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What Are Microsporidia?

Microsporidia are a diverse group of

obligate intracellular eukaryotic parasites.

There are approximately 1,300 formally

described species in 160 genera [1], but

this certainly represents a tiny fraction of

the real diversity because most potential

host lineages have been poorly surveyed.

Nearly all microsporidia are known to

infect animals, and some are responsible

for a number of human diseases (13

species of microsporidia have been docu-

mented to infect humans) predominantly

associated with immune suppression [2].

They also infect several commercially

important animal species such as bees, silk

worms, and salmon, and various domesti-

cated mammals. They are thought to be

especially common in insects and fish,

although most invertebrates have been so

poorly surveyed this may change. Their

infective stage is a thick-walled spore,

which is also the only stage that can

survive outside their host cell [3]. The

spore contains a sophisticated infection

apparatus, primarily distinguished by a

long, coiled filament called the polar

filament. When the spore germinates, an

inflow of water leads to pressure in the

spore that eventually ruptures the wall and

forces the polar filament to eject, turning

inside out to form a tube (Figure 1) [4].

This process takes place very quickly, so

the polar tube is in effect a projectile. At

the completion of germination, the para-

site cytoplasm is forced through the tube

and either delivered to the surface of the

host cell, or perhaps injected into the host

cytoplasm if the projectile tube has

actually penetrated the host cell. It has

also been shown that microsporidia can be

taken up by phagocytosis, and then use the

polar tube to escape from the vacuole [5],

so there appear to be more than one mode

of infection.

Are They Protists, Fungi, or
What?

There has been considerable debate

about the origin of microsporidian para-

sites. Aside from their elaborate infection

mechanism, they have few distinguishing

features, and have thus been difficult to

compare to other eukaryotes. This is

illustrated by their tumultuous taxonomic

history (Figure 2), and the tendency to

lump them with what we now know to be

unrelated organisms. When microsporidia

were discovered in 1857, they were

considered to be schizomycete fungi, but

this was an artificial group that included

various yeasts and bacteria. They were

soon transferred to Sporozoa and ulti-

mately to the subgroup Cnidosporidia.

This too was a grab-bag of four unrelated

groups (Microsporidia, Myxosporidia, Ac-

tinosporidia, and Helicosporidia) that were

falsely grouped because of their intracel-

lular parasitic way of life. Remarkably,

Microsporidia, Myxosporidia, and Heli-

cosporidia have since been shown to be

fungi, animals, and green algae, respec-

tively, underscoring just how distantly

related these parasites really are. Eventu-

ally the absence of many ‘‘eukaryotic’’

features in microsporidia, in particular

mitochondria, led to the proposal that

microsporidia never had these features

because they diverged from other eukary-

otes prior to the origin of these features

[6]. Microsporidia and a few other

lineages without obvious mitochondria

were collectively called ‘‘Archezoa’’ and

were thus proposed to be ancient, primi-

tive lineages of great importance to

understanding the origin of eukaryotes.

Molecular data originally supported this

‘‘ancient origin’’ hypothesis [7], but as the

sampling of genes increased, another

hypothesis emerged: that microsporidia

are related to fungi [8,9]. Since the

1990s, most well-supported gene trees

have shown this fungal connection [10],

and the support for trees that showed the
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Figure 1. Light micrograph of Antonospora locustae with pressure-induced polar tube
eversion. The scale bar is 10 um. (A) Many ungerminated spores (one example labeled U) and a
few germinated spores, showing the residual spore wall (one example labeled G). (B) A
germinated spore where the everted polar tube (PT) has extended far from the cell and can be
seen to be many times the length of the spore.
doi:10.1371/journal.ppat.1000489.g001
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deep-branching position has been under-

mined by analysis with more sophisticated

models that take into account rate hetero-

geneity [11,12]. The completion of the

Encephalitozoon cuniculi genome underlined

this transition in our thinking [13], and

also revealed the correlation between

substitution rate and ‘‘deep-branching’’

[14]. The conclusion that microsporidia

are fungi has one unwanted implication:

all taxa that were named based on the

view that they are protists (about 1,000

names) are invalid because fungi are

subject to botanical rules of nomenclature.

Accordingly, it has now been proposed

that microsporidia are excluded from the

International Code of Botanical Nomen-

clature, despite their fungal nature [15].

Our view of the origin of microsporidia

has thus come full circle, in a way. Their

original classification as fungi was actually

based on a misguided view of microbial

diversity, but we have nonetheless re-

turned to the view that microsporidia are

fungi, although where they might branch

in relation to the various fungal phyla has

remained a source of debate [16].

Are They Really
‘‘Amitochondriate’’?

The Archezoa hypothesis (that micro-

sporidia were an ancient, primitive lineage)

was based on the absence of mitochondria

in microscopy studies [6]. However, the

phylogenetic evidence that microsporidia

are closely related to fungi made it

impossible for them to have been ances-

trally amitochondriate, thus begging the

following question: do they still have

mitochondria, or did they lose them? The

first evidence for mitochondrial relicts came

in the form of nuclear-encoded genes for

mitochondrion-targeted proteins. The first

of these to be found was HSP70, followed

by pyruvate dehydrogenase [17–20], and

eventually a handful of other genes in the

complete genome of E. cuniculi [13]. These

confirmed the mitochondriate ancestry of

the microsporidia, but left some room for

doubt about whether a relict organelle

actually persisted because the evidence that

these genes encoded organelle-targeting

transit peptides was far from clear-cut.

Because of this, even the complete genome

of E. cuniculi could only provide indirect

support for the presence of an organelle in

the cell. Direct evidence for the retention of

mitochondria came from the immuno-

localisation of HSP70 in Trachipleistophora

hominis, which reveled multiple, tiny

(50690 nm) organelles bounded by two

membranes, but lacking any other distin-

guishing structural features [21]. This

derived and reduced mitochondrion was

named a mitosome. Subsequently, several

genes involved in the assembly of iron-

sulfur clusters were localized to the mito-

somes of E. cuniculi and T. hominis [22,23].

Interestingly, however, not all mitochon-

drion-derived proteins still function in the

mitosome: the E. cuniculi, glycerol-3-phos-

phate dehydrogenase, and some compo-

nents of iron-sulfur cluster assembly in

T. hominis localize to the cytosol, despite

their mitochondrial ancestry [22,23]. These

proteins have therefore found a new

cytosolic function as the organelle degen-

erated, suggesting the functions of the

organelle are even more limited than the

genomic data led us to believe.

What Are Microsporidian
Genomes Like?

Microsporidian genomes are made up

of multiple linear chromosomes much like

that of other eukaryotes, but they are

otherwise quite reduced and unusual. For

a start, many microsporidian genomes are

quite small. At the extreme, the Encepha-

litozoon intestinalis genome is only 2.3 Mbp,

smaller than many bacterial genomes. The

complete genome of E. cuniculi is only

2.9 Mbp, and only encodes about 2,000

protein-coding genes [13]. The genome is

highly compacted, with short intergenic

regions, almost no repeats, and little

evidence of selfish elements, altogether

leading to a gene density approximately

twice that of Saccharomyces. Even the genes

themselves are shorter than homologues in

other fungi, a likely consequence of

domain loss due to the reduction of

interaction networks. E. cuniculi genes have

also massively reduced the number of

introns they contain: only 14 have been

annotated at present in the entire genome,

and in Enterocytozoon bieneusi they appear to

have been eliminated altogether [24]. The

close proximity of the genes to one another

in these compact genomes seems to have

an effect on transcription, since a high

frequency of overlapping transcripts has

been observed in both E. cuniculi and

Antonospora locustae [25,26]. In particular,

transcription termination is often not

immediately after a gene, but well into or

beyond the adjacent gene, so that an

mRNA can contain sequence from more

than one gene, although only one gene

appears to be translated (as often as not,

the additional genes are in the opposite

strand). This makes it difficult to interpret

large scale transcription patterns, since the

presence of RNA corresponding to a gene

does not necessarily mean that gene is

being expressed. The genomes of these

highly compacted species have attracted

the most attention, but we are now

beginning to see that other microsporidian

genomes are quite different. There is a

nearly a 10-fold range in genome size

Figure 2. Timeline of the changing taxonomic position of microsporidia, from their
discovery in 1857 to the present. When first described in 1857, they were classified as
schizomycete fungi. Later they were consisdered sporozoan protists (and more specifically
members of the subgroup Cnidosporidia), a position favoured for over 100 years. In 1983 a new
hypothesis radically departed from this idea, suggesting they were an ancient, primitive lineage
that evolved before the origin of mitochondria. Molecular data originally supported this
possibility, but as data accumulated, it became clear that they were in reality highly reduced
fungi, a conclusion broadly supported by the genomic data now available, although their exact
relationship to fungi remains contentious.
doi:10.1371/journal.ppat.1000489.g002
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between different species that have been

investigated [27], and genomes on the

larger side of the spectrum have been

shown to have a low gene density and

many transposons [28,29].

How Do Microsporidia Depend
On Their Host?

Microsporidia cannot grow or divide

outside their host cell, but exactly how

they interact and use resources from their

host is only partially known. It has long

been known that infection induces changes

in the host that appear to be related to

metabolic dependency. For example, in-

fection by several species leads the host to

surround the parasite with mitochondria,

presumably supplying the parasite with

energy. In one extreme case, infection

leads the host cell to grow to an enormous,

mutinucleate cell called a xenoma, which

becomes a highly organized spore produc-

tion assembly line [30]. Prior to the

widespread use of genomic methods, the

metabolism of microsporidia was difficult

to study because they were difficult to

separate from their host cells, but it has

long been clear they lack many metabolic

pathways, such as oxidative phosporyla-

tion, electron transport, and tricarboxylic

acid cycle [31]. Characterisation of genes

involved in metabolism, and in particular

genome surveys of microsporidia, have

confirmed and refined this view. In all

well-sampled species there are no genes for

many metabolic pathways (e.g., tricarbox-

ylic acid cycle), and few genes relating to

the synthesis of small molecules such as

amino acids and nucleotides. Interestingly,

several ATP transporters have been found

in microsporidia. Some of these localize to

the outer membrane of the parasite and

seem to import ATP from the host cell,

while others import ATP into the relict

mitosome [32,33]. There is also some

variability in the metabolic capacity of

different species of microsporidia, the most

extreme case being the human parasite E.

bieneusi, with a genome sequence survey

revealing virtually no genes for central

carbon metabolic pathways [24]. This

includes glycolysis, which is the backbone

of energy generation in other microspo-

ridia, suggesting that this species is unable

to generate energy from sugar, and is

therefore dependent on its host directly for

ATP, making this species one of the most

host-dependent parasites known.
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