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Numerous bacterial pathogens manipulate host cell processes to promote infection and ultimately cause disease
through the action of proteins that they directly inject into host cells. Identification of the targets and molecular
mechanisms of action used by these bacterial effector proteins is critical to understanding pathogenesis. We have
developed a systems biological approach using the yeast Saccharomyces cerevisiae that can expedite the identification
of cellular processes targeted by bacterial effector proteins. We systematically screened the viable yeast haploid
deletion strain collection for mutants hypersensitive to expression of the Shigella type III effector OspF. Statistical data
mining of the results identified several cellular processes, including cell wall biogenesis, which when impaired by a
deletion caused yeast to be hypersensitive to OspF expression. Microarray experiments revealed that OspF expression
resulted in reversed regulation of genes regulated by the yeast cell wall integrity pathway. The yeast cell wall integrity
pathway is a highly conserved mitogen-activated protein kinase (MAPK) signaling pathway, normally activated in
response to cell wall perturbations. Together these results led us to hypothesize and subsequently demonstrate that
OspF inhibited both yeast and mammalian MAPK signaling cascades. Furthermore, inhibition of MAPK signaling by
OspF is associated with attenuation of the host innate immune response to Shigella infection in a mouse model. These
studies demonstrate how yeast systems biology can facilitate functional characterization of pathogenic bacterial
effector proteins.
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Introduction

Bacterial pathogens have evolved numerous mechanisms to
evade host cell defenses and promote infection. One strategy
common to many pathogens is the manipulation of host cell
processes by bacterial effector proteins that are directly
delivered into host cells by specialized secretion systems [1].
Although these effector proteins are critical to pathogenesis,
relatively few are well characterized. A number of effectors
whose functions are understood manifest activity in Saccha-
romyces cerevisiae analogous to their activity in mammalian
cells during infection, presumably because these proteins
target fundamental cellular processes conserved among all
eukaryotes. Consequently, we and others have exploited yeast
as a model organism in which to identify and characterize
bacterial effector proteins [2–5].

When expressed in yeast, bacterial effectors that target
conserved eukaryotic cellular processes often inhibit growth
[2,3,6] and/or exhibit conserved subcellular localization
patterns [3,7]. Growth inhibition provides a measurable
phenotype that can indicate the degree of disruption of
cellular processes [8,9]. Because over 75% of the yeast
genome is functionally annotated, systematic identification
of genes or proteins that modulate a phenotype can identify
pathways and processes involved in that phenotype [9–13],
which, in turn, can provide insights into its etiology. Thus, by
systematically screening for yeast deletion strains hyper-
sensitive to expression of a bacterial effector protein, cellular

processes that buffer yeast against the toxicity of the effector
can be identified. As proof of principal, we applied this
approach to OspF, a Shigella effector protein.
OspF is found in all pathogenic Shigella species [14] and is

an established substrate of the Shigella flexneri type III
secretion system [15]. At the start of this study, nothing was
known about its molecular activity or role in pathogenesis.
Having observed its mild toxicity to wild-type yeast under
select conditions, we screened for yeast deletion strains
hypersensitive to OspF expression. In parallel, we measured
alterations in mRNA levels in wild-type yeast expressing
OspF. The resulting complementary views of OspF activity
led us to hypothesize, and subsequently demonstrate, that
OspF inhibits both yeast and mammalian mitogen-activated
protein kinase (MAPK) signaling cascades. Furthermore, this
alteration in signaling is associated with attenuation of the
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host innate immune response to Shigella infection in the
mouse lung model. These results are consistent with those of
Aribe and colleagues who recently determined that OspF is a
MAPK phosphatase [16]. Our study demonstrates how systems
biological approaches using yeast can generate testable
hypotheses regarding the roles of bacterial effector proteins
in pathogenesis.

Results

A Genome-Wide Phenotypic Screen Identified Yeast
Deletion Strains Hypersensitive to OspF Expression

OspF is one of several Shigella effectors that inhibit growth
when expressed in yeast (Figure S1 and Protocol S1). OspF
also exhibits conserved localization to both the cytoplasm and
nucleus when expressed de novo in yeast and mammalian
cells (Figure S2). While OspF is toxic to yeast grown in
synthetic liquid media, fusion of OspF to green fluorescent
protein (GFP) partially relieves its toxicity, and growth in rich
media almost completely abolishes its toxicity. We hypothe-
sized that OspF activity is independent of the growth medium
and that yeast compensatory mechanisms are merely
enhanced in rich media. To identify genes that contribute
to these mechanisms, we systematically screened the yeast
haploid deletion strain collection for null alleles specifically
impaired by expression of GFP-OspF in rich media (Figure 1,
Protocols S2 and S3).

Each strain in the deletion collection contains a complete
deletion of one nonessential open reading frame (ORF). The
deletion collection includes 4,773 strains covering 77% of the
;6,200 annotated yeast ORFs. While most of these deletion
strains grow as well as wild-type when cultured in rich media,
growth of 98 of the deletion strains was severely and
reproducibly impaired by expression of GFP-OspF but not
of GFP alone (Figure S3). Fifteen of the deletion strains were
excluded from further analyses. These included two strains
deleted for dubious ORFs, three whose gene products are
required for galactose metabolism (our inducing condition),
and ten whose gene products are ribosomal structural

components. Thus, our result set contained 83 genes hyper-
sensitive to OspF (Table S1).
Our screen for null alleles hypersensitive to OspF is

analogous to screens for synthetic lethal (SL) interactions.
Rather than inferring functional relationships between genes
by identifying pairs of mutant alleles that when combined
result in inviability, we sought to infer functional relation-
ships between yeast genes and OspF toxicity by identifying
null alleles that exacerbate OspF toxicity. Null alleles that are
hypersensitive to OspF expression effectively define SL
interactions with OspF. No consensus exists, however,
regarding proper interpretation of SL interactions in terms
of pathways, and we faced a similar interpretive dilemma with
the 83-gene result set of our hypersensitivity screen.
Two interpretations motivated by the ‘‘circuit’’ concept of

a pathway have currency. One explains SL interactions as
resulting from cumulative insults to the same pathway (a
‘‘serial’’ circuit) that reduce its efficiency below some critical
threshold. Alternatively, synthetic lethality may result from
simultaneous insults to mutually compensating or ‘‘buffer-
ing’’ processes (‘‘parallel’’ circuits). Clearly, these interpreta-
tions depend on what constitutes a pathway, a concept which
itself remains loosely defined. Nonetheless, these interpreta-
tions of SL interactions serve to delineate a range of possible
explanations for hypersensitivity to OspF. Specifically, the
result set of OspF-hypersensitive deletion strains might be
enriched in proteins involved in cellular pathways directly
insulted by OspF (by analogy with the ‘‘serial’’ circuit
interpretation). Alternatively, it might be enriched in path-
ways that mitigate the effects of OspF expression (by analogy
with the ‘‘parallel’’ circuit interpretation). In either case, it
was essential to identify cellular processes represented in the
result set.

Enrichment of Biological Processes in OspF Hypersensitive
Null Alleles
To identify pathways impaired among the 83 hyper-

sensitive strains, we used the online data-mining tool
FuncAssociate [17] to identify gene ontologies enriched
among the deletion strains. Gene ontologies are semi-
hierarchical classifications of genes based on the roles their
proteins play in biological processes (process ontologies),
their cellular localizations (component ontologies), and their
biochemical activities (molecular function ontologies). One of
the major advantages of conducting genome-wide studies in
yeast is the wealth of information available regarding
individual yeast gene products. For example, over 75% of
the yeast genome is functionally annotated to at least one
type of gene ontology [18].
FuncAssociate revealed that 25 ontologies represented by

the genes deleted in 79 hypersensitive strains were signifi-
cantly overrepresented (theoretical p-values , 0.001) (Table
S2). We simplified these results by eliminating redundant and
relatively broad ontologies such as ‘‘cellular process,’’
‘‘cytoplasm,’’ and ‘‘cell organization and biogenesis’’ because
these ontologies (near the roots of the hierarchies) are shared
by hundreds or thousands of genes (Table S2). Additionally,
in the six cases where two hierarchically related ontologies
included the exact same set of genes in our results, the more
general (less descriptive) ontology was discarded (Table S2).
In order to visualize relationships among the remaining 16
ontologies, we performed two-dimensional clustering of the
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Author Summary

Many bacterial pathogens use specialized secretion systems to
deliver effector proteins directly into host cells. The effector proteins
mediate the subversion or inhibition of host cell processes to
promote survival of the pathogens. Although these proteins are
critical elements of pathogenesis, relatively few are well charac-
terized. They often lack significant homology to proteins of known
function, and they present special challenges, biological and
practical, to study in vivo. For example, their functions often appear
to be redundant or synergistic, and the organisms that produce
them can be dangerous or difficult to culture, requiring special
facilities. The yeast Saccharomyces cerevisiae has recently emerged
as a model system to both identify and functionally characterize
effector proteins. This work describes how genome-wide pheno-
typic screens and mRNA profiling of yeast expressing the Shigella
effector OspF led to the discovery that OspF inhibits mitogen-
activated protein kinase signaling in both yeast and mammalian
cells. This inhibition of mitogen-activated protein kinase signaling is
associated with attenuation of the host innate immune response.
This study demonstrates how yeast functional genomic studies can
contribute to the understanding of pathogenic effector proteins.



ontologies and the genes they subsume (Figure 2). Of the
remaining 16 ontologies, nine were biological process ontol-
ogies. With respect to hierarchical relationships, these process
ontologies fell into four groups rooted in ‘‘cell communica-
tion,’’ ‘‘cell wall organization and biogenesis,’’ ‘‘ubiquitin-
dependent protein catabolism,’’ and ‘‘cell division.’’

OspF Is Congruent to Genes Impaired in Cell Wall
Biogenesis

For another perspective, we carried out a second type of
enrichment analysis using existing SL interaction data.
‘‘Congruent’’ gene pairs have been defined as those sharing
SL interaction partners [19]. Again by analogy, we defined a
gene to be congruent to OspF expression if its set of SL

interaction partners has statistically significant overlap with
mutant alleles hypersensitive to OspF (Figure S4). Intuitively,
if OspF is congruent to a gene, then expression of OspF
effectively mimics mutation of that gene. We scanned the
available database of 9,019 SL interactions encompassing
2,286 ORFs [18] for genes congruent to OspF. Almost all of
the genes that are congruent to OspF encode proteins
involved in either the cell wall integrity (CWI) pathway or
chitin biosynthesis, both of which are related to cell wall
biogenesis (Table 1) [20].
The CWI pathway regulates cell wall biogenesis during the

cell cycle as well as under conditions that perturb the cell
wall. All of the proteins involved in chitin biosynthesis in

Figure 1. Yeast Growth Inhibition Screen

The entire yeast haploid deletion strain collection was transformed four separate times, twice with a plasmid that conditionally expresses GFP and twice
with a plasmid that conditionally expresses GFP-OspF. Transformants were spotted in quadruplicate onto solid media trays such that up to four
biological replicas were examined in each screen. Each screen was conducted in duplicate. Images shown reflect growth after 48 h.
doi:10.1371/journal.ppat.0030021.g001

Figure 2. Ontologies Enriched among the 83 Genes That Are Essential in Yeast Expressing OspF

A black cell indicates membership of its column’s gene in its row’s ontology. Two independent types of hierarchy are represented in the matrix.
Columns and rows have been hierarchically clustered and the dendrogram on the left shows the results of row clustering (column dendrogram not
shown). Gene ontologies are hierarchical classifications, and the color bands indicate hierarchically related groups of process ontologies (in bold type).
Ontologies in italics are molecular functions; the remaining five are components.
doi:10.1371/journal.ppat.0030021.g002
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Table 1 either directly encode or regulate the activity of
chitin synthase III, a protein responsible for synthesis of the
chitin ring at the bud neck during cell division and for chitin
in the lateral cell wall. Although chitin normally accounts for
only 1%–2% of the yeast cell wall, chitin can contribute up to
20% of the cell wall under times of stress [21]. Furthermore,
with the exception of KRE1, strains deleted for none of the
genes congruent to OspF were hypersensitive to OspF,
suggesting that these genes represented targeted rather than
compensating pathways. Thus, the results of this second
analysis raised the possibility that OspF acts to inhibit the
CWI pathway and/or chitin biosynthesis.

The implication of cell wall integrity in OspF toxicity by
two independent analyses focused our attention on the yeast
cell wall. Furthermore, the fact that the CWI pathway is a
highly conserved MAPK signaling cascade made it a plausible
target (in yeast) for an effector protein from a mammalian
pathogen. Although this hypothesis resulted from data
mining two different types of systematic data, functional
annotation and genetic interaction data, it was based on one
type of experimental data: identification of genes that
modulate OspF toxicity. For a complementary systems view
we also identified genes whose expression was modulated by
OspF.

OspF Alters mRNA Levels of Genes Regulated by the CWI
Pathway

We examined the transcriptional response of wild-type
yeast to OspF expression using Affymetrix Yeast GeneChips.
mRNA profiling studies conducted in triplicate identified
only 19 genes regulated greater than 2-fold (Table 2) 3 h after
the induction of OspF expression. Strikingly, the second-most
downregulated gene in all three independent mRNA profiling
experiments encodes CWP1, a major structural component of
the yeast cell wall. Although loss of this protein does not

result in measurable alterations in yeast growth under
laboratory conditions, Dcwp1 strains are sensitive to agents
that impair CWI, and this gene is normally upregulated in
response to cell wall stress [22]. Furthermore, CWP1 is one of
;20 proteins whose expression is regulated by the CWI
pathway [23]. Activation of the CWI pathway results in
phosphorylation of RLM1, a transcription factor that induces
expression of 19 genes including CWP1 and PRM5 and
represses expression of five genes, including FIT2 [23]. The
OspF-dependent reversed regulation of CWPI, PRM5, and
FIT2 suggested that OspF expression directly or indirectly
inhibits RLM1-regulated transcription.
Since we examined alterations in mRNA expression

patterns among unsynchronized cells and the CWI pathway
is only periodically induced during the cell cycle, it was
perhaps not surprising that more significant alterations were
not observed in additional RLM1-regulated genes. Indeed,
when grown under normal laboratory conditions, activation
of the CWI pathway is undetectable in asynchronous cells
[22]. Nevertheless, although expression of the remaining
RLM1-regulated genes was not altered greater than 2-fold, in
general those genes normally induced by RLM1 were re-
pressed in the presence of OspF, and those genes normally
repressed were induced 3 h after the induction of expression
of OspF (Figure S5).

OspF Inhibits Signaling of the CWI Pathway
We next investigated whether OspF expression does indeed

regulate expression of the CWI pathway by monitoring the
effects of GFP-OspF expression on an RLM1 transcriptional
reporter. This well-characterized reporter contains two
RLM1 binding sites fused to the minimal CYC1 promoter
driving lacZ [24]. Expression of this reporter gene is
detectable in asynchronous yeast grown under standard
laboratory conditions and responds appropriately to pertur-
bations that activate the CWI pathway [3,10,25]. We observed

Table 1. Congruence between OspF and Mutant Alleles of
Designated Genes

Gene SL

Overlap

Total

SL

p-Value Cellular Process/Role

skt5 14 48 2.2 e �12 Chitin biosynthesis

chs3 14 64 1.7 e �10 Chitin biosynthesis

chs7 10 31 1.5 e �9 Chitin biosynthesis

chs5 14 77 2.3 e �9 Chitin biosynthesis

slt2 14 92 2.6 e �8 CWI signaling pathway (MAPK)

mms2 9 31 3.0 e �8 DNA repair

mid2 6 11 8.6 e �8 CWI signaling pathway (sensor)

chs6 8 26 1.2 e �7 Chitin biosynthesis

bem2 9 39 2.7 e �7 CWI signaling pathway (RhoGAP)

bck1 9 42 5.4 e �7 CWI signaling pathway (MAPKK)

ptc1 6 16 1.4 e �6 Osmosensing (HOG) MAPK

signaling cascade

rom2 5 13 9.8 e �6 CWI signaling pathway (RhoGEF)

rvs167 9 59 1.1 e �5 Regulation of actin cytoskeleton

nbp2 7 34 1.5 e �5 CWI signaling pathway

(transcription factor)

rlm1 3 3 1.5 e �5 CWI signaling pathway

(transcription factor)

kre1 5 50 2.2 e �5 Cell wall structural protein

doi:10.1371/journal.ppat.0030021.t001

Table 2. Genes Differentially Regulated in Response to OspF
Expression

Gene Log2Ratio

SAG1 �2.0

CWP1 �2.0

STL1 �1.8

YLR042C �1.5

MHSPET3 �1.5

GRE2 �1.5

MF(ALPHA)2 �1.4

MET14 �1.4

PRM5 �1.2

SUL1 �1.1

SUC2 �1.1

MET10 �1.1

AFR1 �1.1

SST2 �1.1

YML131W �1.0

PRY3 þ1.1

HSP30 þ1.3

FIT3 þ1.8

FIT2 þ1.9

doi:10.1371/journal.ppat.0030021.t002
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that GFP-OspF inhibits basal levels of expression of this CWI
pathway reporter and inhibits activation of the CWI pathway
in response to heat shock (Figure 3A). Thus, expression of
OspF appears to inhibit activation of the CWI pathway.

OspF Inhibits Yeast MAPK Phosphorylation
Many of the components of the yeast CWI pathway are highly

conserved among eukaryotes (Figure 3B). In fact, many
bacterial effector proteins, including Shigella IpgB2 andYersinia
YopE, have been demonstrated to inhibit specific steps in this
pathway in both yeast andmammalian cells [3,10,25]. IpgB2 is a
Rho mimic that activates RHO signaling while YopE is a
RhoGAP. In order to determine where OspF targets the CWI
pathway in relationship to Rho1, we first screened for
alterations in the integrity or polarity of the yeast cytoskeleton
in response to expression of OspF. No perturbations were
observed (unpublished data) suggesting that OspF targets a
component of theCWI signalingpathway downstreamofRho1.
To further localize the action of OspF, we took advantage

of the cross-reactivity of the mammalian phospho-specific
p42/44 MAPK antibodies and phosphorylated Slt2. Since CWI
pathway activation is barely detectable in wild-type yeast
grown under standard laboratory conditions, we assayed for
the ability of OspF to block activation of the MAPK pathway
by either heat or hypoosmotic shock. OspF inhibited
phosphorylation of SLT2 in response to both of these
conditions, but did not alter total SLT2 levels (Figure 3C,
unpublished data). Thus, OspF targets a protein upstream of
RLM1 and downstream of RHO1 in the CWI pathway.

OspF Inhibits Phosphorylation of Additional Yeast MAPKs
Several lines of evidence suggested that OspF might target

additional cellular processes. For example, the growth
inhibition of wild-type yeast due to expression of OspF
cannot be explained by inhibition of just the CWI pathway
since deletion strains that no longer express essential
components of the CWI pathway are not inhibited for growth
under the same conditions. Yeast encode five additional
MAPK signaling cascades including the mating pathway
(Fus3), the invasive growth pathway (Kss1), the hyperosmotic
growth (HOG) pathway, the sporulation pathway (Smk1), and
Mlp1, a second MAPK implicated in the CWI pathway [26]. A
strain deleted in all six MAPKs has been reported to be
impaired for growth [27]. The severe growth inhibition of
yeast observed in liquid media could be accounted for by
OspF inhibiting multiple yeast MAPK signaling pathways.
Indeed, we observed that OspF expression also impaired
phosphorylation of three additional yeast MAPKs: Hog1,
Kss1, and Fus3 (Figure 3C). Thus, OspF appears to non-
specifically inhibit phosphorylation of yeast MAPKs. This
general inhibition of yeast MAPK signaling pathways likely
explains the OspF hypersensitivity of deletion strains not
directly related to cell wall biogenesis. Because MAPK
cascades are highly conserved among all eukaryotes, and
OspF is a virulence protein from a human pathogen, it
seemed likely that OspF would likewise target mammalian
MAPK pathways.

Figure 3. OspF Inhibits the Yeast CWI Pathway by Inhibition of MAPK

Phosphorylation

(A) Summary of the activity of an RLM1-regulated b-galactosidase
reporter in response to heat shock in the presence or absence of OspF.
(B) Outline of the CWI pathway.
(C) Yeast containing empty vector or a plasmid that conditionally
expresses OspF were subjected to the designated stress 2 h after the
induction of expression of OspF (see Materials and Methods). Repre-
sentative immunoblots used to assay for activation of each of four MAPK
signaling pathways: SLT2 (CWI pathway), FUS3 (mating pathway), KSS1
(invasive growth pathway), and HOG1 (high-osmolarity glycerol path-
way) are shown. The circled P denotes phosphorylated versions of the
proteins. The blots were probed with the anti-PSTAIRE antibody that

recognizes CDC28 and PHO85 as a loading control. Each experiment was
conducted at least in triplicate with similar results.
doi:10.1371/journal.ppat.0030021.g003
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OspF Inhibits Mammalian MAPK Signaling Pathway
To test whether the presence of OspF altered MAPK

signaling during infection, we compared MAPK phosphor-
ylation patterns in mammalian cells infected with wild-type

or DospF Shigella. As previously observed, infection with wild-
type Shigella resulted in strong SAP/JNK phosphorylation [28],
weak ERK phosphorylation [29], and no detectable p38
phosphorylation (Figure 4A). In contrast, infection with
DospF Shigella resulted in robust phosphorylation of all three
MAP kinases, without alteration of the overall levels of MAP
kinases in the cells. The DospF Shigella phenotype was
complemented by expression of OspF from its endogenous
promoter on a low copy-number plasmid (Figure 4A). These
observations suggested that the presence of OspF either
inhibits ERK and p38 phosphorylation or the absence of
OspF stimulates their phosphorylation.
The observations in yeast suggested that the presence of

OspF is sufficient to inhibit MAPK phosphorylation. Several
experiments were conducted to test whether this is the case in
mammalian cells. First, we compared the ability of wild-type
and DospF Shigella to inhibit MAPK phosphorylation in
response to the addition of exogenous agents that induce
MAPK signaling. Wild-type, but not DospF Shigella, inhibit
activation of ERK phosphorylation in response to epidermal
growth factor and p38 phosphorylation in response to
sorbitol (Figure 4B). Second, we coinfected mammalian cells
with wild-type and DospF Shigella at a ratio of 1:1. The DospF
Shigella strain demonstrated no defect in invasion alone or in
competition with wild-type Shigella (unpublished data). The
presence of OspF in the mixed infection was sufficient to
inhibit MAPK signaling pathways (Figure 4C). Thus, OspF
inhibits MAPK phosphorylation in both yeast and mamma-
lian cells. While this inhibition is nonspecific in yeast, the
signaling of the mammalian SAP/JNK pathway appeared to be
unaffected by the presence of OspF.

OspF Inhibits MAPK Downstream of the MAPKKK
Inhibition of MAPK phosphorylation is a strategy used by

other bacterial pathogens, including Yersinia species and
Bacillus anthracis, to modulate the innate immune response.

Figure 4. OspF Inhibits ERK and p38 Phosphorylation

(A) Immunoblots of extracts of HeLa cells infected with wild-type, DospF,
or DospF/pOspF Shigella for 1 h.
(B) pOspF indicates the OspF complementing plasmid. Cell lysates were
probed with the designated antibodies. Immunoblots of extracts of
uninfected HeLa cells or HeLa infected with wild-type or DospF Shigella
for 1 h and then exposed to 50 ng/ml EGF or 0.4 M sorbitol to activate
ERK and p38 signaling, respectively.
(C) Immunoblots of extracts of HeLa cells infected with wild-type Shigella
(MOI 10:1), DospF Shigella (MOI 10:1), or mix of wild-type Shigella (MOI
5:1) plus DospF Shigella (MOI 5:1) for 1 h. In all cases, each experiment
was conducted at least in triplicate with similar results.
doi:10.1371/journal.ppat.0030021.g004

Figure 5. OspF Stimulates MAPKK Activation and Inhibits MAPK

Activation

Immunoblots of extracts of HeLa cells infected with wild-type, DospF, or
DospF/pOspF Shigella or exposed to anisomycin or EGF, to activate p38
and ERK signaling, respectively. The latter two reagents were added as
positive controls for detection of activation of phosphorylated MAPK and
MAPKK. Cell lysates were probed with the designated antibodies. Each
experiment was conducted at least in triplicate with similar results.
doi:10.1371/journal.ppat.0030021.g005
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The Yersinia type III effector YopJ is an acetyltransferase that
inhibits MAPKK phosphorylation by direct modification of
residues that are normally phosphorylated [30]. B. anthracis
lethal factor, a metalloprotease, cleaves the amino-termini of
MAPKKs [31]. To determine whether Shigella also inhibits
MAPK phosphorylation by modulation of MAPKKs, we
monitored the phosphorylation state of the MAPKKs directly
upstream of ERK and p38. In both cases, infection with wild-
type, but not DospF Shigella, resulted in the accumulation of
phosphorylated MAPKKs (Figure 5) to levels markedly greater
than those observed in the absence of OspF. The presence of
full-length phosphorylated MAPKKs in the absence of
phosphorylated MAPKs suggests that OspF inhibits MAPK
phosphorylation by a novel mechanism, by either blocking
phosphorylation of MAPKs by activated MAPKKs or by
dephosphorylating activated MAPKs. These results are con-
sistent with recent observations that OspF is a MAPK
phosphatase for ERK and p38 [16].

OspF Attenuates the Host Innate Immune Response to
Shigella Infection
Mammalian MAPK signaling pathways regulate diverse

cellular activities including cell proliferation, differentiation,
motility, survival, and innate immunity. The innate immune
response is activated when host cells recognize pathogen-
associated molecular patterns that include microbial prod-
ucts like peptidoglycan and lipopolysaccharide. The patho-
gen-associated molecular patterns are recognized by
pathogen recognition receptors, like the extracellular Toll-
like receptors and the intracellular nucleotide-binding
oligomerization domain proteins (for review see [32]). For
example, after Shigella invade host cells, mammalian NOD1
binds the bacterial peptidoglycan, resulting in activation of
the SAP/JNK and ERK MAPK signaling pathways as well as
NF-jB activation [28]. Many pathogens, including Shigella,
modulate this host immune response presumably to promote
their own survival. Specifically, the Shigella effectors OspG
and IpaH9.8 downregulate the innate immune response by
inhibition of NF-jB activation [33,34]. Therefore, we
hypothesized that OspF inhibition of MAPK signaling might
also serve to downregulate the mammalian immune re-
sponse.
We next investigated whether downregulation of MAPK

signaling pathways by Shigella in cell culture reflected in vivo
alterations in the innate immune response to infection.
Although Shigella infections are normally restricted to the
intestines in humans, the bacterium is unable to sustain an
infection in the intestines of adult mice. However, the mouse
lung infection is an established model for monitoring the
immune response to Shigella infections [35]. After determin-
ing that DospF Shigella were not defective in invasion of host
cells or in cell-to-cell spread (unpublished data), we inves-
tigated the innate immune response to Shigella in the mouse
lung infection model. As expected, 24 h after infection the
lungs of mice infected with wild-type Shigella showed an
inflammatory infiltrate dominated by polymorphic neutro-
phils (Figure 6). In contrast, infection with DospF Shigella
triggered a markedly more aggressive immune response as
manifested by the increase in polymorphic neutrophils in the
lungs. Furthermore, the visible edema and hemorrhage
resulted in considerable destruction of the lung architecture

Figure 6. OspF Is Associated with Attenuation of the Host Innate

Immune Response

The images shown are of hematoxylin- and eosin-stained sections of
lungs of mice 24 h after infection with wild-type or DospF Shigella or
injection with equivalent volume of phosphate buffered saline.
doi:10.1371/journal.ppat.0030021.g006
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(Figure 6). These findings suggest that the presence of OspF
attenuates the host innate immune response.

Discussion

Although unicellular eukaryotes such as yeast cannot serve
as models for the bacterial infection of host cells, the utility of
S. cerevisiae for investigating the molecular activities of
effector proteins is well established. Until now, little has
been done to exploit the genetic tractability of yeast to
determine cellular targets of effector proteins. In this study,
we present the first use of yeast systems biology to identify a
function for a poorly understood bacterial effector protein.
By integrating complementary systems-level snapshots of the
cellular perturbation caused by OspF, we were able to
determine that OspF targets a well-characterized yeast-
signaling pathway. These observations led us to hypothesize
and subsequently demonstrate that OspF inhibits highly
conserved MAPK signaling pathways including those that
regulate cell wall biogenesis in yeast and the host innate
immune response in mammals. These results are in agree-
ment with the recent demonstration that OspF is a MAPK
phosphatase specific for ERK and p38 [16]. Although, there is
also evidence that OspF can activate ERK phosphorylation in
polarized epithelial cells [36].

One of the hallmarks of Shigella infections is the dramatic
inflammatory response characterized by the recruitment of
polymorphic neutrophils to sites of infection. This response
facilitates access of Shigella to the basolateral surface of
epithelial cells where this intracellular pathogen mediates its
own uptake into cells via a type III secretion system. Shigella
trigger activation of the innate immune response, at least in
part, through the action of pathogen-associated molecular
patterns like LPS [37] and peptidoglycan [28]. Shigella also
down regulate the innate immune response by the action of
several proteins including OspF. The Shigella effector pro-
teins, OspG and IpaH9.8, inhibit NF-jB activity resulting in
decreased production of proinflammatory cytokines [33,34].
In addition, the ShiA protein down regulates the innate T-cell
response [38]. OspF-mediated downregulation of the innate
immune response by inhibition of MAPK signaling comple-
ments the actions of these other Shigella proteins. These
proteins presumably allow Shigella to fine-tune the host innate
immune response over the course of infection.

OspF homologs are found in pathogens of both plants and
animals including Salmonella typhimurium (SpvC) and Pseudo-
monas syringae (HopAI1) (Figure S6). HopAI1 was recently
demonstrated to inhibit activation of the plant innate
immune response by an unknown mechanism [39]. These
observations suggest the existence of a new class of bacterial
proteins, common to pathogens of both plants and animals
that modulate the host innate immune response by inhibiting
MAPK phosphorylation.

Our study demonstrates how genome-wide yeast screens
can help generate testable hypotheses about the roles of
bacterial effector proteins in pathogenesis. We applied a
standard technique of statistical data mining, enrichment
analysis, to integrate our screen results with two of the many
types of systems data available for S. cerevisiae, genetic
interactions and gene ontology annotations. This implicated
CWI in OspF toxicity. The juxtaposition of this observation
with the apparent reverse regulation of the CWI pathway in

microarray experiments provided the crucial insight. Our
approach was necessarily heuristic. For example, the set of
genes exhibiting differential expression in response to OspF
was of a size that one might dismiss as uninformative if it were
the only set of data available, but the implication of CWI
involvement by the hypersensitivity screens made the
presence of any CWI pathway–regulated genes among those
differentially regulated conspicuous.
Considerable evidence also motivated our focus on the cell

wall. For example, at least five OspF hypersensitive deletion
strains not accounted for in the enrichment analyses are
impaired in protein mannosylation and glycosylphosphatidyl-
inositol anchor biosynthesis. Both of these post-translational
modifications are abundant among yeast cell wall proteins
[40]. The corresponding ontologies were not statistically
significant in our analyses, but their biological significance to
cell wall biogenesis is well established. Similarly, six of the
eight genes annotated to ‘‘ubiquitin-dependent protein
catabolism’’ (italicized in Figure 2) are involved in regulation
of an alternative cell wall biogenesis pathway which only
becomes essential when the normal cell wall biogenesis
pathway is perturbed [41,42]. These and other observations
highlight the limitations of statistical methods and the
importance of complementing formal analysis with an in-
depth literature review to accurately interpret screen results.
The demonstrated inhibition of the CWI pathway by OspF

accounts for much, but not all, of the observed hyper-
sensitivity in deletion strains. The CWI pathway is constitu-
tively active in at least three of the OspF hypersensitive cell
wall biogenesis strains (Dgas1, Dsmi1, and Dfks1) [22]. Presum-
ably this activation is essential for their survival since these
deletion strains are synthetically lethal in combination with
mutations that impair the CWI pathway (Dslt2 and Dbck1) [11].
However, other pathways and processes were also implicated
to which no clear CWI connection exists.
We assume that the multiplicity of process ontologies

enriched in the hypersensitive strains reflects pathway
dependencies centered on the cellular perturbation caused
by OspF. For example, if a given pathway is required to
mitigate toxicity of OspF, then any cellular process on which
that pathway depends, will probably also be intolerant of
impairment by gene deletion, though perhaps to a lesser
degree. From this perspective, it is possible that OspF
inhibition of cell wall biogenesis via the CWI pathway
accounts for the hypersensitivity of cell division-associated
null alleles since successful cell division depends strongly on
CWI. Because yeast are under high osmotic pressure, budding
and cytokinesis must be tightly coordinated with cell wall
growth and remodeling to maintain CWI throughout the
process. Defects in the cell wall can result in failure of cell
division due to incomplete cytokinesis or cell lysis [43]. The
congruence of chitin biosynthesis genes to OspF expression
supports this speculation since chitin is a cell wall constituent
involved in cell division [40]. However, concrete evidence
explaining hypersensitivity of the cell division-associated null
alleles in terms of OspF inhibition of the CWI pathway is
lacking. The hypersensitivity of these null alleles may also be
related to OspF inhibition of multiple MAPK cascades. The
unanimity of our analyses in implicating CWI is likely due to
the fact that this is the only MAPK cascade with demonstrated
basal activity in laboratory conditions.
Our study demonstrates how genome-wide yeast screens
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can help generate testable hypotheses about the roles of
bacterial effector proteins in pathogenesis. The multiple
perspectives gained from two genome-wide experiments (as
well as from multiple analyses of individual experiments)
allowed us to effectively ‘‘triangulate’’ the process being
perturbed by OspF, as well as to identify the nature of the
perturbation. Other choices of screens, e.g., genome-wide
identification of OspF binding targets using protein arrays or
coimmunoprecipitation assays or identification of toxicity-
suppressing conditions in synthetic liquid media (in which
OspF is more toxic to yeast), would likely have resulted in a
different path to the same discovery. For example, a
preliminary genome-wide screen for suppressors of OspF
toxicity in liquid media suggested that Dsac7 suppresses OspF
toxicity. SAC7 is a RhoGAP whose absence should lead to
increased activation of Rho1, so it makes sense, given what
we establish in this paper, that it would suppress OspF
toxicity.

Genome-wide screens are potentially applicable to any
bacterial effector that exhibits evidence of conserved activity
in yeast such as toxicity or conserved localization. Hyper-
sensitivity screens only make sense for effectors that exhibit
mild or conditional toxicity, but other kinds of screens can
be applied to extremely toxic effectors. For example, Alto
and colleagues recently demonstrated how genome-wide
suppressor screens of the yeast deletion strain collection
can identify the cellular targets of effector proteins whose
expression severely inhibits yeast growth [10]. They con-
firmed that Shigella IpgB2 mimics activated Rho1 in yeast
when they observed that three deletion strains, all down-
stream components of the MAPK signaling cascade regulated
by Rho1, were resistant to IpgB2 toxicity. In this case, since
expression of IpgB2 activates a nonessential signaling path-
way, they were able to isolate suppressors that blocked
persistent activation of the pathway. However, if effector
proteins are toxic because they directly target an essential
cellular process, it may not be possible to isolate suppressors
by screening yeast strains that contain null alleles of
nonessential genes. Alternatively, suppressors might be found
by screening for yeast genes whose overexpression suppresses
toxicity. A genome-wide library of such constructs is now
available [44].

In summary, this study exemplifies how contemporary
analytic tools and the simplest of eukaryotes, S. cerevisiae, can
contribute to the study of bacterial effectors. Even when
bacterial proteins target cellular processes like innate
immunity, which are not conserved among all eukaryotes,
if elements of these processes like MAPK signaling cascades
are conserved, then screens in yeast can be helpful in
elucidating a function for the effector proteins. This systems
approach should be generally applicable to numerous micro-
bial virulence proteins. Moreover, since this approach only
requires bacterial DNA, it should be particularly valuable for
pathogens difficult to genetically manipulate or dangerous to
culture.

Materials and Methods

Yeast plasmids and strains. The gene encoding OspF was PCR-
amplified from 2457T S. flexneri serotype 2a and subcloned into
pFUS-GFP and pFUS-HIII1 [3]. Low-copy number versions of the
GFP-OspF and GFP expression plasmids were constructed by
homologous recombination in yeast to create pRS316-GAL10-GFP-

OspF, pRS313-GAL10-GFP-OspF, pRS316-GAL10-GFP, and pRS313-
GAL10-GFP. The nat1 gene, which confers resistance to nourseo-
thricin, was cloned into the pPR316-based plasmids to create
pRS316-GAL10-GFP-OspF-CN and pRS316-GAL10-GFP-CN. Genes
encoding S. typhimurium SpvC and P. syringae HopAI1 were PCR-
amplified from genomic DNA preparations (E. Hohman and W.
Songnuan, Massachusetts General Hospital ) and transferred into
pBY011-D123 (B. Bhullar, Harvard Institute of Proteomics), a yeast
expression plasmid using Gateway technology (Invitrogen, http://
www.invitrogen.com).

Bacterial plasmids and strains. All infections were performed with
S. flexneri 2457T serotype 2a. DospF Shigella was constructed using the
kred recombinase-mediated recombination system [45].

A PCR fragment encompassing ospF plus 90 bp upstream and 300
bp downstream was cloned in pAM238 (pSC101 ori) to create pOspF,
a complementing plasmid.

Yeast transfers. All yeast transfers in 96- or 384-well arrays were
conducted using a Biorobot 3000 robot (Qiagen, http://www1.qiagen.
com) outfitted with one of three floating pin tools described below
(V&P Scientific, Incorporated, http://www.vp-scientific.com).

Screen for deletion strains hypersensitive to GFP-OspF. The entire
yeastMATa haploid deletion strain collection (53396-well plates/set)
(Open Biosystems, http://www.openbiosystems.com) was transformed
twice with pRS316-GAL10-GFP-OspF-CN and twice with pRS316-
GAL10-GFP-CN using our 96-well transformation protocol (Protocol
S2). Transformants were first selected under noninducing conditions
(SC-URA 2% glucose) on solid media. Each transformation was plated
in quadruplicate to create a 384-well array. Colonies were transferred
to a second noninducing plate to ‘‘normalize’’ the yeast in each spot,
since each individual yeast transformation varied in efficiency. The
yeast from this plate were transferred to rich- (YEP) inducing (2%
galactose) and noninducing (2% glucose) media. In the case of
inducing media, clonNAT (70 lg/ml) was added to the media to
ensure maintenance of the transformed plasmid. The plates were
incubated at 30 8C for ;48 h and then quantitated. Since the
transformation efficiency was relatively poor, we assumed that each
of the four transformation spots generated from each transformed
strain was composed of independent transformations. Thus, each
transformation resulted in four independent biological replicates.
Each screen was repeated twice, thus we screened up to eight
independent biological samples of each strain in the collection
(Protocol S3, Figure S7, Tables S3 and S4).

Comparison of OspF screen results with SL data. We extracted the
SL interactions from the exhaustive table of protein interaction data
from Saccharomyces Genome Database (obtained by File Transfer
Protocol, downloaded on 9 September 2006). We filtered this data to
include only those SL interactions qualified as ‘‘inviable.’’ The bulk of
this data comes from several large-scale screens, but over 1,000 small-
scale screens also contribute to the total of 9,019 unique interactions
between 2,286 genes. Only 1,041 of these interactions have been
experimentally confirmed symmetric. For the purpose of our analysis
we assumed all listed interactions were symmetric.

Of the 83 null alleles hypersensitive to OspF, 58 were included
among the 2,286 genes in the SL database. To assess the significance
of overlap between these 58 and the prey sets of each of the 2,286
genes, we calculated the chance of each intersection occurring in
randomly selected samples as follows:

Let W be the set of all genes in the interaction database. Let H¼f x
2 W: null alleles of x are hypersensitive to OspF g. That is, H is the
OspF ‘‘hit’’ set. For each gene g in W let P(g) ¼ f x 2 W/g : x is
synthetically lethal with g g. P is the ‘‘prey’’ set of g. Then the
probability of H\P containing k or more genes is given by the
hypergeometric distribution:

ProbðjH \ Pj � kÞ ¼
X

CðD; xÞCðN�D;n� xÞ=CðN;nÞ

with x 2 ½k;minðn;DÞ�

where

D ¼ jHj ¼ 58 when g=2H; and D ¼ 57 when g2H
N ¼ jWj � 1 ¼ 2285
n ¼ jPj

where C (a,b) is the binomial coefficient function.
To minimize the false discovery rate we used an alpha value of 0.05/

2286 ’ 2.187 e-5 (the Bonferroni correction).
Microarray analysis. Three independent cultures of wild-type

yeast, transformed with either a plasmid that conditionally expresses
OspF (without the GFP fusion) from a low-copy number plasmid
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(pBY011-D123-OspF) or an empty vector control plasmid (RS316),
were grown overnight in selective media supplemented with 2%
raffinose (raf). In the morning, each culture was diluted to an OD600¼
1.0 in fresh SC-URA 2% raf and incubated for 2 h at 30 8C. Galactose
was then added to a final concentration of 2% to all cultures (to
induce expression of OspF). After 3 h, the yeast were pelleted and
snap-frozen in liquid N2. Total RNA was isolated using hot phenol
followed by ethanol precipitation and then submitted to the Harvard
Medical School Partners Healthcare Center for Genetics and
Genomics (HPCGG) for further processing. HPCGG synthesize cDNA
using the GeneChip Expression 39-Amplification Reagents One-Cycle
cDNA Synthesis Kit. They then preformed in vitro transcription
(IVT) using the Affymetrix GeneChip Expression Amplification
Reagents Kit and quantified the IVT samples with a Bio-Tek UV
plate reader. Hybridization was carried out with Affymetrix yeast S98
chips according to the manual. Microarrays were scanned with a
GeneChip 3000 7G Scanner controlled by the Affymetrix GCOS v1.3
operating system. We subsequently processed the raw CEL file output
using the ‘‘affy’’ package [46] for the statistical program R [47].
Expression measurements were background corrected and normal-
ized using the ‘‘rma’’ method. For each gene, an expression ratio was
calculated using the (arithmetic) mean expression of the gene in each
triplicate set (control and inducing).

b-galactosidase assays. Yeast transformed with GFP-OspF (BYO11-
D123-OspF) or GFP (pRS313-GAL10-GFP) plus a RLM1-regulated
LacZ reporter plasmid (p1434) [24] were grown overnight in selective
media supplemented with 2% raf at 30 8C. In the morning, cultures
were back diluted to OD600 ¼ 1.0, grown at ;23 8C, and allowed to
recover for 2 h before the addition of 2% galactose. Half of the
cultures were then transferred to 39 8C for 1 h, the other half kept at
;23 8C. b-galactosidase assays were conducted as previously
described [48].

Yeast MAPK phosphorylation assays. Yeast transformed with
pRS316-GAL10-GFP-OspF or pRS316 were grown overnight in
selective media supplemented with 2% raf (plus 1M sorbitol for
hypoosmotic shock). In the morning, cultures were diluted (OD600 ¼
1.0) in fresh media and incubated for 2 h at 30 8C (25 8C for the heat-
shock experiment). OspF was induced by addition of 2% galactose.
Cells were incubated for 2 h at 30 8C (or 25 8C) before introducing the
stresses. Heat shock was performed as previously described [49]. Cells
were shocked by dilution 1:1 with media pre-warmed to 55 8C
followed by incubation at 39 8C for 30 min. The shock response was
terminated by an additional 1:1 dilution with ice-cold stop mix. The
mating and invasive growth MAPK pathways were induced by the
addition of 200 nM a-factor for 15 min. The HOG pathway was
induced by the addition of 400 mM NaCl for 5 min. Hypoosmotic
shock was performed by diluting cells 1:10 in water. In all cases, yeast
were pelleted and snap-frozen at the completion of the shock
procedure. Protein was isolated from yeast and subjected to SDS-
PAGE. Gels were blotted to nitrocellulose and probed with the
indicated antibodies according to the manufacturer’s directions. The
phospho-p42/44 antibody recognizes yeast phosphorylated SLT2,
FUS3, and KSS1. The phospho-p38 antibody recognizes yeast
phosphorylated HOG1. The PSTAIRE antibody was purchased from
Santa Cruz Biotechnology, Santa Cruz, California, United States.

Mammalian MAPK assays. HeLa cells seeded in 6-well plates (2
3105 cells/well) were serum-starved overnight. HeLa cells were
infected with Shigella in mid-exponential growth phase at an MOI of
10:1. Once the bacteria were added, the plates were spun at 1,000 rpm
for 5 min at RT. Each of the Shigella strains used carries the plasmid
pIL22 that constitutively expresses the afimbrial adhesin from
uropathogenic E. coli to synchronize infections [50]. The 6-well plates
were subsequently incubated at 37 8C for 1 h. Cells were washed with
ice-cold PBS plus 1 mM Na3VO4 and 10 mM NaF and then lysed with
300 ll RIPA buffer plus protease inhibitors. Equal volumes of samples
were subjected to SDS-PAGE. Gels were blotted to nitrocellulose and
probed with the indicated antibodies according to the manufacturer’s
recommendations (Cell Signaling, http://www.cellsignal.com).

Mouse lung infections. C57BL/6 mice, aged 6–8 wk, were obtained
from Jackson ImmunoResearch Laboratories and housed in specific
pathogen-free animal facilities. The experimental procedures used in
this study were approved by IACUC committee at HMS. For
infection, mice were anesthetized by intramuscular injection of
ketamine (12 mg/mL; Webster Veterinary Supply, Incorporated) and
xylazine (4 mg/mL; Webster Veterinary Supply, Incorporated) in
phosphate-buffered saline (PBS). The inoculum used for each
bacterial strain was ; 5 3107 cfu re-suspended in PBS. Mice were
inoculated intranasally in a single application of 20 lL with all mice
receiving the same inoculum as determined by OD measurement and
dilution plating of the inoculum. At the each time point following

infection, mice were sacrificed and the lungs removed. Lungs were
then fixed in 10% neutral buffered formalin and embedded in
paraffin for hematoxylin and eosin staining. Images were obtained
with 103 objective.

Supporting Information

Figure S1. Yeast Growth Due to OspF Expression under Variable
Conditions

Each box-and-whisker plot summarizes the OD600 measurements of
11 independent yeast cultures expressing the indicated bacterial
protein at t ¼ 48 h (Protocols S1 and S3). Empty refers to yeast that
carry empty vector. The boxes enclose (approximately) one quartile
either side of the median. The whiskers delimit the ;95% confidence
interval for the mean (using default rendering parameters in the
statistical computing software package R [47].

Found at doi:10.1371/journal.ppat.0030021.sg001 (210 KB JPG).

Figure S2. Subcellular Localization Patterns of GFP-OspF in Yeast
and HeLa Cells

(A) Shows HeLa cells transfected with C1-eGFP-OspF, a plasmid that
constitutively expresses GFP-OspF from the CMV promotor. Cells
were visualized ;18 h after electroporation.
(B) Shows yeast expressing GFP-OspF from a low-copy plasmid. The
picture was taken 3 h after induction of expression of GFP-OspF.
Both pictures were taken at 603 magnification with a Nikon 2000
microscope equipped with a Cool Snap camera.

Found at doi:10.1371/journal.ppat.0030021.sg002 (65 KB TIF).

Figure S3. Spot Images of All 160 Strains Quantitatively Identified as
Hypersensitive

Each row contains four sets of eight spots, left to right. Each octet is
from one screen: GFP (1), GFP (2), GFP-OspF (1), GFP-OspF (2), from
left to right. Within each octet the left four spots are from repressing
conditions (growth on glucose). The right four spots are from
inducing conditions (galactose).

Found at doi:10.1371/journal.ppat.0030021.sg003 (4.7 MB JPG).

Figure S4. Schematic Representation of Two Analyses of Hyper-
sensitive Null Alleles

(Actual genes and ontologies are not represented.) Smooth-edge
circles represent mutant yeast alleles. Lines represent SL interactions
(between genes) and analogous hypersensitivity interactions of null
alleles to OspF expression.
(A) Represents genes with common ontology annotations in different
colors. If each colored set represents the exhaustive set of genes (in
the sample space) with a given ontology annotation, and the depicted
set is exhaustive of those hypersensitive to OspF, then among a
sample space of thousands of genes the depicted proportions of each
set hypersensitve to OspF would be highly statistically significant by
the hypergeometric probability distribution.
(B) Represents congruency between a yeast mutant allele x and OspF
as defined by the same kind of statistical enrichment in a different
property: shared SL interaction partners. For example, given a
sample space of 2,286 genes the probability of a sample of 25 genes
containing seven or more of the ten genes SL to gene x is 8.8e �13.
Notice that the same gene can play different roles in the two
analyses.

Found at doi:10.1371/journal.ppat.0030021.sg004 (31 KB PDF).

Figure S5. MvA Plot of Levels of RLM1-Regulated Genes in the
Presence and Absence of OspF

These plots show the relationship between changes in expression
level and total expression for 24 RLM1-regulated genes 3 h after the
induction of expression of OspF. Changes in gene expression level
are defined to be log2 (expression level with OspF/expression level
without OspF). Total expression is defined as the geometric mean of
the expression levels with and without OspF, i.e., square root
(expression with OspF X expression without OspF). Genes normally
upregulated by RLM1 are marked in green while those normally
downregulated by RLM1 are marked in red. These data were obtained
by averaging the expression levels observed in three parallel experi-
ments (OspF versus empty vector).

Found at doi:10.1371/journal.ppat.0030021.sg005 (8 KB PDF).

Figure S6. Alignment of Protein Homologs of Shigella flexneri OspF

The protein sequences of SpvC from Salmonella enterica, VirA from
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Chromobacterium violaceum, and HopAI1 from Pseudomonas syringae were
aligned using CLUSTAL W with default parameters (http://www.ebi.
ac.uk/clustalw).

Found at doi:10.1371/journal.ppat.0030021.sg006 (888 KB JPG).

Figure S7.Histograms of Scaled Spot Opacities from All Four Screens

Gaussian curves defining the healthy colonies (spots) in each
condition are shown in blue. Mixture models (sums of Gaussians)
were fit to the GFP-OspF histograms to more accurately capture the
center and dispersion of the healthy population. The red dashed lines
indicate the Gaussian that accounts for the negative skew. The lower
mode (at zero) of the first GFP screen is truncated in the figure. 3,106
spots were absent in repressing conditions and 3,156 were absent in
inducing conditions.

Found at doi:10.1371/journal.ppat.0030021.sg007 (625 KB JPG).

Protocol S1. 96-Well Yeast Liquid Growth Assays

Found at doi:10.1371/journal.ppat.0030021.sd001 (27 KB DOC).

Protocol S2. 96-Well Yeast Transformations

Found at doi:10.1371/journal.ppat.0030021.sd002 (32 KB DOC).

Protocol S3. Analysis of Yeast Strains in Hypersensitivity Screens

Found at doi:10.1371/journal.ppat.0030021.sd003 (68 KB DOC).

Table S1. Yeast Genes Deleted in Strains Hypersensitive to GFP-OspF
Expression

Descriptions are taken from the Saccharomyces Genome Database
(http://www.yeastgenome.org).

Found at doi:10.1371/journal.ppat.0030021.st001 (38 KB XLS)

Table S2. Gene Ontologies Enriched among Genes Deleted from the
83 Mutant Yeast Strains Hypersensitive to GFP-OspF Expression

This table was copied directly from the output of http://llama.med.

harvard.edu/cgi/func/funcassociate. Ontology names were abbreviated
to fit. Ontologies that we judged too broad to be informative are
indicated with gray background. Ontologies that were redundant by
virtue of subset relationships are indicated by yellow background.
The gene counts reflect the state of annotation in the FuncAssociate
database at the time of our query.

Found at doi:10.1371/journal.ppat.0030021.st002 (27 KB DOC).

Table S3. The Subset of 122 Haploid Deletion Strains Untested Due
to Insufficient Transformant Replicants

Dubious ORFs are shown in blue, and ORFs that encode ribosomal
proteins are red.

Found at doi:10.1371/journal.ppat.0030021.st003 (6 KB DOC).

Table S4. Dubious ORFs Deletion of Which Resulted in Hyper-
sensitivity to GFP-OspF

Found at doi:10.1371/journal.ppat.0030021.st004 (11 KB DOC).
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