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ABSTRACT

P athogens are exogenous agents capable of causing
disease in susceptible organisms. In celiac sprue, a
disease triggered by partially hydrolyzed gluten

peptides in the small intestine, the offending immunotoxins
cannot replicate, but otherwise have many hallmarks of
classical pathogens. First, dietary gluten and its peptide
metabolites are ubiquitous components of the modern diet,
yet only a small, genetically susceptible fraction of the human
population contracts celiac sprue. Second, immunotoxic
gluten peptides have certain unusual structural features that
allow them to survive the harsh proteolytic conditions of the
gastrointestinal tract and thereby interact extensively with
the mucosal lining of the small intestine. Third, they invade
across epithelial barriers intact to access the underlying gut-
associated lymphoid tissue. Fourth, they possess recognition
sequences for selective modification by an endogenous
enzyme, transglutaminase 2, allowing for in situ activation to a
more immunotoxic form via host subversion. Fifth, they
precipitate a T cell–mediated immune reaction comprising
both innate and adaptive responses that causes chronic
inflammation of the small intestine. Sixth, complete
elimination of immunotoxic gluten peptides from the celiac
diet results in remission, whereas reintroduction of gluten in
the diet causes relapse. Therefore, in analogy with antibiotics,
orally administered proteases that reduce the host’s exposure
to the immunotoxin by accelerating gluten peptide
destruction have considerable therapeutic potential. Last but
not least, notwithstanding the power of in vitro methods to
reconstitute the essence of the immune response to gluten in
a celiac patient, animal models for the disease, while elusive,
are likely to yield fundamentally new systems-level insights.

The Expanding Concept of Pathogens

The capacity for exogenous agents to cause disease in
susceptible organisms has been widely recognized since the
germ theory of disease gained acceptance in the late
nineteenth century. In the roughly 120 years since then, over
1,400 such disease-causing agents, termed pathogens, have
been identified [1] and their respective roles in disease
pathology elucidated to varying degrees.

Nonetheless, there remains considerable difficulty in
defining what exactly constitutes a pathogen even today, and
the definition of this term has necessarily expanded with our
understanding of disease etiology [2,3]. A majority of
literature definitions for the term pathogen take their cue
from Koch’s postulates and focus on disease-causing
microorganisms, predominantly bacteria [4–6]. However,
non-living infectious agents such as viruses and prions can
cause disease as well, and Koch’s postulates have been
periodically adapted to account for such new classes of

pathogens [7,8]. Prions are a particularly notable example of
this conceptual expansion, being merely misfolded proteins
that replicate by catalyzing the misfolding and aggregation of
properly folded host prion proteins in a templated fashion
[9]. Discovered only 25 years ago, these pathogenic proteins
are responsible for a growing number of devastating
neurodegenerative diseases [10].
Even as new pathogens capable of causing human disease

are uncovered, evidence is emerging that several diseases not
previously considered to have an infectious etiology may
involve pathogens. Among these are hepatocellular
carcinoma and type II diabetes (hepatitis C virus [11,12]),
Crohn disease (Mycobacterium avium [13]), peptic ulcers and
gastric carcinoma (Helicobacter pylori [14,15]), cervical
carcinoma (human papillomavirus (HPV) [16,17]) and myriad
other virally induced cancers [18–20].
In the broadest sense, a pathogen can be defined as any

substance capable of causing disease [21]. Under this
definition, pathogens need not be replicative, and could
include toxins, food allergens, and dietary antigens
responsible for chronic inflammation, such as gluten peptides
in the context of celiac sprue.
Celiac sprue is a chronic enteropathy caused by dietary

gluten from common food grains such as wheat, rye, and
barley [22]. In sharp contrast with virtually all other dietary
proteins, gluten proteins are minimally digested by the
normal complement of gastrointestinal proteases, yielding
proteolytically resistant peptides that accumulate in the
proximal small intestine upon gastric emptying of a gluten-
containing meal [23,24]. An inflammatory response to these
metastable peptides is triggered in genetically susceptible
individuals that is initially localized to the small intestine but
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that eventually leads to a systemic humoral response against
gluten [25]. Although the clinical signs and symptoms of
celiac sprue are highly variable, in the small intestine this
inflammatory response causes flattening of the villi, crypt
hyperplasia, and intraepithelial lymphocytosis, which in turn
leads to nutrient malabsorption and/or chronic diarrhea
[26,27]. If undiagnosed and untreated, this chronic
inflammation is associated with the increased incidence of T
cell lymphoma of the small intestine [28,29]. In most celiac
patients, adherence to a gluten-free diet reverses damage to
intestinal structure and function, while reintroduction of
dietary gluten results in relapse [30].

In this review, we describe the unique attributes of
immunotoxic gluten peptides that enable them to enact
disease in celiac sprue patients. Interestingly, many parallels
can be drawn between these attributes and those of more
classical (infectious) pathogens. Our intent in making such a
comparison is not to advocate reclassification of gluten
peptides as pathogens. Rather, we hope to promote a
dialogue across scientific communities that leads to a deeper
understanding of celiac pathogenesis as well as to a keener
recognition of salient characteristics of established and
emerging pathogens.

Gluten Peptides as Non-Replicative Pathogens

To cause disease in a susceptible host, infectious pathogens
must encounter that host (exposure), overcome barriers to
infectivity, access a privileged niche, colonize, and ultimately
cause damage to the host either directly, through toxin
secretion, or indirectly, through activation of a self-injurious
host immune response. In many cases, additional steps, such
as activation of the infectious pathogen to a more virulent
form and subversion of host processes toward a virulent end,
are prerequisite to disease as well.

The gluten-induced pathogenesis of celiac sprue proceeds
through a remarkably similar trajectory (Figure 1). Gluten
peptides enter the body as components of common dietary
grains, evade destruction by gastrointestinal proteases, invade
across the intestinal epithelium intact, become activated to a
more immunotoxic form via enzymatic deamidation, and
exert both innate and immunogenic effects in susceptible
individuals, leading to disease. At two stages in this process,
the immunotoxicity of gluten peptides is increased through
the actions of endogenous enzymes. Gluten peptides can thus
be thought of as non-replicative pathogens, bearing many
similarities to infectious pathogens, with the exception of
their inability to replicate or colonize an afflicted individual.

Exposure and susceptibility to the pathogen. The first step
in any pathogen-initiated disease is exposure of the host to
the pathogen. Whether this exposure results in disease
depends both on the virulence of the pathogen and on the
susceptibility of the host [4]. Highly virulent infectious agents,
such as human immunodeficiency virus (HIV), cause disease
in virtually all exposed individuals, such that the primary
determinant of disease incidence is the frequency of new
exposures. However, exposure to most pathogens is necessary
but not sufficient to cause disease, and the genetic and
conditional susceptibility of the host are additional
determinants of disease progression [31]. Indeed, less virulent
pathogens may be in frequent contact with potential hosts
but cause symptomatic disease in only a small fraction of

those exposed. For example, persistent H. pylori infection is
present in roughly half of the world’s population, and in up to
80% of populations in developing areas, yet only 10%–20%
of those infected experience peptic ulcer disease, and only
1% develop gastric cancers [32]. As a corollary to the
necessity of pathogen exposure toward infectious disease, the
eradication or clearance of the pathogen from the host
results in attenuation of disease symptoms.
Gluten peptides are similar to H. pylori and other high

prevalence, low virulence pathogens in that they are
ubiquitous but cause disease only in susceptible individuals.
Gluten-containing grains such as wheat, rye, and barley are
extremely common dietary components in modern
agricultural societies. Additionally, many ostensibly gluten-
free products contain gluten contaminants due to the use of
these proteins in food processing, as well as in certain non-
food items such as cosmetics and household cleaning
products. Despite the nearly universal presence of gluten as
a dietary protein source, the prevalence of celiac sprue is
established by serological screening to be 1:100–1:200, and
many of these cases are asymptomatic and undiagnosed
[33].
The human class II major histocompatibility complex

(MHC) plays a prominent role in determining genetic
susceptibility to disease. Human leukocyte antigen (HLA)
DQ2 is associated with over 90% of diagnosed celiac sprue
patients, while HLA DQ8 is present in virtually all other cases
[34]. Nevertheless, the HLA region confers only 40% of the
genetic risk for celiac sprue, suggesting that other inherited
susceptibility factors remain to be identified [34]. Moreover,
the onset of symptomatic disease temporally varies between
childhood and late adulthood among diagnosed patients,
suggesting that gluten alone may not be sufficient to trigger
the initial onset of disease. Other environmental factors that
may confer conditional susceptibility on afflicted individuals
include gastrointestinal surgery, pregnancy, and innate
immune system activation caused by microbial colonization
of the proximal small intestine [35,36]. Once symptoms of
celiac sprue manifest, however, gluten is sufficient to
reinitiate and sustain the disease thereafter. The only
currently available treatment for celiac sprue is a lifelong
gluten-free diet. While difficult to maintain due to the
reasons stated above, dietary exclusion of gluten causes
symptomatic remission in most celiac patients [37].
Evasion of ‘‘host’’ defenses. Due to their route of entry,

gluten peptides are most readily compared to pathogens of
the gastrointestinal tract. Such pathogens encounter an
extremely hostile environment that destroys any exogenous
agents not uniquely suited to survive. In the stomach, gastric
juices containing a mixture of hydrochloric acid, lysozyme,
and pepsin prevent infection by ingested bacteria [38], and
may attenuate the infectivity of low doses of prions [39].
Gastrointestinal microbes have devised a variety of strategies
to surmount these defenses. H. pylori colonizes the gastric
mucosa by producing a urease that hydrolyzes gastric urea to
ammonia and carbon dioxide, thereby buffering its
periplasmic pH, as well as that of its surroundings [40,41].
Yersinia enterocolitica employs a similar tactic en route to its
site of colonization in the intestine [42], while Shigella flexneri
and Escherichia coli are resistant to pH values as low as 2.0–2.5,
and Salmonella typhimurium undergoes an acid tolerance
response to endure transient acidity [43].
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Gastrointestinal proteases are the primary defense against
potentially toxic dietary proteins. Gastric pepsin, pancreatic
proteases trypsin, chymotrypsin, elastase, and
carboxypeptidase, as well as exopeptidases anchored to the
mucosal surface, cooperatively and rapidly digest most
dietary proteins into single amino acids, di-, and tri-peptides
[44,45]. These digestion products are too small to elicit an
immune response, and are absorbed across the mucosa for
their nutritional value. By contrast, gluten proteins are

incompletely digested by gastrointestinal proteases [23,24,46].
The structural basis for this proteolytic resistance has been
elucidated. Gluten proteins are unusually rich in proline
(;15%) and glutamine (;35%) residues, particularly in those
regions identified as immunotoxic in celiac sprue [47].
Cleavage adjacent to proline is highly disfavored for most
proteases, and glutamine is not a preferred residue for any of
the endoproteases found in the gut. Consequently, peptides
of sufficient length to precipitate an immune response evade

doi:10.1371/journal.ppat.0040034.g001

Figure 1. Generalized Schematic Depiction of the Parallels between Infectious Pathogen Transmission to a Susceptible Host via the Gut (Left Panel) and

Celiac Sprue Pathogenesis in a Susceptible Individual (Right Panel)

Infectious pathogens (green rounded rectangle; left panel) replicate within a privileged niche in an infected individual, and are then transmitted, either
directly or via a pathogen-bearing vector, to another susceptible host (white box; left panel). To infect this new host, the pathogen must evade host
defenses, invade across host barriers into a privileged niche (pink box), and in some cases become activated to a virulent form. Damage is caused to the
host by pathogen- and/or host-mediated processes, while replication within the infected host enables further transmission. Commensal microbes
(yellow rounded rectangle) cannot access privileged niches and do not cause disease. Similarly, immunotoxic gluten peptides, clustered in proline/
glutamine-rich regions of gluten proteins (protein depicted as yellow rectangle containing immunotoxic peptide in green, right panel), cause celiac
sprue in susceptible individuals (white box; right panel) by evading gastrointestinal proteolysis, invading across the intestinal epithelium by unknown
mechanisms, and, in some peptides, becoming activated by TG2 (represented by Q (glutamine) fi E (glutamate) modification), resulting in a deleterious
immune response. Most dietary proteins (yellow rectangle) are proteolyzed by gastrointestinal proteases and do not enact pathogenic effects. In
contrast to infectious pathogens, gluten peptides have no replicative capacity within afflicted individuals. Instead, these immunotoxic peptides are
propagated by grain cultivation and transmitted to celiac sprue patients via intentional or accidental ingestion in the course of their diet.
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gastrointestinal digestion to reach the intestinal epithelium
unscathed (e.g., a 33-residue peptide [24]).

The proteolytic resistance of gluten proteins may be
further enhanced by their assembly into insoluble aggregates,
a property imparted by their primary sequence. Wheat gluten
comprises two protein groups, the monomeric gliadins, and
the low and high molecular weight (LMW and HMW)
glutenins [47]. Homologs with similar properties exist in
barley and rye [47]. Both gliadins and glutenins contain
intrachain disulfide bonds and exhibit poor aqueous
solubility, both of which are likely to reduce their proteolytic
susceptibility in the gut. In contrast to gliadins, however,
glutenins are also extensively cross-linked by interchain
disulfide bonds, resulting in the formation of 500 kDa to 10
MDa aggregated protein complexes [48]. These huge gluten
networks are further stabilized by hydrogen bonding between
the glutamine-rich hexapeptide and nonapeptide repeats
that compose ;80% of each ;100 kDa HMW glutenin
subunit (Table 1) [49]. Glutamine-rich repeats, such as those
present in gluten, are predictive of aggregation propensity,
and have been used to identify novel prion-forming proteins
[50]. Indeed, repetitive sequences identified in gluten bear
remarkable similarity to those present in two extensively
studied prions, Sup35 from yeast and mammalian PrP (Table
1) [51,52]. In Sup35, these repeats are necessary [53] and
sufficient [54] for prion propagation, whereas PrP
octarepeats do not appear to be essential for prion-related
pathology [55]. Nonetheless, PrP octarepeats can functionally
replace Sup35 repeats to promote protein aggregation in
yeast [56], and transgenic PrP proteins lacking the
octarepeats exhibit significantly reduced conversion to their
pathogenic conformation, PrPSc [55]. The PrPSc form is
characterized by increased b-sheet content, reduced solubility
leading to aggregation, and increased proteolytic resistance
with respect to the properly folded form [57,58]. Thus,
glutamine-rich oligopeptide repeats contribute to prion
aggregation, which in turn imparts partial proteolytic
resistance on these aberrant proteins. While the majority of
immunotoxic gluten epitopes identified to date derive from
monomeric gliadins, immunotoxic sequences are also present
in glutenins [59–63]. Accordingly, the aggregation of these
proteins is likely to contribute to disease by protectively
shuttling immunotoxic epitopes through the alimentary tract
until their eventual release.

Interestingly, it is via the action of endogenous
gastrointestinal proteases that immunotoxic peptides are
released to enact their harmful effects. Insofar as the intact

dietary gluten proteins harboring these peptides would be
less efficiently transported across the intestinal epithelium to
be presented to the immune system than their immunotoxic
fragments, it can be said that gastrointestinal proteases
facilitate the pathogenesis of celiac sprue. This subversion of
the normal process of nutrient digestion toward a pathogenic
end bears resemblance to the tactic of host subversion
commonly employed by infectious pathogens. A relevant
example of this is the trypsin-catalyzed cleavage of rotavirus
protein VP4 into fragments VP5 and VP8 [64], the latter of
which disrupts the barrier function of the epithelium,
facilitating viral entry [65]. A second instance in which gluten
peptides employ endogenous proteins to augment their
pathogenicity will be discussed later in this review.
Invasion across intestinal epithelium. Pathogens that

survive the harsh conditions in the stomach and proximal gut
must overcome yet another barrier to pathogenicity in the
form of the intestinal epithelium. The epithelial layer of the
small intestine is a villous structure in which polarized
enterocytes are joined together at their apical surface by
transmembrane protein complexes called tight junctions and
adherens junctions [66,67]. Tight junctions are located most
apically and are composed of junctional adhesion molecules
(JAM), claudins and occludin, while adherens junctions lie just
below the tight junctions and are formed by homotypic
interactions of E-cadherin. The tight and adherens junctions
are connected to the actin cytoskeleton by associated
proteins zonula occludins 1 (ZO-1) and a/b-catenins,
respectively. These junctional complexes allow diffusion of
small molecules between contiguous cells via the paracellular
pathway, while preventing the entry of microbes and
potentially antigenic macromolecules. Absorption across
enterocytes, via the transcellular pathway, is likewise selective
toward dietary protein-derived amino acids, di-, and tri-
peptides, which are taken up by specific transporters on the
apical membrane [44,45]. Larger proteins and microbes are
deterred from being transported via this pathway by
secretory immunoglobulin (Ig)A and by the mucus layer
coating the apical membranes of these cells. The mucosal
epithelium is thus selectively permeable to nutrients while
acting as a barrier to pathogens and potentially antigenic
macromolecules.
The ability to invade across the epithelium to access a

privileged niche is a key determinant of whether a
gastrointestinal microbe is pathogenic or commensal [2].
Transepithelial invasion by microbes commonly involves
disruption of the apical-junctional complex [68,69]. For

Table 1. Selected Proline/Glutamine-Rich Repetitive Gluten Sequences Compared to Prion Oligopeptide Repeats

Sequence Peptide/Repeat Designation Source Reference

LQLQPF(PQPQLPY)3PQPQPF 33-mer a-gliadin [24]

LGQQQPFPPQQPYPQPQPF p31–49 (or p31–43) a-gliadin [210]

FLQPQQPF(PQQ)2PY(PQQ)2PFPQ 26-mer c-gliadin [63]

QQQQPPFSQQQQSPFSQQQQ Glt-156 LMW glutenin [60]

GYYPTSPQQ Nonapeptide repeat HMWglutenin [49]

PGQGQQ Hexapeptide repeat HMWglutenin [49]

PQGGYQQYN Sup35 oligopeptide repeat Yeast Sup35 [51]

PHGGGWGQ PrP octarepeat Mammalian PrP [52]

doi:10.1371/journal.ppat.0040034.t001
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example, Vibrio cholerae [70] and Bacteroides fragilis [71] secrete
proteases that cleave the extracellular domains of occludin
and E-cadherin, respectively. Adenovirus and rotavirus,
among many other viral pathogens, also directly target
junctional proteins, disturbing their proper function [65,68].
A more indirect approach is taken by H. pylori, which
increases paracellular permeability in gastric epithelia by
translocating the effector protein CagA into the epithelial
cell to which it is adhered. Once inside, CagA recruits ZO-1
and JAM to the site of bacterial attachment, interfering with
the assembly of functional tight junctions [72].
Enteropathogenic E. coli similarly disrupts tight junctions
between enterocytes using the effector proteins Map and
EspF [73]. Still other pathogenic microbes that cannot
overcome the apical junctional complex bypass it altogether
by availing themselves of preexisting points of entry. For
instance, Listeria monocytogenes exploits the transient luminal
exposure of its host receptor, E-cadherin, at sites of epithelial
cell extrusion at the tips of intestinal villi [74,75]. Shigella
flexneri, Salmonella typhimurium, and Yersinia pseudotuberculosis all
cross the epithelium by being captured by specialized
antigen-sampling epithelial cells, called M cells, and
subsequently escaping macrophage-mediated destruction
once translocated [76]. Infectious prions are also observed to
invade across enterocyte layers [77], and may do so using M
cells as a portal [78].

The pathways and mechanisms by which gluten peptides
are transported across the intestinal epithelium are not yet
known. During active disease (i.e., on a gluten-containing
diet), the architecture of the celiac epithelium is grossly
perturbed. Intestinal biopsies of lesions exhibit villous
flattening and crypt hyperplasia as well as increased
enterocyte apoptosis, suggesting the integrity of the
epithelium may be compromised [79,80]. Moreover, the
jejunal tight junction structure is morphologically altered in
celiac sprue patients [81], and molecular analysis of these
junctions has recently revealed that both occludin and E-
cadherin fail to localize properly [82]. As a result, untreated
celiac patients exhibit increased permeability toward small
molecules and sugars used as paracellular markers [83–87].
Transcellular transport is also upregulated during active
enteropathy, as evidenced by the increased endocytic uptake
of gluten peptides across the apical membrane of celiac
jejunal biopsy enterocytes [88]. Concomitant with this
increased uptake, the apical-to-basolateral transcellular flux
of specific gluten peptides and their antigenic metabolites
across untreated celiac patient jejunal biopsies is also
increased relative to controls [89,90].

The increase in both paracellular and transcellular
permeability observed during active celiac sprue is due, at
least in part, to the Th1 cytokines interferon-c (IFN-c) and
tumor necrosis factor a (TNF-a). These proinflammatory
cytokines are upregulated in active celiac lesions [91–93] as
well as in other inflammatory bowel diseases in which the
epithelial barrier is disrupted [94]. Their effects on epithelial
monolayer permeability have been extensively studied in vitro
[95]. In cultured T84 epithelial monolayers, IFN-c causes
actin cytoskeletal rearrangement and tight junction protein
internalization [96,97], resulting in increased paracellular
permeability [98,99]. TNF-a also disrupts tight junction
assembly [100], and potentiates the permeabilizing effects of
IFN-c [99]. Additionally, IFN-c increases the transcellular flux

of intact proteins across HT29-19A epithelial cell monolayers
[101]. Taken together, these results show that IFN-c and TNF-
a induce the same epithelial alterations that are characteristic
of celiac lesions, in which these cytokines are overexpressed,
and are therefore at least partially responsible for the
increased permeability of the gut during active inflammation.
However, these results leave open the pathways and

mechanisms by which gluten peptides first cross the intestinal
epithelium to come into contact with the underlying
lymphoid tissue and thereby initiate inflammation. This event
may depend on genetic predisposition toward impaired gut
barrier function, environmental factors that prime the
intestine for uptake of gluten, or preexisting routes of
luminal antigen uptake that are shared between celiac
patients and healthy individuals. Of course, a combination of
these factors may be at play.
To date, there is minimal evidence for celiac patients

possessing genetic defects in gut barrier function. Defects in
epithelial tight junction structure [81] and paracellular
permeability [83–85] persist after treatment with a gluten-
free diet, as does the increased transcellular uptake of gliadin
into enterocytes [102]. However, due to the difficulty of
ensuring a completely gluten-free diet in human patients, it is
not clear whether these persistent defects reflect genetically
encoded traits, incomplete recovery of the gut, or a
continued inflammatory reaction to low levels of dietary
gluten [103–106]. To circumvent this issue, longitudinal
studies examining permeability in potentially gluten-sensitive
individuals prior to dietary intake of gluten and the onset of
inflammation are needed. Due to the practical limitations of
conducting such studies in humans, the investigation of this
question awaits an animal model for celiac sprue, in which
gluten intake can be strictly controlled. Of course, a
genetically tractable animal model, such as a mouse, will allow
for a more sophisticated toolbox to be directed at this
question.
Alternatively, there may not be any genetic determinants of

celiac sprue related to the transepithelial transport of gluten
peptides. Instead, other environmental factors, or gluten
itself, may contribute to disease onset by attenuating the
barrier function of the intestine. Gastrointestinal infections
can permeabilize the gut by causing inflammation or by other
mechanisms. For example, in a cell culture model of H. pylori
infection, the transcellular flux of intact protein is increased
due to urease-dependent impairment of lysosomal protein
degradation [107]. Physiologically relevant temperature
increases, such as may occur in the context of a fever or
bacterial infection, may also permeabilize epithelial
monolayers by increasing paracellular flux [108], thereby
rendering the intestine conditionally susceptible to
opportunistic invasion by gluten peptides. Interestingly,
certain gluten peptides may even have an intrinsic ability to
directly affect epithelial permeability. Pepsin-trypsin (PT)-
gliadin digests induce production of TNF-a in cultured
monocytic cell lines [109]. Moreover, apically administered
PT-gliadin causes actin cytoskeletal rearrangement, changes
in expression and localization of tight junction proteins, and
increased permeability toward paracellular markers in
cultured epithelial monolayers [110,111].
Finally, there exist multiple pathways by which small

amounts of dietary proteins are regularly transported intact
across the healthy intestinal epithelium [112,113]. Various
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orally administered proteins are observed to cross the
epithelium in healthy individuals while retaining their
immunoreactivity [114,115] and biological activity [116].
Gluten is among these, as anti-gliadin antibody-reactive
proteins can be detected in the breast milk and sera of
healthy human mothers on a gluten-containing diet [117].
This low-level intact transport likely operates through a non-
degradative transcellular pathway, either through M cells, or
following non-specific endocytic uptake at the apical
enterocyte membrane [113]. Larger gluten peptides, such as
the 33-mer, may additionally be transported through
enterocytes via the lysosomal pathway, delivering antigenic
fragments to the serosa [89,90]. Receptor-mediated
mechanisms for gluten peptide transport have also been
proposed, and several proteins implicated in the pathology of
celiac sprue have been suggested as candidate receptors.
These include gluten-specific IgA and MHC class II molecules
[88], as well as transglutaminase 2 (TG2) [118]. The existence
of IgA-deficient individuals with celiac sprue suggests that
anti-gliadin IgA is not an essential factor for this endocytic
gluten uptake [119]. The MHC class II products HLA DR and
DP are upregulated in the apical epithelium during active
celiac sprue, but expression of the disease-associated HLA
DQ products is restricted to the lamina propria [120].
Dendritic cells present in the lamina propria express both
surface TG2 and HLA DQ molecules [121], and can extend
dendrites through the epithelial layer to directly sample
luminal antigens [122]. The identification of a subset of
mucosal dendritic cells that can activate gluten-reactive T
cells raises the intriguing possibility that gluten peptides may
invade across the intestinal epithelium via the same cells that
present them to the immune system [118].

Activation to pathogenic form. There are numerous
examples of pathogens that do not achieve full virulence until
being activated to a more pathogenic form. The most striking
example among these may be prions. In their correctly folded
form, called PrPC, prions are endogenous membrane proteins
that are entirely innocuous. Once conformationally activated,
either by spontaneous misfolding or by the catalytic action of
the misfolded form, PrPSc, these infectious proteins are
responsible for a variety of neurodegenerative diseases [10].
Other examples of pathogenic activation include the
integration of HPV type 18 prior to the development of high-
grade cervical intraepithelial neoplasia [16], viral protease-
mediated cleavage of gag and gag-pol precursor polyproteins
as a prerequisite to the maturation of infectious HIV particles
[123], and the conferral of virulence on formerly commensal
bacteria via horizontal transfer of pathogenicity islands [124].

Gluten peptides must be deamidated at select glutamine
residues before they achieve full immunotoxicity in the
context of celiac sprue [125]. Although it was initially thought
that this deamidation occurred due to the acidic pH in the
stomach, it has since become clear that gliadin peptides are
selectively modified by the endogenous enzyme, TG2
[126,127]. TG2 is a pleiotropic enzyme found both
intracellularly and extracellularly in many tissues and organs,
including the small intestine, where it is upregulated during
active celiac sprue [128–130]. In a Ca2þ-dependent manner,
TG2 catalyzes the transamidation of specific glutamine
carboxamide sidechains with amine donors, such as the e-
amino group of lysine, forming isopeptide bond crosslinks
between proteins. When water replaces the amine donor as

the nucleophile, TG2 instead deamidates these glutamines to
glutamates, introducing a negative charge at each modified
position [131]. It is this latter activity that enables TG2 to
activate gluten peptide immunoreactivity. The same proline/
glutamine-rich sequences that render gluten peptides
resistant to gastrointestinal proteolysis also make them
excellent substrates for TG2 [132,133]. Following TG2-
mediated deamidation at select Gln residues, these peptides
bind with increased affinity to disease-associated HLA DQ2
molecules [134,135], and thereby possess increased
stimulatory capacity toward DQ2-restricted gluten-reactive T
cells [136,137]. As will be discussed shortly, much of the
damage that occurs in celiac sprue is mediated by this disease-
specific T cell response. Thus, the deamidation of
immunotoxic gluten peptides by endogenous TG2 constitutes
the second point at which normal cellular processes are
subverted toward a pathogenic end in celiac sprue.
Notably, the transamidase activity of TG2 is also implicated

in celiac sprue. During active disease, celiac patients have
circulating antibodies not only against gluten epitopes, but
also against TG2 [138]. Since TG2 forms covalent complexes
with gluten peptides [139], it has been proposed that
intestinal gluten-reactive T cells can provide co-stimulation
to B cells expressing TG2-specific antibodies as part of an
autoimmune humoral response [140]. Upon treatment with a
gluten-free diet, anti-TG2 autoantibody levels decline.
Whether anti-TG2 autoantibodies play a role in disease
pathogenesis or are simply bystanders is not yet clear.
However, these highly disease-specific antibodies do serve an
important role in serological screening for celiac sprue [26].
Although TG2 is found in the lamina propria and the brush

border of enterocytes, the precise location and context in
which TG2 encounters and deamidates gluten peptides is not
yet known.
Initiation of deleterious immune response. The ultimate

defining characteristic of pathogens is that they contribute to
disease. It has been suggested that pathogens can be classified
according to the damage their presence inflicts on a host
relative to the strength of the host’s immune response [4].
Those microorganisms classically termed opportunistic cause
disease only in the context of compromised immunity.
Diseases caused by toxin-producing pathogens comprise
damage mediated both by the pathogen and by the host’s
immune response, the contributions of each depending on
the potency of the toxins produced, as well as on the
pathogen’s ability to avoid provoking a strong immune
response. At the far end of this continuum, pathogens that
produce no toxins of their own precipitate disease in the
context of a strong, host-damaging inflammatory response.
Gluten peptides are examples of this last category.
Celiac sprue is a chronic inflammatory disease. In

infectious disease, chronic inflammation occurs when a
pathogen continually evades an active immune response, for
instance by resisting phagocytic engulfment or by aggressin-
mediated killing of macrophages. This inflammation persists,
resulting in significant tissue damage, until the colonizing
pathogen is cleared. As non-replicative immunotoxins,
ingested gluten peptides possess no capacity to colonize the
gut. Instead, chronic inflammation persists in the celiac gut
due to the continual dietary reintroduction of immunotoxic
peptides from an exogenously replicating pool of cultivated
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Figure 2. Adaptive and Innate Immune Responses to Gluten in Celiac Sprue

Ingested gluten is digested to innocuous amino acids (yellow boxes) and proteolytically resistant, immunotoxic gluten peptides (green) in the small
intestine. Immunogenic gluten peptides access the lamina propria by unknown mechanisms and are deamidated by TG2. These deamidated peptides
are loaded onto HLA DQ2 (or DQ8) and presented on the surface of antigen-presenting cells (APC) to gluten-specific, DQ2-restricted CD4þ T cells in the
lamina propria, causing their activation and clonal expansion. Activated T cells mediate the humoral response, by giving help to both gluten-specific
and TG2-specific B cells, as well as the cell-mediated Th1 response, which, through the secretion of proinflammatory cytokines such as IFN-c and TNF-a,
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gluten-containing grains. With adherence to a gluten-free
diet, the immunotoxin is cleared, and inflammation resolves.

The mechanisms by which gluten peptides precipitate
inflammation in the celiac gut are only recently becoming
clear. Over the past decade, we have begun to appreciate that
celiac pathogenesis involves a complex interplay between
adaptive and innate responses, each of which is mediated by a
distinct class of immunotoxic gluten peptides (Figure 2) [141–
143].

The first of these classes provokes the T cell–mediated
adaptive response. These immunogenic peptides, typified by
the 33-mer (Table 1) [24], are excellent substrates for TG2,
and, once deamidated, are potent activators of gluten-
specific, DQ2-restricted CD4þ T cells in the lamina propria
[25]. Activated CD4þ T cells enact a Th1 response, secreting
IFN-c and other proinflammatory cytokines, as well as give
help to the B cell–mediated humoral response against both
gluten and TG2. Due to the remarkable concordance between
the role that TG2 plays in increasing these immunogenic
peptides’ affinity for DQ2, the identity of TG2 as the target of
the autoantibody response, and the strong genetic association
of DQ2 with disease, research into celiac pathogenesis has
largely focused on the adaptive branch of the immune
response. However, the gluten-specific adaptive immune
response is thought to be insufficient on its own to explain
why CD4þ lamina propria T cells trigger an inflammatory Th1
response [91–93]. It also does not provide an explanation for
the characteristic expansion of intraepithelial lymphocytes
(IEL), the majority of which are CD8þ, seen in active celiac
intestinal epithelium. Finally, gluten-specific adaptive
immunity cannot account for how enterocytes lining the gut
are targeted for destruction during active disease.

These outcomes may be explained by the involvement of a
non-T cell–mediated innate response, induced by a second
class of immunotoxic gluten peptides. The best characterized
of these innate peptides, p31–43 (or p31–49) (Table 1), is
distinguished from immunogenic gluten peptides in that it
does not stimulate gluten-reactive CD4þ T cells [127,144].
Instead, this peptide acts directly on epithelial cells as a stress
signal, causing increased enterocyte expression of both
interleukin-15 (IL-15) and the non-classical MHC class I
molecules, MIC and HLA-E, when intestinal biopsies derived
from treated celiac patients are exposed to it [144,145]. IL-15
promotes IEL expansion [146], and induces the expression of
natural killer (NK) receptors NKG2D and CD94 on the
surface of effector IEL [147,148]. These NK receptor-bearing
IEL are targeted to kill epithelial cells via NK receptor
engagement of MIC stress markers on the surface of
enterocytes [145,149]. The in vivo relevance of these effects is
underscored by the presence of upregulated IL-15
[146,150,151], increased MIC expression on enterocytes
[145,149], and CD94þ IEL infiltration [147] in the intestinal
epithelium of active celiac patients. Thus, innate gluten
peptides cause damage to the gut by inducing epithelial stress
and IL-15 expression, which in turn lead to IEL infiltration

and targeted killing of MIC-expressing enterocytes by NK
receptorþ IEL in a manner independent of T cell receptor
specificity. The mechanism by which these peptides induce
stress in epithelial cells is still not known. However, inactive
TG2 on the surface of enterocytes may mediate this effect,
since neutralization of surface TG2 with the monoclonal
antibody 6B9 attenuates the innate effects of p31–43 [152].
Innate immunity may also play a role in directing the

gluten-specific adaptive response toward a Th1 cytokine
profile. Since IL-12, a major promoter of Th1 differentiation,
is absent in celiac sprue [92], other cytokines must mediate
this Th1 differentiation. Two possible candidates are IFN-a
and IL-15. Increased levels of IFN-a are present in active
celiac mucosa relative to controls [153], and the onset of
celiac symptoms during treatment with this cytokine has been
reported [153,154]. Additionally, IFN-a upregulates the
production of proinflammatory cytokines IFN-c and TNF-a
by activated intestinal T cells, and causes hyperproliferation
of crypt cells in intestinal biopsies [155]. Whether IFN-a is
induced by exposure to p31–43 is not yet known. In ex vivo
biopsy culture experiments, IL-15 is known to be induced by
p31–43, and it also drives secretion of IFN-c and TNF-a by
IEL [146]. Moreover, p31–43 potentiates the activation of
lamina propria T cells by immunogenic peptides, and this
effect is mitigated by IL-15 inhibition [144], suggesting both
p31–43 and IL-15 influence the course of the gluten-specific
adaptive immune response.
Cancer is a well-established complication of chronic

inflammation in response to the persistent presence of a
pathogen [156,157]. It is therefore not surprising that
untreated celiac sprue patients have an elevated risk for
developing rare non-Hodgkin lymphomas (odds ratio ¼ 3.1)
[29], particularly enteropathy-associated T cell lymphoma
(EATL), while exclusion of dietary gluten reduces this risk
[28]. A small proportion of celiac sprue patients are
refractory to treatment with a gluten-free diet, and 75% of
these patients exhibit a clonally expanded population of
abnormal IEL, resembling lymphomas present in EATL [158].
Thus, refractory sprue may represent an early stage of EATL,
wherein clonally expanded, cytotoxic IEL continue to cause
intestinal damage in the absence of dietary gluten. Although
it has been shown that IL-15 preferentially promotes the
clonal expansion and survival of these abnormal IEL [151], it
is not yet clear what other factors contribute to the
progression of refractory sprue and EATL.

Animal Models for Celiac Sprue

In the field of pathogen research, microbiologists have
repeatedly shown that a test tube is a highly predictive model
for infectious disease. For example, the discovery of many
antibiotics, including penicillin and streptomycin, has relied
on observations of their in vitro effects on cultured bacteria.
Likewise, pathogenic infection models in mammalian cell
culture have facilitated numerous insights into pathogen
motility, attachment, invasion, and production of virulence

disrupts tight junction integrity. In parallel, innate peptides act through unknown mechanisms as a stress signal toward enterocytes, inducing
expression of MIC and IL-15. IL-15 promotes the infiltration of CD8þ IEL into the epithelium, and arms them with the NK receptor NKG2D. IL-15 may also
influence the Th1 response. Intraepithelial lymphocytes bearing NKG2D target MIC-expressing enterocytes for killing via apoptosis, causing destruction
of the epithelial layer, and villous flattening. The combination of enterocyte apoptosis and tight junction disruption renders the epithelium more
permeable, thereby facilitating access of gluten and propagation of the disease. In the continued presence of dietary gluten, chronic inflammation
persists, and, in a small percentage of patients, results in enteropathy-associated T cell lymphomas. TCR, T cell receptor.
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factors. In an analogous fashion, a combination of
biochemical and cell culture assays has elucidated many
attributes of gluten peptides that enable their
immunotoxicity. These include in vitro models for gluten
peptide gastrointestinal digestion [23,24,159,160],
transepithelial transport [89], TG2-mediated deamidation
[126], HLA-DQ2 binding and presentation [134,135,161], T
cell activation [136,162], and enactment of innate immune
responses through direct toxic effects [144,145].

However, many inquiries in pathogen research, including
studies on transmission, vaccination, drug bioavailability, and
pathogen-mediated damage at the level of whole organs and
tissues, are critically dependent on animal models exhibiting
specific characteristics of corresponding human diseases. A
complete understanding of celiac sprue will be similarly
dependent on in vivo models that recapitulate specific aspects
of the human disease’s complex etiology. Such animal models
may be of particular importance in identifying non-HLA
genes contributing to disease susceptibility, in elucidating
mechanisms of peptide transport and immune-mediated
intestinal damage, and in evaluating proposed therapeutics
on the basis of how well they attenuate clinical, histological,
and serological readouts of disease.

While a bona fide animal model for celiac sprue is still
lacking, both natural and engineered reactions to dietary
gluten that mimic certain aspects of the human disease have
been reported in laboratory rabbits, Irish setter dogs, non-
human primates, and transgenic mice (Table 2). A majority of
laboratory rabbits fed a gluten-containing diet produce anti-
gliadin IgG, in contrast to wild hares, which do not eat gluten
[163] (M. Bethune, unpublished results). However, these
rabbits do not produce anti-gliadin IgA (M. Bethune,
unpublished results), and are apparently asymptomatic,
suggesting that while gluten may encounter the immune
system, it is not pathogenic in these animals. Gluten-sensitive
Irish setter dogs are the best-characterized natural animal
model, featuring both gluten-dependent diarrhea and
histological lesions [164–166]. When raised on a gluten-free
diet, affected animals exhibit increased gut permeability

toward 51Cr-EDTA relative to controls. Importantly, this
condition precedes overt enteropathy, suggesting the
existence of a primary defect in gut permeability [166,167].
However, gluten-sensitive Irish setters do not raise antibodies
against gluten even in an active state of disease, so it is not
clear that this finding can be extrapolated to gluten peptides
of sufficient size to be immunotoxic [168]. Moreover, the lack
of MHC class II linkage with disease in these animals
disqualifies them as complete models for celiac sprue
[169,170]. Published observations of celiac sprue–like
enteropathy in non-human primates are limited to two case
reports, one in a single rhesus macaque necropsy [171], and
another in a single cynomolgus monkey, the latter of which
improved on a gluten-free diet [172]. More recently, a
condition of gluten sensitivity has been identified and
characterized in juvenile rhesus macaques (M. Bethune, J.
Borda, E. Ribka, M. Liu, K. Phillippi-Falkenstein, et al.,
unpublished data). At a significant frequency, these animals
exhibit clinical, histological, and serological signs of gluten
sensitivity that resolve upon treatment with a gluten-free diet.
Association of MHC class II alleles with this condition
remains to be investigated. Finally, several transgenic mouse
models have been engineered to mimic celiac sprue, most
notably the NOD Ab8 DQ8þ mouse, which expresses human
DQ8 in an endogenous MHC class II-deficient (Ab8),
autoimmune-prone (NOD) background [173]. Although this
mouse model exhibits no gastrointestinal lesions or GI-
related symptoms, it develops skin rashes with subcutaneous
IgA deposits reminiscent of dermatitis herpetiformis, and
may therefore be useful in the study of this dermatologic
manifestation of celiac sprue.

Therapeutic Intervention

As our understanding of celiac sprue pathogenesis has
increased, so too have the possibilities for therapeutic
intervention in this debilitating disease. An extensive
description of these emerging strategies is beyond the scope
of this review, and has been provided elsewhere [174]. Instead
we offer a few examples to illustrate the potential for

Table 2. Comparison of Celiac Sprue with Proposed Animal Models for Gluten Sensitivity

Model System/

Disease

Propensity for

Gluten Sensitivity

Clinical Symptoms Histology Serology Genetics References

Anti-Gliadin Anti-TG2

Diarrhea Skin

Rash

Intestinal

Lesions

IgG IgA IgG IgA MHC II

Association

Rabbit Natural � � ND þ �a ND ND ND [163]

Irish setter dog Natural þ � þ � � �b �b � [164–166,168–170]

NOD Ab8 DQ8þ mouse Transgenic � þ � þ � � � þ (Tg) [173]

Juvenile rhesus macaque Natural þ þ þ þ þ 6c � ND M. Bethune, J. Borda,

E. Ribka, M. Liu,

K. Phillippi-Falkenstein,

et al., unpublished data

Celiac sprue Natural þ þ þ þ þ þ þ þ

aM. Bethune, unpublished results.
bNot tested for anti-TG2, but negative for anti-reticulin antibodies (unpublished data cited in [170]).
cNot observed in the majority of clinically ill macaques, but anti-TG2 IgG antibodies were observed in a gluten-sensitive macaque during gluten challenge supplemented with glutenase
(EP-B2) treatment (M. Bethune, C. Khosla, and K. Sestak, unpublished data).
ND, not determined; Tg, transgene.
doi:10.1371/journal.ppat.0040034.t002
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developing therapeutics that target each stage of the
pathogenic progression of gluten peptides (Figure 3).

Exposure. The only current treatment for celiac sprue is a
life-long gluten-free diet [37]. While effective in most
patients, adherence to this diet can be difficult due to its
expense, the ubiquity of gluten, poor labeling of gluten-
containing foods, and social constraints. Several other dietary
strategies aimed at lowering exposure to the immunotoxic
components of gluten have been proposed or experimentally
advanced. These include using varieties of wheat with lower
quantities of the immunotoxic epitopes found in the

commonly cultivated Triticum aestivum variety [175],
genetically engineering grains to contain less of these
epitopes (proposed in [175]), or extirpating these
immunotoxic epitopes during food processing with
probiotics or by enzymatic means [176,177]. Proteolytic
pretreatment of gluten-containing grains, analogous to
pretreatment of dairy products with lactase, is not a widely
employed strategy, since the primary structural components
of gluten (i.e., HMW glutenins) contain immunotoxic
epitopes [61,62], and the destruction of these epitopes would
perturb the properties of dough. One novel strategy that may

doi:10.1371/journal.ppat.0040034.g003

Figure 3. Potential Therapies Targeting Each Stage of Celiac Disease Progression

Immunotoxic gluten peptides may be eliminated at the source through selection or engineering of non-toxic varieties of gluten-containing grains.
Exposure to gluten peptides may be avoided by means of dietary abstention. Gluten peptides’ proteolytic resistance may be countered via oral enzyme
therapy with glutenases. Invasion of gluten peptides across the intestinal epithelium may be prevented by targeting mediators of epithelial
permeability, such as proinflammatory cytokines IFN-c and TNF-a. Pharmacological inhibition of TG2 represents a means of preventing the activation of
native gluten peptides to their deamidated forms. Finally, the deleterious response to gluten peptides may be controlled by prophylactic vaccination,
by blocking HLA DQ2-mediated presentation of gluten peptides, or by targeting the mediators of gluten-induced damage, such as IL-15 and NKG2D.

PLoS Pathogens | www.plospathogens.org February 2008 | Volume 4 | Issue 2 | e340010



circumvent this limitation is the use of microbial
transglutaminases in combination with amine blockers
during food processing to prevent reactive glutamines from
being deamidated by intestinal TG2 [177].

Importantly, strategies aimed at the level of exposure may
offer celiac patients more options, but will not alleviate most
of the difficulties associated with the gluten-free diet unless
such alternative grains or grain treatments are widely
instituted. In order to safeguard against unintentional gluten
exposure and generally improve the quality of life for celiac
patients, non-dietary strategies are needed.

Evasion of proteolytic digestion. For decades, it was
hypothesized that celiac patients were missing a critical
peptidase, accounting for their inability to properly digest
gluten. It has since been established that gluten is proteolyzed
to a similar extent by celiac patients and healthy individuals,
leaving certain proteolytically resistant peptides intact
[24,178]. In light of this, a number of recent studies have
focused on exogenous enzymes (i.e., ‘‘glutenases’’) that are
capable of proteolyzing ingested gluten [179,180]. Due to the
high proline content of immunotoxic gluten peptides, the
majority of these studies have utilized bacterial prolyl
endopeptidases [181]. These enzymes have proven very
effective at detoxifying gluten in vitro [24], but their efficacy in
vivo may be limited by their pH profile (favoring intestinal
digestion) and by their preference for shorter peptides. To
improve on this approach, recent studies have explored the
use of acid-active prolyl endoproteases [182,183], as well as a
naturally evolved glutenase derived from barley (EP-B2) that
targets sequences similar to those deamidated by TG2
[162,184]. Importantly, EP-B2 has complementary specificity
to prolyl endopeptidases, and a combination therapy
consisting of these enzymes was effective at destroying
immunotoxic gluten epitopes in vivo [185]. Undefined enzyme
combinations, such as are present in animal digestive
extracts, also showed some benefit in a recent clinical trial,
underscoring the potential for therapeutic glutenase
supplementation [106].

Invasion. Therapies aimed at preventing the transepithelial
invasion of gluten peptides await a better understanding of
the mechanisms by which gluten is transported. One
potential strategy may involve the use of antibodies against
proinflammatory cytokines, such as TNF-a and IFN-c, as these
have been shown to regulate the permeability of the gut.
Treatment with infliximab, a monoclonal antibody directed
against TNF-a, is used to similar effect in Crohn disease [186].
A key consideration is the general safety profile of such
therapies, and whether it may be suitable for chronic use in
the context of celiac sprue. Antagonists of another putative
regulator of intestinal permeability, zonulin, have also been
proposed [187]. A synthetic peptide based on this strategy
increased the transepithelial resistance of intestinal mucosa
in a diabetes-prone rat model [188] and is currently
undergoing clinical trials in celiac sprue patients [189].

Activation. The role TG2 plays in enhancing the
immunotoxicity of many gluten peptides makes it a potential
therapeutic target. The most obvious means of intervening at
this stage of gluten pathogenicity is to inhibit TG2 activity
directly, and indeed, inhibition of TG2 in cultured celiac
patient–derived intestinal biopsies reduces gluten-specific T
cell activation [152,190]. Pharmacological inhibitors of TG2
activity have been reviewed [191]. Recent studies have

highlighted the potential for mechanism-based TG2
inhibitors to be of particular benefit in treating celiac sprue
[192–194]. One of these inhibitors, KCC009, is well tolerated
in rodents, when dosed chronically [193,195]. As an
alternative to inhibiting TG2, it may be possible to block
deamidation sites in gluten peptides in vivo, by dual oral
administration of a microbial transglutaminase and a suitable
amine blocker. Microbial transglutaminases have weak
deamidation activity but have broader specificities and higher
reaction rates for transamidation reactions than does TG2
[196]. Additionally, they are active at physiological
temperatures over a wide range of pH values [197], and can
utilize gluten as an acyl donor in transamidation reactions
[198]. A key consideration for this strategy is whether
microbial transglutaminases can target the same gluten
epitopes that are deamidated by TG2. In this regard, it is
notable that gluten pretreated with microbial
transglutaminase and an amine donor prior to TG2
treatment induces less IFN-c production by celiac patient
biopsy-derived intestinal T cells relative to gluten receiving
no pretreatment [177]. This suggests that the specificities of
these enzymes do indeed overlap to some extent.
A major caveat to approaches focusing on preventing

gluten deamidation is that some non-deamidated gluten
peptides can induce T cell responses from celiac patient
biopsies, suggesting that TG2 inhibition may not by itself
protect celiac patients from ingested gluten [60,137].
Immune response. Efforts to intervene in the deleterious

immune response in celiac sprue can be focused at three
levels: inoculation against the induction of a response,
blocking the response in situ, or mitigating the effects of the
response once it is initiated.
The first of these approaches has shown some early promise

in a DQ8þ mouse gluten sensitivity model, where intranasal
administration of a recombinant a-gliadin protein was shown
to down-regulate lymph node T cell proliferation and IFN-c
production in response to subsequent parenteral gluten
immunization [199]. Oral administration of nontoxic gluten
peptide analogues may represent an additional route by
which oral tolerance can be generated [200], though this has
not been experimentally demonstrated. To block the immune
response in situ, peptidomimetic inhibitors that bind HLA
DQ2 but are not recognized by gluten-specific T cell
receptors can be designed using the crystal structure of HLA
DQ2 bound to a gluten peptide as a guide [135,201]. By
building these inhibitors from a gluten peptide scaffold, it is
hoped that such DQ2 blockers will possess similar proteolytic
resistance, bioavailability, and affinity for DQ2 as
immunotoxic gluten peptides. Indeed, a recent study has
identified two prototypical high affinity DQ2 blockers that
inhibit gluten peptide presentation by fixed antigen-
presenting cells in T cell proliferation assays [201]. Finally,
the recent expansion in our understanding of the role that
innate immunity plays in mucosal damage provides us with
several potential targets for attenuating the inflammatory
response once it has been initiated. One of these is the
NKG2D receptor expressed on the surface of intestinal CD8þ

IEL. Antagonism of this receptor impairs the expansion and
function of pancreatic autoreactive CD8þ T cells in the NOD
mouse model of diabetes, thereby preventing disease [202]. A
similar strategy has been proposed for the treatment of celiac
sprue [145,149]. Another promising strategy may involve
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neutralizing those cytokines (or their receptors) that mediate
tissue damage during inflammation, including IL-15 [144–
146,149], IFN-c [203], IFN-a [155], and TNF-a [204]. The anti-
TNF-a monoclonal antibody, infliximab, is already widely
used to reduce gut inflammation in Crohn disease [205,206],
and case reports of its effectiveness in treating refractory
sprue have been published [207,208]. More preliminarily, the
specific neutralization of catalytically inactive TG2 on the
surface of epithelial cells mitigates certain features of disease
ex vivo [152], and may represent another therapeutic inroad
once this enigmatic new role for TG2 in celiac sprue
pathogenesis is elucidated.

Conclusion

Infectious pathogens adapt to and cause disease in a
particular host by evolving virulence traits that provide a
context-specific, selective advantage to the pathogen (e.g., by
enabling it to breach a specific host epithelial barrier, or by
facilitating its dispersal via induction of diarrhea) [209]. By
contrast, it is difficult to imagine how the ability of
immunotoxic gluten peptides to resist gastrointestinal
proteolysis, to exert damaging stress on epithelial cells, to be
specifically deamidated by TG2, or to engage in high affinity
HLA DQ2 binding affords any increase in fitness to the grains
encoding these peptides. Nonetheless, gluten peptides possess
all of these attributes, each of which is a de facto virulence
trait essential toward the pathogenesis of celiac sprue.
Moreover, these peptides persist as human pathogens
uniquely due to our purposeful cultivation of the grains that
produce them, and our quite intentional exposure to them by
way of diet. Gluten peptides, then, are quintessentially
accidental pathogens that cause disease in the most obliging
of hosts.

Consequently, the eradication of celiac sprue as a human
disease is achievable through widespread adoption of natural
or engineered strains of wheat, rye, and barley with less toxic
properties. Unless and until this occurs, non-dietary
therapies are needed to safeguard celiac sprue patients trying
to maintain a gluten-free diet in the midst of ubiquitous
gluten. Such therapies require a solid understanding of the
mechanisms by which immunotoxic gluten peptides cause
disease, and of the factors that render afflicted individuals
susceptible. Many questions remain to be answered before we
can claim such complete knowledge. First, celiac sprue
exhibits features of chronic inflammatory, genetic,
autoimmune, and pathogen-induced diseases, but the
respective etiological contributions of each are uncertain. It
is not clear, for instance, whether anti-TG2 autoantibodies
advance pathogenesis, or if they are merely bystanders in the
humoral response. Genetic predisposition for disease is
clearly imparted by HLA DQ2, but 60% of the genetic risk for
celiac sprue remains unattributed. A genetically tractable
animal model will greatly facilitate the search for these
unknown disease determinants, possibly identifying genes
involved in intestinal permeability and innate immunity. Still
other players involved in disease progression are known, but
their site of action is not. For example, it is not clear where
the selective deamidation of ingested gluten peptides occurs.
Likewise, the antigen-presenting cells that present DQ2-
bound gluten to CD4þT cells in the lamina propria remain to
be definitively identified. A major outlying question concerns

the provenance of the inflammatory immune response. Celiac
sprue is widely regarded as a T cell–mediated inflammatory
disease, but the discovery of an IL-15-mediated innate
response to gluten calls into question whether adaptive
immunity alone can cause disease. Importantly, both the
immunogenic 33-mer and the innate p31–49 peptide induce
characteristic villous flattening and increased IEL infiltration
when administered alone to celiac patients [210,211]. Here
again, the reconstitution of celiac sprue in a suitable animal
model will be critical toward clarifying which processes are
necessary and sufficient to provoke disease. Finally, the most
important question in celiac sprue research is how we can
apply our knowledge of its pathogenesis toward the
development of an effective non-dietary treatment, and
thereby improve the quality of life for patients living with the
disease.

Supporting Information
Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) accession
numbers for gluten and prion proteins tabulated in Table 1 are a2-
gliadin (CAB76964), a9-gliadin (CAB76955), c5-gliadin (CAC94871),
low molecular weight glutenin, Triticum aestivum (ABI21861), high
molecular weight glutenin, Triticum aestivum (ABQ14770), mammalian
prion protein PrP (P01456), and translation termination factor
Sup35, Saccharomyces cerevisiae (AAS64331). &
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