoll (Sigma)

and aliquots of 2–10 million PBMC were frozen in Trizol

(Invitrogen). Total RNA was extracted using the RNeasy kit

(Qiagen) according to the manufacturer’s instructions. KIR

cDNAs were amplified by reverse transcription-polymerase chain

reaction (RT-PCR) using the Superscript III One-Step RT-PCR

kit (Invitrogen) with modified versions of the Ig3Up and Ig3Down

primers [64]. Cycling conditions included an RT step at 55uC for

30 min, a denaturation step at 94uC for 2 min, followed by 40

cycles of denaturation (94uC for 15 sec), annealing (55uC for

30 sec) and extension (68uC for 90 sec), and a final extension step

at 68uC for 5 min. PCR products were cloned into the pGEM-T

Easy vector (Promega) and sequenced with T7 and SP6

sequencing primers. Sequences were analyzed using Sequencher

4.8 (Gene Codes Inc.) and MacVector 9.5.2 (MacVector Inc.)

software packages. At least three identical cDNA clones were

identified for each KIR allele.

KIR expression and tetramer staining of transfected
Jurkat cells

Rhesus macaque KIRs were PCR amplified from cDNA clones

using primers to introduce an HA tag at the N-terminus of the D0

domain. The KIR cDNAs were then cloned into pCGCG, a

bicistronic vector that co-expresses eGFP, in frame with an

upstream sequence for the leader peptide of Mamu-

KIR3DL05*008. Jurkat cells (16107 cells) were electroporated

(250V, 975mF) with plasmid DNA (40 mg) in serum-free RPMI

(400 ml) in a 0.4 cm cuvette (BioRad). After resting (10 min, 20uC),

the cells were re-suspended in RPMI medium (9 ml) with 10%

FBS and incubated overnight at 37uC, 5% CO2. After 22 hours,

the cells were stained with APC-conjugated tetramers (30 min,

37uC), followed by PE-conjugated anti-HA PE (GG8-IF3.3,

Miltenyi Biotec Inc.) (20 min, 20uC). The cells were washed and

fixed in 2% paraformaldehyde PBS. At least 200,000 events were

acquired using a FACSCalibur flow cytometer (BD Biosciences)

and the data was analyzed using FlowJo 8.8.6.

Mamu-KIR3DL05 genotyping
Genomic DNA was extracted from 1–2 million PBMC using the

DNAeasy kit (Qiagen, Valencia, CA), and 10 ng was used as

template in a 25 ml PCR reaction with forward and reverse

primers (GAGACCCATGAACTTAGGCTTC & GCAGTG-

GGTCACTGGGGA) for amplification of a 156 bp sequence in

exon 5 specific to Mamu-KIR3DL05. Primers specific for a

conserved 300 bp region of Mamu-DRB were included as an

internal control [48]. Cycling conditions included a denaturation

step at 96uC for 2 min followed by 30 cycles of denaturation (94uC
for 30 sec), annealing (63uC for 45 sec) and extension (72uC for

45 sec), and a final extension step at 72uC for 10 min. PCR

products were separated on a 1% agarose gel containing ethidium

bromide and visualized by UV transillumination.

NK cell suppression by specific MHC class I molecules
PBMC (16106 cells) were stimulated for 18 hours with 721.221

cells, or with 721.221 cells expressing rhesus macaque MHC class

I molecules, at a 5:1 ratio in the presence of anti-CD107a PE-Cy5

(clone H4A3, BD Pharmingen), Golgi-Stop and Golgi-plug (BD

Pharmingen). The cells were then stained with APC-conjugated

tetramers (30 min, 37uC), followed by anti-CD16-FITC, anti-

NKG2A-PE, anti-CD8a-Alexa 700 and CD3 APC-Cy7 (20 min,

20uC). The cells were then permeabilized and stained for 30 min

with anti-IFN-c-PE-CY7 (Clone 4S.B3, BD Pharmingen). Samples

were washed and fixed in 2% paraformaldehyde PBS. At least

200,000 lymphocyte events were collected using an LSRII flow

cytometer, and the data was analyzed using FlowJo 8.8.6.

Supporting Information

Figure S1 Mamu-KIR3DL07 does not bind to Mamu-

A1*00201. (A) An alignment comparing the predicted amino acid

sequences of the D0, D1 and D2 domains for six Mamu-KIR3DL07

alleles. Positions of amino acid identity with the consensus

sequence are indicated by a period. The shaded regions

correspond to loops predicted to contact surfaces of the peptide-

MHC class I complex. (B) Jurkat cells were electroporated with

constructs expressing HA-tagged allotypes of Mamu-KIR3DL07

and stained the following day with APC-conjugated Gag71-79 GY9

or Nef159-167 YY9. The cells were then stained with a PE-

conjugated antibody to the HA tag and analyzed by flow

cytometry. Tetramer versus HA staining is shown after gating

on the eGFP+ cell population.

Found at: doi:10.1371/journal.ppat.1001316.s001 (0.85 MB

TIF)

Figure S2 The D1 domain of mmKIR3DL05x is identical to the

D1 domains encoded by Mamu-KIR3DS alleles. The amino acid

sequences of mmKIR3DL05x, Mamu-KIR3DS02*00402 and

mmKIR3DHa are shown aligned to Mamu-KIR3DL05*008.

Positions of amino acid identity are indicated with a period and

translational stop sites are indicated with an asterisk. The shaded

regions correspond to loops predicted to contact the peptide-MHC

class I complex.

Found at: doi:10.1371/journal.ppat.1001316.s002 (0.28 MB TIF)

Figure S3 Target cells expressing Mamu-A1*00201 suppress the

production of IFNc by tetramer-positive NK cells. PBMC from

two Mamu-A1*00201+ and two Mamu-A1*00201– macaques were

incubated overnight at a 5:1 effector to target cell ratio with

parental 721.221 cells, or with 721.221 cells expressing individual

rhesus macaque MHC class I molecules. Following stimulation,

the samples were stained with Gag71-79 GY9 tetramer, followed by

antibodies to CD3, CD8, CD16 and NKG2A. The samples were

then fixed, permeabilized and stained with an IFNc-specific

monoclonal antibody. After gating on CD3-NK2GA+ lympho-

cytes, the frequency of tetramer-positive versus tetramer-negative

NK cells expressing IFNc was determined.

Found at: doi:10.1371/journal.ppat.1001316.s003 (0.34 MB TIF)

Table S1 Supplemental Table 1.

Found at: doi:10.1371/journal.ppat.1001316.s004 (0.04 MB

DOC)
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