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Abstract

In spite of the importance of hyaluronan in host protection against infectious organisms in the alveolar spaces, its role in
mycobacterial infection is unknown. In a previous study, we found that mycobacteria interact with hyaluronan on lung
epithelial cells. Here, we have analyzed the role of hyaluronan after mycobacterial infection was established and found that
pathogenic mycobacteria can grow by utilizing hyaluronan as a carbon source. Both mouse and human possess 3 kinds of
hyaluronan synthases (HAS), designated HAS1, HAS2, and HAS3. Utilizing individual HAS-transfected cells, we show that
HAS1 and HAS3 but not HAS2 support growth of mycobacteria. We found that the major hyaluronan synthase expressed in
the lung is HAS1, and that its expression was increased after infection with Mycobacterium tuberculosis. Histochemical
analysis demonstrated that hyaluronan profoundly accumulated in the granulomatous legion of the lungs in M. tuberculosis-
infected mice and rhesus monkeys that died from tuberculosis. We detected hyaluronidase activity in the lysate of
mycobacteria and showed that it was critical for hyaluronan-dependent extracellular growth. Finally, we showed that L-
Ascorbic acid 6-hexadecanoate, a hyaluronidase inhibitor, suppressed growth of mycobacteria in vivo. Taken together, our
data show that pathogenic mycobacteria exploit an intrinsic host-protective molecule, hyaluronan, to grow in the
respiratory tract and demonstrate the potential usefulness of hyaluronidase inhibitors against mycobacterial diseases.
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Introduction

Infectious diseases caused by mycobacteria are serious threats to

human health. Tuberculosis is caused by infection with mycobac-

teria, most frequently with Mycobacterium tuberculosis but also with

Mycobacterium bovis, Mycobacterium africanum, Mycobacterium microti,

and Mycobacterium canetii and kills around 2 million people annually.

Leprosy is caused by Mycobacterium leprae and the globally registered

prevalence of leprosy was around 22,000 cases at the beginning of

2006.

The major portal of entry for mycobacterial pathogens is

through the respiratory tract. The primary phase of the infection

begins with inhalation of bacteria, which are then phagocytosed by

alveolar macrophages in the periphery of the lungs. In addition,

several lines of evidence indicate that mycobacteria interact with

epithelial cells in the respiratory tract [1–4]. The recent reports

show the significant role of type II pneumocytes in the pathology

of tuberculosis [3,5,6]. The onset of mycobacterial diseases

frequently occurs after a long latent phase. Mycobacteria are an

intracellular bacterium, multiplying within host cells, but also grow

extracellularly [7,8].

Macrophages phagocytose mycobacteria through interaction

with several cell surface receptors, including complement recep-

tors, mannose receptors, surfactant protein A, scavenger receptors,

and Fc receptors [9]. By contrast, mycobacteria attaches to or

invades lung epithelial cells through interactions with glycosami-

noglycans (GAG) [10]. M. tuberculosis, M. bovis bacillus Calmette-

Guerin (BCG), and M. leprae produce two types of GAG

interacting adhesins, heparin-binding hemagglutinin (HBHA)

[10,11] and mycobacterial DNA-binding protein 1 (MDP1, also

called histone-like protein and laminin-binding protein in M. leprae)

[1,12]. HBHA is secreted to the extracellular milieu from

mycobacteria [13], whereas MDP1 is tightly attached on the

mycobacterial cell wall [14].

We previously demonstrated that hyaluronan is a major portal

for infection of mycobacteria into A549 human lung epithelial cells
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by interacting with MDP1 [1]. Hyaluronan is a nonsulfated linear

GAG composed of thousands of repeating units of GlcNAc- (beta-

1, 4)-GlcUA- (beta-1, 3) and is synthesized by 3 isoforms of

hyaluronan synthases (HAS), designated HAS1, HAS2, and HAS3

in both mice and humans [15–18]. In vertebrates, hyaluronan is a

ubiquitous structural component of the extracellular matrix, and is

abundant in the chondral and vitreous tissues. Recent findings

demonstrated that hyaluronan has a pivotal role in diverse

dynamic biological functions such as embryonic development [19],

cell migration [20,21], tumor transformation, [22,23], wound

healing [24], and inflammation [25–27].

On the mucosal surface of the airway, hyaluronan retains

bactericidal enzymes so that they are ‘‘ready-to-use’’, protecting

mucosal tissues from invading pathogens [28]. Furthermore, in the

alveolar tracts, released fragmented HA stimulates innate immune

responses by activating Toll-like receptor 2 and 4 dependent

pathways and initiating lung inflammation [25]. By contrast,

during resolution of respiratory inflammation, immuno-stimulato-

ry hyaluronan is taken up via the hyaluronan receptor CD44 on

alveolar macrophages [26]. Thus hyaluronan plays a pivotal role

in host defenses in the respiratory tract, but its role in

mycobacterial infection had not been elucidated so far. In this

study, we analyzed the role of hyaluronan after mycobacterial

infection was established.

Results

Hyaluronan enhances the extracellular growth of
mycobacteria after attachment to A549 cells

A549 cells, a type II human lung epithelial cell line, were

exposed to recombinant BCG expressing luciferase (rBCG-Luc)

under the control of the HSP60 promoter [14] at a multiplicity of

infection (MOI) of 10 for 16 hours. Cells were then washed and

various doses of hyaluronan added into the culture. Growth of

BCG was monitored by luciferase activity at each time point,

which is indicative of viable bacteria [14,29]. We found that

exogenously added hyaluronan enhances bacterial growth in a

dose-dependent manner (Figure 1A). We also confirmed this effect

by counting viable bacteria using a colony forming units (CFU)

assay (Figure 1C).

In our experimental setting, around 60% of the bacteria adhere

to the cell surface and the remaining 40% are internalized by the

cells [1]. Therefore, we next examined whether hyaluronan

enhances extracellular or intracellular growth by treatment with

gentamicin, which kills extracellular but not intracellular bacteria.

After infection, we added gentamicin (50 mg/ml) into the culture

for 6 hours and then added hyaluronan after removing gentami-

cin. The results showed that gentamicin treatment abrogated the

growth of BCG (Figure 1B), indicating that bacterial growth

occurred extracellularly. The enhanced effect of hyaluronan on

bacterial growth was also abolished by gentamicin treatment

(Figure 1B). This suggests that hyaluronan enhances growth of

BCG attached to these cells.

We next examined if the same effects of hyaluronan can be seen

in M. tuberculosis growth after infection to A549 cells. We infected

M. tuberculosis H37Rv to A549 cells, then added hyaluronan, and

monitored growth by counting colony-forming units (CFU).

Similar to the case of BCG, we found that presence of hyaluronan

enhances the growth of M. tuberculosis in a dose dependent manner

(Figure 1D). Gentamicin treatment also abrogated the growth of

M. tuberculosis and growth-enhancing effect of hyaluronan.

BCG utilizes hyaluronan as a carbon source
To determine why hyaluronan enhances the growth of BCG,

we hypothesized that BCG can utilize it as a carbon source

because hyaluronan is a polymer of disaccharides. We cultured

BCG-Luc in 7H9 based carbon-starved broth in the presence

(0.5 mg/ml) or absence of hyaluronan. As expected, in the carbon-

starved media BCG did not grow, while the addition of

hyaluronan supported the growth of BCG (Figure 2A), demon-

strating that BCG can utilize hyaluronan as a carbon source.

We next compared hyaluronan with other GAG in terms of

their growth supporting effect. BCG-Luc was cultured in 7H9-

based carbon starved media or media including 0.5 mg/ml of

each GAG as the sole carbon source. The results showed that

BCG did not grow in the media supplemented with heparin or

heparan sulfate. Both hyaluronan and chondroitin sulfate

encouraged the growth, but hyaluronan sustained higher growth

rates of BCG than chondroitin sulfate (Figure 2A). We also

demonstrated that the growth supporting effect of hyaluronan is

comparable to an equivalent amount of glucose (0.5 mg/ml)

(Figure 2B).

In order to evaluate uptake of hyaluronan during hyaluronan-

dependent growth of mycobacteria, we cultured BCG in the

presence of 3H-labeled hyaluronan in the media containing

hyaluronan as a sole carbon source. As shown in Figure 2C, live

BCG incorporated hyaluronan, whereas heat-killed bacteria did

not, showing actual uptake of hyaluronan into bacteria.

M. tuberculosis can utilize hyaluronan as a carbon source,
whereas neither M. avium nor M. smegmatis can

We next assessed the action of hyaluronan in the growth of

virulent M. tuberculosis (strain H37Rv), and environmental

mycobacterial species such as M. smegmatis (strain mc2155) and

M. avium (ATCC25291). In carbon-starved media, none of the

three strains grew. However, M. tuberculosis H37Rv, along with

BCG, multiplied in the media containing hyaluronan as a sole

carbon source while neither M. smegmatis nor M. avium proliferated.

After 12 days culture, optimal density (OD) at 630 nm of M.

Author Summary

Mycobacterium tuberculosis and Mycobacterium bovis are
major bacterial pathogens that kill approximately 2 million
people annually by causing tuberculosis. The M. tubercu-
losis complex has several strategies to parasitize the host.
After infection is established, these pathogens are rarely
eliminated from the host, and nowadays approximately a
third of the world’s human population is infected with the
Mycobacterium tuberculosis complex. The elucidation of
the parasitic mechanisms of the M. tuberculosis complex is
important for the development of novel strategies against
the disease. The major portal entry of M. tuberculosis
complex is through the respiratory tract. On the surface of
the airway, hyaluronan retains bactericidal enzymes so that
they are ‘‘ready-to-use’’, protecting tissues from invading
pathogens. Furthermore, fragmented hyaluronan pro-
duced as a result of infection is used by the immune
system as a sensor of infection. Thus, hyaluronan plays a
pivotal role in host defenses in the respiratory tract.
However, in this study, we observed that the M.
tuberculosis complex utilizes hyaluronan as a carbon
source for multiplication. We also found that the M.
tuberculosis complex has hyaluronidase activity and
showed that it is critical for hyaluronan-dependent growth
of the M. tuberculosis complex. This study demonstrates a
novel parasitic mechanism of the M. tuberculosis complex
and suggests that mycobacterial hyaluronidase is a
potential drug target.

Hyaluronan Supports the Growth of Mycobacteria
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tuberculosis culture increased to 0.3260.038 from 0.01 (day 0). We

then compared hyaluronan and other GAGs in terms of growth

supportive effects on M. tuberculosis. Similar to the case of BCG,

hyaluronan most effectively enhanced the growth of M. tuberculosis

among tested GAGs (Figure 3).

Detection of hyaluronidase activity in mycobacteria
Because hyaluronan is a long chain consisting of the repeat of

two monosaccharides at over 26105 Da, we hypothesized that

extracellular cleavage of the polymer would be required before

taken up by cells. Therefore, we next assessed hyaluronidase

activity in mycobacteria. Hyaluronan was incubated in the

presence or absence of cell lysates derived from BCG before

precipitation by phenol/chloroform extraction. Precipitates were

then fractionated by polyacrylamide gel electrophoresis (PAGE)

and visualized by alcian blue staining as described previously [30].

Hyaluronan was separated into discrete ladder-like bands by

electrophoresis after incubation with BCG lysate (Figure 4A),

demonstrating that BCG possesses hyaluronidase activity.

Hyaluronidase activity is critical for hyaluronan-
dependent growth

We then addressed whether hyaluronidase activity is crucial for

hyaluronan -dependent growth of mycobacteria. L-Ascorbic acid

6-hexadecanoate (Vcpal) is shown to be a potent inhibitor of

hyaluronidase [31]. We investigated the effect of Vcpal on

hyaluronidase activity of BCG and found that hyaluronidase

activity was abolished in the presence of 25 mM Vcpal (Figure 4A,

lane 4).

We next examined the effects of Vcpal on the growth of BCG.

BCG-Luc was cultured in modified 7H9 media containing

hyaluronan (0.5 mg/L) as the sole carbon source or 7H9-ADC

Figure 1. Effect of exogenously added hyaluronan on the growth of BCG and M. tuberculosis after infection of A549 cells. (A), A549
cells were infected with BCG-Luc for 16 hours at a multiplicity of infection (MOI) of 10. After removal of non-infected bacteria, different amounts of
hyaluronan (HA) were added; 0 mg/200 ml (BCG alone), 1 mg/200 ml (BCG+HA1mg), 10 mg/200 ml (BCG+HA10mg), and 100 mg/200 ml (BCG+HA100mg)
before culture at 37uC under 5% CO2. Cells were lysed by adding 5% Triton X (0.5% final) at each time point (1, 2, 4, and 6 days) and bacterial growth
was monitored by luciferase activity. The results are expressed as mean6the standard deviation (n = 3). Relative luciferase unit (RLU). Cntl, control
without BCG-Luc infection. For statistical analysis, a two-way ANOVA with Bonferroni Post tests were used to obtain P-values for each time point,
comparing the various growth conditions to the control. *P,0.01. (B), Gentamicin (GM) treatment abrogated the growth of BCG-Luc after infection of
A549 cells. A549 cells were infected with BCG-Luc for 16 hours at MOI of 10. After removal of non-infected bacteria, hyaluronan was added to be
500 mg/ml for some wells (BCG+HA, BCG+HA+GM) and cultured at 37uC under 5% CO2 in the presence or absence of 10 mg/ml GM (BCG+HA+GM,
BCG+GM). Growth of BCG was monitored by luciferase activity. The results are expressed as mean6the standard deviation (n = 3). RLU. Cntl, control
without BCG-Luc infection. (C), The enhancing effect of hyaluronan on BCG growth was confirmed by colony forming unit (CFU). A549 cells were
infected with BCG-Luc for 16 hours at MOI of 10. After removal of non-infected bacteria, BCG-Luc was grown in the presence or absence of 50 mg/ml
HA. Cells were lysed at each time point and serial 10-fold dilutions were plated in duplicate on Middlebrook 7H11 agar (Difco) supplemented with
oleic acid, albumin, dextrose and catalase (Difco). After incubation for 3–4 weeks at 37uC, colonies were counted and the number of CFU was
calculated per well (1 ml). The results are expressed as mean6the standard deviation (n = 6). (D), A549 cells were infected with M. tuberculosis H37Rv
and then different amounts of hyaluronan (HA) were added; 0 mg/200 ml (Mtb alone), 10 mg/200 ml (Mtb+HA10mg), and 100 mg/200 ml
(Mtb+HA100mg). Gentamycin (50 mg/ml) was added to some wells with (Mtb+HA100 mg+GM) or without (Mtb+GM) 100 mg/200 ml hyaluronan.
Cells were lysed by adding 5% Triton X (0.5% final) and the number of viable bacteria was determined by plating dilutions of the samples for CFU on
7H11-OADC agar.
doi:10.1371/journal.ppat.1000643.g001
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complete media, which contains Tween 80, glycerol, and dextrose

as carbon sources and BSA. We found that 25 mM Vcpal did not

change the growth rate of BCG in 7H9-ADC complete media,

while it abolished the growth of BCG in the media containing

hyaluronan as the sole carbon source (Figure 4B).

We also examined the effect of Vcpal on the growth of M.

tuberculosis. M. tuberculosis H37Rv was cultured in the media with or

without Vcpal (50 and 100 mM). Vcpal suppressed the growth of

M. tuberculosis in the media containing hyaluronan as a sole carbon

source but not the growth in conventional 7H9-ADC media

(Figure 4C). Other hyaluronidase inhibitors, such as apigenin and

quercetin [32], also inhibited hyaluronan dependent growth of M.

tuberculosis as shown in Figure S1. These results indicate that

hyaluronidase activity is essential for both BCG and M. tuberculosis

when utilizing hyaluronan as a carbon source.

Vcpal blocks growth of BCG after attachment to A549
cells

We next examined whether Vcpal suppresses the enhancing

effect of hyaluronan on the growth of BCG after attachment to

A549 epithelial cells. After exposure to BCG-Luc, hyaluronan was

added with or without Vcpal (25 mM) into the culture and growth

of BCG was monitored by measuring luciferase activity. After 6

days culture, RLU values of BCG-Luc increased to 36.667.5

RLU or 52.6618.7 RLU in the absence or presence of

hyaluronan, respectably. Adding Vcpal abrogated the enhanced

effects of hyaluronan (29.362 RLU), demonstrating that BCG

utilized exogenously added hyaluronan as a carbon source after

infection to A549 cells.

BCG and M. tuberculosis efficiently utilize hyaluronan
synthesized by HAS1 and HAS3

This work so far on the growth of mycobacteria has been

performed with hyaluronan purified from human umbilical cord

(Sigma). In order to elucidate whether mycobacteria can use

hyaluronan actually synthesized in situ by mammalian cells, we

employed the previously established stable human HAS1–3

expressing rat 3Y1 fibroblasts [15]. 3Y1 rat fibroblasts do not

produce detectable hyaluronan themselves but each transfectant

produces different sized hyaluronan. Both HAS1 and HAS3

transfectants secret hyaluronan with broad size distributions with

molecular masses between 26105 to ,26106 Da, while the HAS2

transfectant secretes extremely large hyaluronan at an average

molecular mass of .26106 Da [15]. We analyzed the level of

hyaluronan production by utilizing a hyaluronan-binding protein

(HABP)-based ELISA assay and confirmed that the HAS2

transfectant produced high levels of hyaluronan (235.7 mg/mL

in the culture media), while the HAS3 transfectant synthesized the

smallest amount of hyaluronan (15.9 mg/mL). The HAS1

transfectant produced moderate levels of hyaluronan (85.3 mg/

mL), and the empty vector transfectant did not produce detectable

amounts of hyaluronan.

Figure 2. Effect of hyaluronan on BCG growth in carbon-starved 7H9 media. (A) (B), BCG-Luc was cultured in carbon-starved 7H9 media
(7H9), or carbon-starved 7H9 media supplemented with 500 mg/ml of HA (7H9+HA), heparin (7H9+Hep), chondroitin sulfate C (7H9+Cho), heparan
sulfate (7H9+HS), or glucose (7H9+Glu) at 37uC. Growth of BCG was monitored by luciferase activity. The results are expressed as mean6the standard
deviation (n = 3). For statistical analysis, a two-way ANOVA with Bonferroni Post tests were used to obtain P-values for each time point, comparing the
various growth conditions to the control. *P,0.01. (C), Uptake of 3H-hyaluronan (HA) by BCG in carbon-starved 7H9 media. Live and heat-killed BCG
cells were cultured in carbon-starved 7H9 media in the presence or absence of 3H-labeled hyaluronan for 4 or 7 days. The uptake of 3H-laveled
hyaluronan was measured by a gamma counter.
doi:10.1371/journal.ppat.1000643.g002

Hyaluronan Supports the Growth of Mycobacteria
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Each human HAS transfectant was exposed to BCG-Luc and

the growth kinetics of the bacteria were monitored by luciferase

activity. The results showed that BCG grew after attachment to

3Y1 cells transfected with HAS1 and HAS3 but not with HAS2 or

empty vector (Figure 5A). In addition, we found that hyaluron-

idase treatment of HAS1 transfected cells enhanced the growth of

BCG (Figure 5B). These results suggest that shorter sized chains of

hyaluronan are preferential for BCG growth.

We also monitored the growth of M. tuberculosis H37Rv after

infection to these HAS transfectant cells. Along with the case of

BCG, HAS1 and HAS3 but not HAS2-tranfectants supported the

growth of M. tuberculosis (Figure 5C).

Production of hyaluronan in M. tuberculosis-infected
lungs

To see if hyaluronan is present at the site of infection of M.

tuberculosis, we assessed the expression of hyaluronan synthases

(HAS1, HAS2, and HAS3) in the lungs of BALB/c mice infected

with the M. tuberculosis H37Rv strain, using the low-dose aerosol

infection model. Total RNA was extracted from the lungs after 1,

3, 5, 7, 14, and 21 days of infection, and analyzed for HAS1,

HAS2, and HAS3 mRNA transcription by reverse transcriptase-

polymerase chain reaction (RT-PCR) (Figure 6A). The data

showed that HAS1 mRNA expression increased after infection

and was maintained at all time points (Figure 6A).

We next determined if hyaluronan is present in alveoli using

biotin-conjugated hyaluronan-binding protein (HABP) and histo-

chemical analysis. Before infection, hyaluronan was located on the

surface of the airways and alveoli (Figure 6B). After M. tuberculosis

infection, hyaluronan levels were profoundly increased and

accumulated in the granulomatous legion (Figure 6B). Taken

together, these data indicate that the major hyaluronan synthase in

the lungs is HAS1 both before and after M. tuberculosis infection

and hyaluronan accumulates in the tuberculosis lesion.

Figure 4. Hyaluronidase activity in mycobacteria and the effect
of hyaluronidase inhibitor on hyaluronan-dependent growth
of BCG and M. tuberculosis. (A), One mg/ml of hyaluronan and
700 mg/ml of BCG cell lysate was mixed and incubated for 3 days in the
presence (HA+Lysate+Vcpal) or absence (HA+Lysate) of ascorbic
palmitate (Vcpal), an inhibitor of hyaluronidase. As controls, hyaluronan
alone (lane 1, HA) or BCG cell lysate alone (lane 2, Lysate) was treated in
the same way. Hyaluronan was precipitated by ethanol after phenol
extraction and resolved in water. Then hyaluronan was fractionated by
PAGE gel electrophoresis and visualized by staining with alcian blue. (B),
BCG-Luc (0.01 OD at 630 nm) was cultured in carbon-starved 7H9 media
(7H9), media containing hyaluronan (500 mg/ml) as a sole carbon source
(7H9-HA), or complete 7H9-ADC media (7H9-ADC) in the presence or
absence of 25 mM Vcpal (+Vcpal), an inhibitor of hyaluronidase. The
growth of bacteria was monitored by luciferase activity. RLU, relative
luciferase unit (RLU). The results are expressed as mean6the standard
deviation (n = 3). (C), The effect of Vcpal on the growth of M.
tuberculosis. M. tuberculosis H37Rv was cultured in carbon starved 7H9
media (7H9), media containing 100 mg/ml hyaluronan as a sole carbon
source (7H9-HA), or conventional 7H9-ADC media (7H9-ADC) with or
without 50 (50) or 100 (100) mM of Vcpal for 8 days (closed bars).
Bacterial number was determined by plating dilutions for CFU on 7H9-
OADC agar and compared to that of Time 0 (D0, open bar).
doi:10.1371/journal.ppat.1000643.g004

Figure 3. Effect of GAG on the growth of M. tuberculosis in
carbon starved media. M. tuberculosis H37Rv was cultured in carbon-
starved 7H9 media (7H9), or carbon-starved 7H9 media supplemented
with 500 mg/ml of HA (7H9+HA), heparin (7H9+Hep), chondroitin sulfate
C (7H9+Cho), or heparan sulfate (7H9+HS) at 37uC. Bacterial numbers
were monitored by determining CFU at each time point. The results are
expressed as mean6the standard deviation (n = 3). For statistical
analysis, a two-way ANOVA with Bonferroni Post tests were used to
obtain P-values for each time point, comparing the various growth
conditions to the control. *P,0.01.
doi:10.1371/journal.ppat.1000643.g003

Hyaluronan Supports the Growth of Mycobacteria
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Detection of hyaluronan in the lungs of rhesus monkeys
that died of tuberculosis

M. tuberculosis-infected mice had numerous sites of granulomatous

inflammation in their lungs but in primates, tuberculosis granulo-

mas are well-organized and tighter. We next studied hyaluronan in

the lung granuloma of M. tuberculosis H37Rv-infected rhesus

monkeys by staining with alcian blue, which is commonly used

dye to detect GAG. The dye stained the surrounding region of well-

organized granuloma (Figure 7A) and the staining was largely

abolished by treatment with hyaluronidase (Figure 7B), showing

that hyaluronan is a major GAG surrounding granuloma. Acid-fast

bacilli (arrow heads in Figure 7C) were located in alcian blue stained

areas, thus suggesting a strong correlation between the localization

of the tubercle bacilli and hyaluronan.

Vcpal suppresses mycobacterial growth in vivo
Finally, we addressed the effect of Vcpal on the growth of BCG

in BALB/c mice. Mice were infected with BCG intravenously

through their tail veins. One day after BCG challenge, the

hyaluronidase inhibitor Vcpal (0.4 or 1.64 mg/dose) was injected

every day thorough the tail veins for 14 days. Two days after the

final injection, the mice were euthanized and viable bacteria

counts were determined by the CFU assay. As a positive control,

we also treated mice with amikacin (Amk), which kills extracellular

but not intracellular mycobacteria, by an intramuscular injection.

The results showed that Vcpal apparently suppressed growth of

BCG in the lungs, similar to Amk (Figure 8).

Discussion

Although hyaluronan is crucial for both structural and

physiological properties in the alveolar spaces, its role in

mycobacterial infection was previously unknown. We demonstrat-

ed before that hyaluronan is the major attachment site of both

BCG and M. tuberculosis in the infection of A549 cells, which itself

produced hyaluronan [1] probably depending on HAS3 and

HAS2 (Figure S2). In this study, we further extended our research

and studied the role of hyaluronan after infection was established.

First, we examined the effect of hyaluronan on the growth of

BCG after infection of A549 cells. BCG is an attenuated strain of

the virulent M. bovis and is a live vaccine against tuberculosis.

Because BCG bacilli share biological and pathological character-

istics [33] and over 99.5% of their genome with that of M.

tuberculosis [34], BCG is frequently utilized for the analysis of

virulence of M. tuberculosis.

Utilizing BCG, we first found that exogenously added

hyaluronan enhances the growth of BCG after incubation with

A549 cells. We found that gentamicin treatment abrogated the

growth of both BCG and M. tuberculosis, showing that these

mycobacteria grow outside A549 cells. By contrast, this BCG

strain (Pasteur) and M. tuberculosis H37Rv grew inside J774 mouse

macrophages. These data apparently suggest that intracellular

spaces in A549 cells are not suitable for the growth of

mycobacteria.

Mycobacteria are intracellular pathogens and survive in

macrophages by blocking phagosome-lysosome fusion (P-L fusion)

at the stage of Rab5–Rab7 conversion [35–37]. Mycobacteria can

infect non-professional epithelial cells in addition to alveolar

macrophages. However, the exact mechanisms of how mycobac-

teria invade and persist or are killed in epithelial cells are

unknown. Clemens and Horwitz demonstrated that mycobacterial

phagosomes acquired Rab7 in HeLa epithelial cells, suggesting

that P-L fusion is not efficiently blocked. Furthermore, Takeda’s

group recently found that type II pneumocytes produce antimi-

Figure 5. The effect of 3 hyaluronan synthases on the growth
of BCG and M. tuberculosis. (A), Established transfectant cells (Rat 3Y1
fibroblasts) with control vector (Mock) or vector to express hyaluronan
synthase 1 (HAS1), HAS2 (HAS2), or HAS3 (HAS3) were cultured in the
presence of BCG-Luc or media alone. The growth of bacteria was
monitored by luciferase activity. RLU, relative luciferase unit. The results
are expressed as mean6the standard deviation (n = 3). For statistical
analysis, a two-way ANOVA with Bonferroni Post tests were used to
obtain P-values for each time point, comparing the various growth
conditions to the control. *P,0.01. (B), Hyaluronidase (HAase)
treatment enhances the growth of BCG after infection to HAS1-
tranfected cells. After 16 hours exposure of BCG-Luc to transfected cells
with control vector (Mock) or vector expressing HAS1 (HAS1), unbound
bacteria were washed and cultured in the presence or absence of 2
units/ml of hyaluronidase (HAase). Bacterial growth was monitored by
the luciferase activity (RLU). Cntl, HAS1-transfectant cells without
infection of BCG-luc. The results are expressed as mean6the standard
deviation (n = 3). For statistical analysis, a two-way ANOVA with
Bonferroni Post tests were used to obtain P-values for each time point,
comparing the various growth conditions to the control. *P,0.01. (C),
The growth of M. tuberculosis H37Rv after infection to transfectant 3Y1
fibroblasts with control vector (Mock) or vector to express hyaluronan
synthase 1 (HAS1), HAS2 (HAS2), or HAS3 (HAS3) was monitored by
CFU. The results are expressed as mean6the standard deviation (n = 3).
For statistical analysis, a two-way ANOVA with Bonferroni Post tests
were used to obtain P-values for each time point, comparing the
various growth conditions to the control. *P,0.01.
doi:10.1371/journal.ppat.1000643.g005
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crobial peptides, secretory leukocyte protease inhibitor and

Lipocalin 2, which have potent anti-mycobactericidal activities

[5,6]. Such bactericidal molecules may contribute to the inhibition

of intracellular growth of mycobacteria within type II pneumo-

cytes. These data suggest that intracellular trafficking of myco-

bacteria-containing vacuoles and intracellular states of mycobac-

teria are different from that in macrophages.

We found that both BCG and M. tuberculosis grew in the media

containing hyaluronan as the sole carbon source (Figure 2A and

3). In addition to hyaluronan, mammals synthesize several GAGs,

but hyaluronan most strongly supported the growth of BCG

among GAGs and is comparable with glucose (Figure 2). By

contrast, environmental mycobacteria, such as M. smegmatis and M.

avium, failed to use hyaluronan as a carbon source. These data help

us to understand why pathogenic mycobacteria have the ability to

adhere to hyaluronan and metabolize it. It is reasonable to assume

that this property is a great advantage, allowing them to grow in

the hyaluronan-rich respiratory organs of their hosts.

Because hyaluronan is a long carbon chain, we considered that

cleavage must be an essential step for its use as a carbon source,

and indeed found hyaluronidase activity in BCG (Figure 4).

Although certain other species of bacterial pathogens, such as

Streptococcus, Staphylococcus, and Streptomyces, produce hyaluronidases

[38], there has been no report of hyaluronidase of mycobacteria.

This is the first report showing hyaluronidase activity in

mycobacteria.

There are two main groups of hyaluronidases identified to date.

One group is endo-b-N-acetyl-hexosaminidase or endo-b-glucu-

ronidase, which degrades hyaluronan by hydrolysis [39]. These

enzymes are distributed in some vertebrates including mouse and

human. Others are lyase type hyaluronidase that degrade

hyaluronan by b-elimination [39]. Bacterial hyaluronidases are

lyases, which are unstable but have stronger activity than those of

vertebrates, and generate unsaturated products, which is more

suitable for energy supply than saturated hyaluronan. Therefore, it

is reasonable to consider that mycobacteria have the lyase type of

Figure 6. Production of hyaluronan during M. tuberculosis infection in mice. (A), BALB/c mice were aerogenically infected with M.
tuberculosis H37Rv (around 10 CFU/lung). At the indicated periods, mice were euthanized and total RNA was extracted from the lungs. Transcription
of each gene encoding HAS1, HAS2, HAS3 and beta-actin was analyzed by RT-PCR. Three mice were analyzed for each time point and representative
data are presented. P, positive control of PCR employing the cDNA clone of each HAS gene as a template. (B), After euthanized, lungs from uninfected
mice (Normal) or mice 21 days after infection with M. tuberculosis H37Rv (M. tuberculosis infected) were removed and histological sections were made
by standard methods including formalin fixation, dehydration, and embedding in paraffin. Biotinylated hyaluronan-binding protein (HABP-biotin) was
used to stain the hyaluronan in the lungs. Biotin alone was used as control straining (Biotin alone). Avidin-conjugated alkaline phosphatase and
chromogen as the substrate were used to generate a red reaction product. Digital images of representative sites were acquired at 620 (upper
pictures) or 6100 (lower pictures) magnification. Experiments were performed at least three times using 5 mice for each group.
doi:10.1371/journal.ppat.1000643.g006
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hyaluronidase. Although hyaluronidase is not yet described in the

genome of either M. tuberculosis [33] or BCG [34], there are

approximately 40 lyases. One of these lyases may be responsible

for degradation of hyaluronan. Defining which enzyme is

responsible for cleavage of hyaluronan is next important issue.

Most hyaluronidases in mammals and bacteria display redundancy

in recognition of their GAG substrates. Our data show that

chondroitin sulfate also supported the growth of BCG (Figure 2).

This may imply that hyaluronidase(s) of BCG cleave chondroitin

sulfate as well.

Hyaluronan possesses many properties in vivo and it is believed

that these biological activities are dependent on its size [40–42].

Although hyaluronan is composed of simple repeating disaccha-

rides, its secondary structure is flexible. It is affected by the

numbers of intramolecular hydrogen bonds, their location, and

hydrophobic interactions [43,44], all of which are increased as the

size of the chains increase. Dynamic laser light-scattering analysis

showed that the rod-like structure of low molecular weight

hyaluronan changes to a stiff coil structure beyond a molecular

weight of 16105 Da [45]. Taken together, it is conceivable that

hyaluronan synthesized by HAS1 and HAS3 exhibits a different

structure from that synthesized by HAS2. Employing HAS

transfectants, we found that both BCG and M. tuberculosis utilize

hyaluronan synthesized only by HAS1 or HAS3 for multiplication

(Figure 5A and 5C).

The fact that BCG and M. tuberculosis grow when co-cultured

with HAS1 and HAS3 but not HAS2 transfected cells (Figure 5A

and 5C) suggests that HAS1 and HAS3-synthesized hyaluronan

supports the growth of mycobacteria in the human body. We

founds that HAS1 is the major hyaluronan synthase in M.

tuberculosis-infected mouse lungs (Figure 6A). HAS1 is expressed in

immune cells, such as dendritic cells and T cells [46]. To clarify

what kind of cell expresses HAS1 during mycobacterial infection is

the next important issue.

In spite of the importance of hyaluronan in host protection in

the lungs, its role in mycobacterial diseases had not been

elucidated. In this study, we demonstrated that BCG and M.

tuberculosis can utilize it as a carbon source. Hyaluronan was

observed in the granulomatous region of mice lungs infected with

M. tuberculosis (Figure 6). Furthermore, M. tuberculosis bacilli were

residing in the region where hyaluronan was located in the lungs of

monkeys that had died from tuberculosis (Figure 7). We also

showed that blocking hyaluronidase inhibited in vivo multiplication

Figure 7. Presence of hyaluronan in the lungs of rhesus
monkeys that died from tuberculosis. The lung sections were
obtained from rhesus monkeys that had died of tuberculosis after
challenge with 3,000 CFU/lung of M. tuberculosis H37Rv intratracheally.
The sections were stained with alcian blue with (B) or without (A)
pretreatment of hyaluronidase and counterstained with nuclear fast
red. The section was also stained with Ziehl-Neelsen to demonstrate the
presence of acid-fast bacilli (arrow heads) (C).
doi:10.1371/journal.ppat.1000643.g007

Figure 8. Vcpal suppresses the growth of mycobacteria in
mouse lungs. BALB/c mice were infected with 106 CFU of BCG
(Pasteur) intravenously. One day after the challenge, mice were treated
with amikacin (Amk) and Vcpal every day for 14 days. Two days after
final treatment, mice were euthanized and their lungs were homog-
enized. Lung pastes were serially diluted and plated in duplicate on
Middlebrook 7H11 OADC agars. After incubation for 3–4 weeks at 37uC,
colonies were counted and the number of CFU was calculated per lung.
For statistical analysis, a two-way ANOVA with Bonferroni Post tests
were used to obtain P-values to determine the effect of Vcpal and
amikacin on bacterial growth to the control. *P,0.05. Cntl, control mice
without treatment.
doi:10.1371/journal.ppat.1000643.g008
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of BCG (Figure 8). These results suggest that pathogenic

mycobacteria have evolved to exploit the intrinsically host-

protective molecule, hyaluronan as a nutrient to grow. Similar

behavior of pathogenic mycobacteria was observed during

infection of macrophages, that is, BCG is phagocytized in a

cholesterol-dependent manner [47] and utilizes cholesterol as a

carbon source to survive in activated macrophages [48]. It is likely

that mycobacteria developed several strategies to obtain nutrients

under nutrient-limited conditions.

After digestion of hyaluronan, it must be incorporated into

mycobacteria through specific receptors or membrane proteins.

Based on our results and consideration, hyaluronidase and a

potential transporter of fragmented hyaluronan of pathogenic

mycobacteria are potential drug targets.

Materials and Methods

Animal studies
All animals were maintained under specific pathogen-free

conditions in the animal facilities of Osaka City University

Graduate School of Medicine and in a biosafety-level-3 facility at

The Research Institute of Tuberculosis according to the standard

guidelines for animal experiments at each institute.

Culture medium and reagents
RPMI 1640 media, L-glutamine, fetal bovine serum, HEPES,

hyaluronan from human umbilical cord, heparin from porcine

intestinal mucosa and heparan sulfate from bovine kidney were

purchased from Sigma-Aldrich (St. Louis, MO). Chondroitin

sulfate A and C were purchased from Calbiochem (Gibbstown,

NJ). For conventional culture of mycobacteria, Middlebrook 7H9

medium (Becton Dickinson) supplemented with 0.085% NaCl,

10% albumin-dextrose-catalase (BD Biosciences), 0.2% glycerol,

and 0.05% Tween 80 (7H9-ADC) or 7H11-agar supplemented

with 0.085% NaCl, 10% oleic acid-albumin-dextrose-catalase (BD

Biosciences), and 0.2% glycerol (7H11-OADC) were used. 7H9

medium (Becton Dickinson) supplemented with 0.085% NaCl and

0.1% albumin was used as a carbon-starved 7H9 medium.

Effect of hyaluronan on extracellular growth of BCG and
M. tuberculosis after infection to A549 cells

A549 cells were grown in RPMI 1640 medium containing 10%

heat-inactivated fetal bovine serum, 2 mM L-glutamine, 25 mM

HEPES and 5.561025 M 2-mercaptoethanol (complete culture

medium) at 37uC in an atmosphere of 5% CO2. Cells were

suspended at 26105/ml in complete culture medium and 1 ml of

cell suspension was dispensed into individual wells of a 24-well

polystyrene plate (BD Biosciences, San Jose, CA). Plates were

incubated at 37uC for 24 h and were washed with serum-free

RPMI 1640 medium to remove nonadherent cells. Wells were

then refilled with 1 ml of complete culture medium. M. bovis BCG

or M. tuberculosis cell suspension was prepared as described

previously [1]. The bacterial cell suspension was added to A549

cells at multiplicities of infection (MOI) of 10. After 16 (BCG) or 4

(M. tuberculosis) h incubation, unbound bacteria were removed by

washing with serum-free RPMI 1640 three times. After adding

1 ml of fresh complete culture medium to each well, hyaluronan

solution was added to final concentrations ranging from 5 to

500 mg/ml. Cells were collected periodically for luciferase or CFU

assays.

Luciferase assays
Construction of BCG expressing luciferase was described

previously [1]. Luciferase activity was measured using the

luciferase assay system from Promega (Madison, WI) according

to the manufacturer’s protocol on a Wallac 1420 manager as

described previously [14].

Effect of gentamicin on mycobacterial growth after
infection to A549 cells

A549 cells in 96-well polystyrene plates (86104/well) were

infected with BCG-Luc or M. tuberculosis at MOI of 10 at 37uC.

After 16 (BCG) or 4 (M. tuberculosis) h, the monolayers were washed

three times with RPMI 1640 medium to remove extracellular

bacteria. Fresh complete culture medium containing 1 mg/ml of

hyaluronan and 50 mg/ml of gentamicin were added to each well

(200 ml/well) and incubated at 37uC. Cells were collected

periodically for detection of luciferase activity of BCG-Luc or

CFU assay of M. tuberculosis.

Evaluation of glucose and GAG as carbon sources for
growth of mycobacteria

BCG-Luc or M. tuberculosis was adjusted to a concentration of

16104 CFU/ml in carbon-starved 7H9 medium described

previously [14], and 200 ml of bacterial cell suspension was added

to 96-well polystyrene plates. Heparin, heparan sulfate, chondroi-

tin sulfate, hyaluronan or glucose was added to appropriate wells

to a final concentration of 500 mg/ml. Plates were incubated at

37uC and bacterial cells were collected periodically for detection of

luciferase activity of BCG-Luc or CFU assay of M. tuberculosis.

Evaluation of ingestion of hyaluronan into mycobacteria
BCG Pasteur was grown aerobically in 7H9-ADC medium at

37uC. Cells were then collected by centrifugation and half of the

cells were heat-killed by heating at 65uC for 30 min. Then bacteria

were washed, resuspended by carbon-starved 7H9 medium and

adjusted to an optical density at 600 nm of 0.07. One hundred

microliters of cell suspension was added to 100 ml of carbon-

starved 7H9 with or without 6 mg of 3H-labeled hyaluronan and

14 mg of non-labeled hyaluronan (final concentration of 100 mg/

L of total hyaluronan). Cells were then incubated at 37uC. After

incubation, cells were harvested by use of a Scatron Harvester

(Scatron) onto a glass fiber filter. The incorporated radioactivity

was measured in a gamma counter (ALOKA ARC-2000).

Effect of hyaluronan on mycobacterial growth
M. tuberculosis strain H37Rv, M. smegmatis strain mc2155 and M.

avium strain type4 were grown in carbon-starved 7H9 medium

containing 0.5 mg/ml of hyaluronan, and the cultures were

monitored periodically for their optical density at 600 nm (M.

tuberculosis and M. smegmatis) or CFU (M. tuberculosis and M. avium).

Preparation of oligosaccharides from hyaluronan
digested by crude extracts of BCG

BCG was grown in 7H9-ADC medium to mid-log phase. After

incubation, bacterial cells were harvested, washed three times with

ice-cold PBS (pH 6.0) and resuspended in the same buffer. To

disrupt bacterial cells, the cell suspension was added to a screw-

capped tube containing glass beads (diameter, 1.0 mm) and the

tube was oscillated on a Mini-Bead Beater (Cole-Parmer). The

tube was centrifuged at 10,0006g for 10 min, and the supernatant

containing the bacterial protein extract was collected into a new

tube. The protein solution was then mixed with 1 mg/ml of

hyaluronan in PBS (pH 6.0) at 37uC. After incubation for 24 h,

the solution was mixed with an equal volume of phenol to remove

protein. The mixture was centrifuged at 10,0006g for 10 min and

the supernatant was collected for PAGE analysis.
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Polyacrylamide Gel Electrophoresis (PAGE) of hyaluronan
PAGE analysis of hyaluronan was performed as previously

described by Ikegami-Kawai et al. [30] with minor modifi-

cations. The PAGE mini-slab gels contained 12.5% acrylamide,

0.32% N, N9-methylene bis-acrylamide in 0.1 M Tris-borate-

1 mM Na2EDTA (TBE, pH 8.3). For the electrophoretic run,

samples containing hyaluronan were mixed with one-fifth volume

of 2M sucrose in TBE and 10 ml of the mixtures was applied

directly to the gel. Bromophenol blue in TBE containing 0.3 M

sucrose was used as a tracking dye, but was generally applied to a

well with no sample. The gels were electrophoresed at 300 V for

approximately 70 min using TBE as a reservoir buffer. After

electrophoresis, the gels were stained with alcian blue as

described previously [30]. Briefly, the gels were soaked in

0.05% Alcian blue in distilled water for 30 min in the dark and

destained in water for 30 min.

Inhibition of bacterial growth by hyaluronidase inhibitor
BCG-Luc or M. tuberculosis H37Rv was suspended in 7H9-ADC,

carbon-starved 7H9 or carbon-starved 7H9 containing 0.5 mg/ml

of hyalurona to a final concentration of 16104 CFU/ml and 200ml

of each suspension was added to 96-well polystyrene plates. Vcpal

was added to each well. Bacterial cells were then incubated at

37uC and were collected periodically for detection of luciferase

activity for BCG-Luc or CFU assay for M. tuberculosis. Similarly,

M. tuberculosis H37Rv was incubated in the media containing

0.5 mg/ml hyaluronan in presence or absence of 0.1 or 0.5 mM of

apigenin or quercetin. After incubation for 7 days, living bacterial

number was determined by CFU assay.

RT-PCR
The expression of hyaluronan synthase genes in the lung tissues of

mice aerogenically challenged with the virulent M. tuberculosis strain

H37Rv was determined by RT-PCR. Seven-week-old of female

BALB/c mice were aerogenically infected with the M. tuberculosis strain

H37Rv (26102 CFU/mouse) using a Glas-Col chamber. At different

time points, 3 mice per group were euthanized and, the lungs were

homogenized in PBS containing 0.05% Tween 80. The homogenates

were centrifuged, and the pellets were processed to isolate total RNA

using the RNeasy mini kit (QIAGEN, West Sussex, UK) according to

the manufacturer’s instruction. One microgram of total RNA was

reverse transcribed using Super Script II RNase H reverse transcriptase

(Invitrogen). The cDNA was then subjected to RT-PCR. The

following primer pairs were used: b-actin, 59-TGGAATCCTGTGG-

CATCCATGAAAC-39 (F) and 59-TAAACGCAGCAGCTCAG-

TAACAGTCCG-39 (R); HAS1, 59-GCTCTATGGGGCGTTCC-

TC-39 (F) and 59-CACACATAAGTGGCAGGGTCC-39 (R); HAS2,

59-TGGAACACCGGAAAATGAAGAAG-39 (F) and 59-GGACC-

GAGCCGTGTATTTAGTTGC-39 (R); HAS3, 59-CCATGAG-

GCGGGTGAAGGAGAG-39 (F) and 59-ATGCGGCCACGGTA-

GAAAAGTTGT-39 (R). The amplification procedure involved initial

denaturation at 94uC for 4 min followed by 35 cycles of denaturation

at 94uC for 1 min, annealing of primers at 57uC for 1 min and primer

extension at 72uC for 3 min. After completion of the 35th cycle, the

extension reaction was continued for another 7 min at 72uC.

Total RNA was extracted from A549 cells by RNeasy mini kit

(QIAGEN) and then 1 mg of total RNA was reverse transcribed using

Super Script II RNase H reverse transcriptase (Invitrogen). The

cDNA was then subjected to RT-PCR. The following primer pairs

were used: b-actin, 59-GATCATTGCTCCTCCTGAGC-39 (F) and

59-CACCTTCACCGTTCCAGTTT-39 (R); HAS1, 59- ACTCG-

GACACAAGGTTGGAC -39 (F) and 59- TGTACAGCCACT-

CACGGAAG -39 (R); HAS2, 59- ATGCATTGTGAGAGGT-

TTCT -39 (F) and 59- CCATGACAACTTTAATCCCAG -39 (R);

HAS3, 59- GACGACAGCCCTGCGTGT -39 (F) and 59- TT-

GAGGTCAGGGAAGGAGAT-39 (R). The amplification proce-

dure involved initial denaturation at 94uC for 10 min followed by 40

cycles of denaturation at 94uC for 1 min, annealing of primers at

56uC for 1 min and primer extension at 72uC for 2.5 min.

Lung sections of rhesus monkeys that died from
tuberculosis

The M. tuberculosis H37Rv challenge infection study of in rhesus

male monkeys was performed previously [49]. The lung of non-

vaccinated monkeys that died of tuberculosis 3 month after

intratracheal challenge of 3,000 CFU/lung of M. tuberculosis

H37Rv were immediately removed and fixed with 15% formalin

for 10 days. Three animals’ lungs were embedded in paraffin

blocks and used in this study as well.

Histochemical staining for hyaluronan
After deparaffinization by washing with xylene and ethanol, the

tissue sections were washed in TBS and incubated with fresh TBE

containing 0.05 mM of Pronase K (Dako) for 60 min at room

temperature. After washing with TBS containing 1% bovine

serum albumin, the slides were incubated with 3% bovine serum

albumin in TBS for 30 min at room temperature to block non-

specific binding sites. The slides were then washed with TBS twice

for 10 min and incubated with the biotinylated hyaluronan-

binding protein (HABP) probe at a concentration of 2 mg/ml in

TBS for 60 min at room temperature. Following washing in TBS,

the slides were incubated with a streptavidin-peroxidase reagent

and the staining developed using DAKO Cytomation LSAB-

system AP (Dako). The slides were then washed with distilled

water and counterstained with Mayer’s hematoxylin. Paraffin

sections were also stained with alcian blue (Sigma) pH 2.5 (3%

acetic acid) for 5 min. The slides were counterstained with nuclear

fast red (Biomeda) and mounted with Gel/Mount (Biomeda). For

GAG digestion, 0.5 mg/ml (10 U/ml) Streptomyces hyaluronidase

was added for 30 min at 37uC before alcian blue staining. The

slides were stained by Ziehl-Neelsen technique using carbol-

fuchsin and malachite green (Sigma).

Supporting Information

Figure S1 Apigenin and quercetin suppress growth of M.

tuberculosis in the media containing hyaluronan as a sole carbon

source. M. tuberculosis H37Rv was cultured for 7 days in carbon-

starved media (7H9) or the media containing 500 mg/ml

hyaluronan as a sole carbon source (7H9-HA). Apigenin or

quercetin, inhibitors of hyaluronidase, were added to be 0.5 mM

or 0.1 mM. CFU was determined at time 0 (open bar) and 7 days

after culture (closed bars).

Found at: doi:10.1371/journal.ppat.1000643.s001 (0.08 MB TIF)

Figure S2 Analysis of transcription of HAS genes in A549 cells.

Total RNA was extracted from A549 cells cultured in RPMI1640

media containing 10% FCS. Transcription of each gene encoding

human HAS1, HAS2, HAS3 and beta-actin was analyzed by RT-

PCR. Three samples were analyzed and representative data are

presented. M, DNA markers.

Found at: doi:10.1371/journal.ppat.1000643.s002 (0.61 MB TIF)
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