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The Thymus Is a Common Target Organ

in Infectious Diseases

Wilson Savino
ABSTRACT

nfectious disease immunology has largely focused on the

effector immune response, changes in the blood and

peripheral lymphoid organs of infected individuals, and
vaccine development. Studies of the thymus in infected
individuals have been neglected, although this is progressively
changing. The thymus is a primary lymphoid organ, able to
generate mature T cells that eventually colonize secondary
lymphoid organs, and is therefore essential for peripheral T
cell renewal. Recent data show that normal thymocyte
development and export can be altered as a result of an
infectious disease. One common feature is the severe atrophy
of the infected organ, mainly due to the apoptosis-related
depletion of immature CD4"CD8" thymocytes. Additionally,
thymocyte proliferation is frequently diminished. The
microenvironmental compartment of the thymus is also
affected, particularly in acute infectious diseases, with a
densification of the epithelial network and an increase in the
deposition of extracellular matrix. In the murine model of
Chagas disease, intrathymic chemokine production is also
enhanced, and thymocytes from Trypanosoma cruzi-infected
mice exhibit greater numbers of cell migration-related
receptors for chemokines and extracellular matrix, as well as
increased migratory responses to the corresponding ligands.
This profile is correlated with the appearance of potentially
autoreactive thymus-derived immature CD4"CD8" T cells in
peripheral organs of infected animals. A variety of infectious
agents—including viruses, protozoa, and fungi—invade the
thymus, raising the hypothesis of the generation of central
immunological tolerance for at least some of the infectious
agent-derived antigens. It seems clear that the thymus is
targeted in a variety of infections, and that such targeting
may have consequences on the behavior of peripheral T
lymphocytes. In this context, thymus-centered
immunotherapeutic approaches potentially represent a new
tool for the treatment of severe infectious diseases.

Introduction

Immunology of infectious diseases has focused mainly on
the effector immune response, changes in the blood and
peripheral lymphoid organs of infected individuals, and
vaccine development. In comparison, studies on the thymus
under the biological pressure of an infectious agent have
been few, although the large amount of data recently
published on the thymus of HIV-bearing patients promises to
improve this deficiency.

In the present review we will discuss a number of findings
related to the lymphoid as well as the microenvironmental
compartments of the thymus in the infectious disease state
(including the thymic invasion by some infectious agents), as
well as the phenotypic and functional changes seen with each
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of these intrathymic cellular compartments, comprising
proliferation, death, secretion, migration, and
differentiation. Selected examples of viral and parasitic
infectious diseases will be discussed in more detail.
Nevertheless, before compiling and discussing these data, it is
worthwhile to provide a general background on the structure
of the thymic microenvironment and its role in intrathymic T
cell differentiation.

The thymic microenvironment and T cell differentiation.
The thymus is a primary lymphoid organ in which bone
marrow-derived T cell precursors undergo differentiation,
ultimately leading to migration of positively selected
thymocytes to the T cell-dependent areas of peripheral
lymphoid organs. This process involves sequential expression
of various proteins and rearrangements of T cell receptor
(TCR) genes.

Along with differentiation, the most immature thymocytes
express neither the TCR complex nor the CD4 or CD8
accessory molecules; they are called double-negative
(CD4 CDS8") cells and represent 5% of total thymocytes.
Maturation progresses with the acquisition of CD4 and CDS8
markers, generating CcDh4"CD8" double-positive cells, which
constitute 80% of the whole population. At this stage, TCR
genes are completely rearranged, and productive
rearrangements yield the membrane expression of TCRs
(complexed with CD3) at low densities (TCR™™™). Thymocytes
that do not undergo a productive TCR gene rearrangement
die by apoptosis, whereas those expressing productive TCRs
interact with peptides presented by molecules of the major
histocompatibility complex (MHC), expressed on
microenvironmental cells. This interaction determines the
positive and negative selection events that are crucial for
normal thymocyte differentiation. Positive selection allows
the differentiation step through which immature, short-lived,
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Ccbh4'cpst thymocytes escape from programmed cell death
and become mature, long-lived, CD4" or CD8" single-positive
cells. This is a highly stringent process, sparing only a small
proportion of the Ccbh4*cpst population. Positive selection
also coincides with lineage commitment: the decision to
become a CD4" or CD8" single-positive thymocyte, as a
function of the class of MHC molecule with which the TCR
can interact. Intrathymic negative selection is the screen that
allows the establishment self-tolerance in the T cell
repertoire, promoting apoptosis-mediated deletion of most T
cells that might potentially react to self proteins.

Positively selected thymocytes that progress to the mature
TCRMS"CD47CD8™ or TCRM8"CD4 CDS" single-positive stage
constitute 15% of thymocytes that ultimately leave the organ
to form the large majority of the peripheral T cell repertoire
[1-4]. Figure 1 is a simplified view of the sequential steps of
thymocyte differentiation within the context of the
nonlymphoid compartment, the thymic microenvironment.

It is noteworthy that a small minority of potentially self-
reactive thymocytes achieves the CD4 or CD8 single-positive
stage and are released from the organ. Accordingly, along
with differentiation into CD4" single positive cells, some
elements do not acquire the functional feature of typical
helper cells (that is, cells able to trigger and/or enhance an
immune response in the periphery), but rather differentiate
into “regulatory” cells (most of them bearing the phenotype
CD4"CD25FoxP3™), which actually block a given immune
response. Recent data show that defects in such regulatory
CD4" T cells may be related to the occurrence of
autoimmune events (reviewed in [5-7]).

Thymocyte differentiation occurs as cells migrate within
the thymic lobules: TCR"CD4 CD8 and TCR'CD4"CD8" are
cortically located, whereas mature TCR"CD4'CD8 and
TCRYCD4 CDS" cells are found in the medulla (Figure 2). As
this journey proceeds, thymocytes interact with various
components of the thymic microenvironment, a three-
dimensional network formed of thymic epithelial cells (TECs),
macrophages, dendritic cells, fibroblasts and extracellular
matrix (ECM) components (Figure 2A).

In addition to the key interaction involving the TCR/
peptide-MHC, in the context of CD8 or CD4 molecules the
thymic microenvironment influences thymocyte maturation
via adhesion molecules and ECM; these interactions are
relevant for thymocyte migration [8,9]. Moreover,
microenvironmental cells modulate thymocyte
differentiation by soluble polypeptides, comprising (a) typical
cytokines, such as interleukin (IL)-1, IL-3, IL-6, IL-7, IL-8 and
stem cell factor; (b) chemokines, including CXCL12, which
preferentially attracts immature CD4 CD8" and ch4*tcpst
thymocytes, and CCL21, that exerts chemoattraction for
mature single positive thymocytes [10-12]; and (c) thymic
hormones such as thymulin, thymopoietin, and thymosin-al,
that can also act on the general process of thymocyte
maturation [3,13]. Interestingly, not only the thymic
epithelium affects thymocyte behavior, but thymocytes
modulate some thymic epithelial functions, as exemplified by
the role of interferon-y in the expression of MHC molecules,
extracellular ligands, and receptors [14,15]. The various TEC/
thymocyte interactions are summarized in Figure 2B, and
Table 1 summarizes accession numbers of peptide and DNA
sequence databases of selected human and mouse proteins
cited throughout this manuscript.
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Figure 1. The Normal Process of Intrathymic T Cell Differentiation

This diagram shows that most immature thymocytes localized in the
subcapsular cortical region of the thymic lobules do not express CD4 or
CD8 accessory molecules, nor the CD3/TCR complex, and are known as
double-negative (DN, for CD4 and CD8) cells. As they progress in
differentiation, they begin to express on their cell membranes the TCR/
CD3 complex as well as CD4 and CD8, becoming double-positive (DP)
thymocytes, which occupy most of the cortical region. These cells are
then submitted to the processes of positive and negative selection, as a
consequence of the interaction with the thymic microenvironment (gray
network) through MHC-TCR interactions. Those cells undergoing
negative selective die by apoptosis, whereas the small percentages of
positively selected thymocytes progress in their differentiation, moving
toward the medulla and becoming single-positive cells (SP) for either
CD4 or CD8, both expressing high densities of CD3/TCR complex. These
mature thymocytes can be exported from the thymus into the peripheral
lymphoid organs. Finally, this overall process of thymocyte
differentiation occurs in the context of the three-dimensional thymic
microenvironment (gray network) through membrane interactions as
well as soluble products (represented by red stars) released by
microenvironmental cells. Modified from [9].

The thymic epithelial network is the major component of
the thymic microenvironment, and it is responsible for
positive selection of thymocytes. It is a morphologically and
phenotypically heterogeneous tissue, and cells in different
locations within the thymic lobules may be related to specific
steps in T cell maturation [2]. One cortically located
lymphoepithelial complex, the thymic nurse cell (INC), has
been isolated in vitro. TNCs are lymphoepithelial
multicellular structures formed by one TEC (which in mice
can harbor 20-200 thymocytes), and are located in the
cortical region of thymic lobules. Most intra-TNC
lymphocytes bear the CD4"CDS8" double-positive phenotype,
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Figure 2. The Thymic Microenvironment and Its Role in Thymopoiesis

(A) A simplified model of thymocyte migration includes two compartments. On the left is depicted the entrance site of precursor cells into the thymus
through blood vessels. Having entered the thymus, thymocytes migrate during differentiation to ultimately leave the organ, bearing the mature
phenotypes of CD4"CD8 or CD4 CD8" cells. The right side of the image is a schematic representation of a thymic lobule, showing thymocytes
intermingled with a heterogeneous cellular network, the thymic microenvironment, composed of epithelial cells (yellow and orange), dendritic cells
(red), macrophages (blue), and fibroblasts (green). The epithelial tissue shows morphologic heterogeneity that can be seen in subseptal/subcapsular,
cortical, and medullary regions. In the cortex, we note a particular lymphoepithelial complex, the TNC.

(B) A number of molecular interactions take place between developing thymocytes and thymic epithelial cells. Whereas a and b correspond to
interactions mediated by soluble secretory molecules produced by epithelial cells (a) or lymphocytes (b), the interaction shown in c involves a given
peptide (red dot) being presented by MHC (expressed by the epithelial cell) to the TCR and corresponding accessory molecule in the thymocyte
membrane. The interaction shown by (d) involves adhesion molecules and the respective membrane counter-receptors, and (e) depicts an interaction
mediated by ECM ligand and receptor. Modified from [3,8].

although immature double-negative as well as mature single- complexes after being cocultured with immature thymocytes
positive cells can be found. TNCs may create special
microenvironmental conditions for thymocyte
differentiation and/or proliferation, and within this complex

distinct interactions occur, comprising those mediated by

[16]. Thus, TNCs constitute an in vitro model of thymocyte
migration within the TEC context.

The thymocyte differentiation process and the thymic

soluble products, ECM, and MHC/TCR [3]. Once settled in
culture, TNCs spontaneously release thymocytes, and TNC-
derived epithelial cells can reconstitute lymphoepithelial
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microenvironment compartment can be regarded as
potential targets for direct or indirect effects of a given

infectious agent.
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Table 1. Protein and Gene Accession Numbers of Selected Proteins

Protein Type Protein Peptide Sequences® DNA Sequences®
Human Mouse Human Mouse
Cytokines/chemokines IL-2 P60568 P04351 3558 16183
IL-7 P13232 P10168 3574 16196
IFN-y P01579 P01580 3458 15978
TNF-o P0137 5 P06804 7124 21926
CXCL-12 P48061 P40224 6387 20315
ECM Laminin (ao1-chain) P25391 P19137 284217 16772
Fibronectin (plasma) P02751 P11276 2335 - FN1 14268
Galectin-1 P09382 P16045 3956 16852
Galectin-3 P17931 P16110 3958 16854
Membrane receptors cD3 P07766 CD3¢ P22646 CD3e 916 ¢ chain 12501 ¢ chain
CD4 P01730 P06332 920 12504
cD8 P01732 CD8a P01731 CD8a 925 CD8a 12525 CD8uo
TNF-R1 Q13077 P25118 33638 21937
CD49d P13612 Q00651 3676 16401
CD49%e P08648 P11688 3678 16402
CD4of P23229 Q61739 3655 16403
CXCR4 P61073 P70658 7852 12767

?Accession numbers were retrieved from the SwissProt and LocusLink databases for peptide and nucleotide sequences, respectively.
CD49d, a4 integrin-chain of the fibronectin receptor VLA-4; CD49e, o5 integrin-chain of the fibronectin receptor VLA-5; CD49f, a6 integrin-chain of the laminin receptor VLA-6; IFN-y,

interferon-y; TNF-R1, type-1 TNF receptor.
DOI: 10.1371/journal.ppat.0020062.t001

Thymic atrophy is a common feature in infectious diseases.
A common feature seen in a variety of acute infections is
severe atrophy of the thymus, largely reflecting intense
lymphocyte depletion, particularly of cortical thymocytes
bearing the phenotype CD4"CD8" (Figure 3 and Table 2).
This depletion actually corresponds to massive cortical
thymocyte apoptosis, as it has been shown in a variety of
infections, including viral diseases such as AIDS, simian
immunodeficiency syndrome, and rabies; experimental
bacterial infections such as turalemia and listeriosis; diseases
caused by parasites including 7. cruzi, Plasmodium chaubi,
Schistosoma mansoni, and Trichinella spiralis; and fungal
infections, exemplified by experimental infections with
Paracoccidioides brasiliensis and Histoplasma capsulatum [17-36].
In some cases, thymocyte loss is so great that the cortical
region of thymic lobules virtually disappears as a
consequence of the severe CD4"CD8" thymocyte depletion.

The precise mechanisms responsible for the thymic
atrophy seen in acute infections are not completely
elucidated, and may vary in distinct diseases. One major
pathway is related to the rise in glucocorticoid hormone
levels in the blood, a classical effect comprised within the
organism’s stress response to the infection. It is well known
that such steroids can trigger apoptosis in thymocytes, acting
via a specific receptor, a ligand-activated transcription factor
[37]. CD4"CD8" thymocytes are particularly sensitive to
glucocorticoids, with the activation of caspase-3, —8, and —9
[38], whereas mature single-positive thymocytes are much
more resistant, through a mechanism dependent on CD28
signaling [39].

Thymocyte depletion in rabies virus-infected mice [40] can
be prevented by adrenalectomy prior to infection, clearly
indicating that in this case, cell death is related to increased
serum glucocorticoid [41]. Ablation of the adrenal glands also
prevents the thymocyte depletion seen in the experimental
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infection by the bacterium Francisella tularensis [24].
Nevertheless, in this case, tumor necrosis factor (TNF)-o also
seems to be involved, since thymic atrophy was not seen in
TNR receptor-deficient mice infected with F. tularensis [25].
Nevertheless, in the murine model of experimental Chagas
disease, despite the high levels of corticosterone seen in
acutely and chronically infected animals [28,42],
adrenalectomy did not prevent 7. cruzi-induced cortical
thymocyte depletion.

The relative role of glucocorticoids upon intrathymic cell
death seen in several acute infections deserves to be revisited.
As we summarized above, currently available data are based
on the rise of serum glucocorticoid hormone levels, as well as
on adrenalectomy experiments. These indicators do not take
into account the intrathymic production of functional
glucocorticoids by thymic epithelial cells (reviewed in
[37,438,44)). Accordingly, it is completely unknown whether
the intrathymic levels of glucocorticoids vary in infected
individuals, and if so, what the local consequences are in
terms of the general process of thymocyte differentiation.

As already exemplified by experimental tularemia, other
death-related molecular pathways (such as the one triggered
by TNF) may be involved in the generation of thymic atrophy
seen in infectious diseases. Unfortunately, as regards
experimental 7. ¢ruzi infection, the putative role of TNF-a in
thymocyte depletion has not been investigated so far. This
topic should be studied, in view of the data showing the
enhanced intrathymic contents of this death-related cytokine
[45], and our recent findings that TNF-a is actually involved
in the CD8" T cell apoptosis seen in mesenteric lymph nodes
from T. cruzi-infected mice [46].

Studies performed in Fas-deficient gld/gld as well as in
perforin knockout mice revealed a significant thymic atrophy
upon T. cruzi infection, thus discarding the involvement of
interactions mediated by Fas/Fas-L or perforin in triggering
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Figure 3. Progressive Thymic Atrophy in Mice Acutely Infected by T. cruzi

A typical CD4/CD8-defined cytofluorometric profile of normal
thymocytes compared to that with T. cruzi infection. As infection
progresses, we can see a progressive loss of CD4"CD8" cells. Percentage
values of the CD4"CD8" subset are shown within the quadrants. The
days correspond to the time of infection, with an inoculum of 10°
parasites per animal. The peak of parasitemia coincides with the peak of
thymocyte depletion. Modified from [43].

cell death within the thymus [47]. By contrast, two distinct
mechanisms have been implicated in the thymic atrophy
occurring in experimental Chagas disease. A nonvirulent
strain of the parasite did not induce thymic atrophy or
thymocyte depletion [48], suggesting that parasite-derived
factors could be involved. This result is in keeping with the
data showing that the specific treatment of the disease with
benznidazole prevents intrathymic CD4"CD8" cell depletion
[49]. Accordingly, Mucci and coworkers [50] observed that
apoptosis seen in thymic nurse cell complexes from infected
mice could be due to the parasite-derived enzyme trans-
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sialidase. In a second study, it was showed that thymocytes
from infected mice were particularly sensitive to the
proapoptotic action of extracellular ATP, acting through the
P2X; purinergic receptor [51]. Moreover, we recently noticed
that thymocyte depletion associated with 7. cruzi infection
was not seen in galectin-3 knockout mice (unpublished data),
thus suggesting a role for this molecule in the infection-
induced thymocyte loss, in addition to its de-adhesion role
[62]. Conjointly, these data indicate that depletion of thymic
lymphocytes may result from multiple interactions involving
both endogenous and infectious agent-derived moieties. As
further discussed below, it is noteworthy that several
infectious agents can reach the thymic parenchyma, as it has
been shown for some viruses, protozoa, and fungi
[27,32,34,53].

Very few studies have been done to address the question of
the fate of dead thymocytes seen in infectious diseases.
Nevertheless, most likely they are phagocytosed by
intrathymic macrophages, as it has been demonstrated
following infection of macaques with simian
immunodeficiency virus (SIV) [18].

Lastly, it is worthwhile to mention that coinfection may
have an impact on thymocyte apoptosis. Although literature
on this issue is very scarce, it has been shown that coinfection
of mice with hepatitis virus type 3 and T. c¢ruzi yielded a higher
degree of apoptosis (ascertained by in situ TUNEL labeling)
than that of each infection alone [48]. Considering the
growing medical importance of coinfection in AIDS, this
point certainly deserves further investigation.

Intrathymic cell proliferation and cytokine production in
infectious diseases. In addition to intrathymic apoptosis,
which takes place in a variety of experimental and human
infectious diseases, mitogenic responses of thymocytes can be
altered. We found a significant decrease in both concanavalin
A- and anti-CD3-driven proliferative responses in thymocytes
from T. cruzi-infected mice compared to controls. This
decrease was paralleled by a decrease in IL-2 production [54].
At the same time, we observed an increase in IL-10 as well as
IFN-vy secretion by thymocytes from infected animals that
originated from the decreased IL-2 and consequent
diminished proliferative response: the in vitro treatment of
cultured thymocytes from 7. cruzi-infected animals with
blocking antibodies to IL-10 and IFN-y did restore 1L-2
production and thymocyte proliferation induced by mitogens
[54]. In a second vein, the ex vivo increase in the production
of IL-4, IL-5, and IL-6 could be at least partially involved in
the appearance of cytotoxic activity seen in thymuses from
infected mice [54].

Experiments performed in SCID-hu mice (mouse chimeras
bearing human T cells derived from transplantation of
human thymic fragments and liver tissue under the renal
capsule) revealed an increase of IL-6 and IFN-y mRNA in
thymocytes from HIV-infected mice, where IL-2 mRNA was
decreased as ascertained by conventional RT-PCR [55]. This
study also showed that antiretroviral therapy tended to
increase the levels of cytokine mRNAs and to restore the
proportions of the various CD4/CD8-defined thymocyte
subpopulations.

The thymic microenvironment in infectious diseases. In
addition to the changes seen in thymic lymphocytes in
various infectious diseases, the microenvironmental
compartment of the organ can be affected. In experimental 7.
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Table 2. Thymic Atrophy in Human and Experimental Infectious Diseases

Type of Disease Infectious Cortical cD4'CD8" Human Animal References

Infectious Agent Atrophy Thymocyte Data Data

Agent (Histology) Depletion

Viruses AIDS HIV/SIV F + + + [17,18,70,72]
Rabies Rabies virus + + ND + [20,40,85]
Measles Measles virus —+ -+ 4F + [86-88]
Hepatitis Hepatitis virus (A59) ND + ND + [22]
Ebola infection Ebola virus 4 ND ND 4 [21]

Bacteria Tularemia F. tularensis + + ND + [24,25]
Listeriosis Listeria monocytogenes 4 = ND 4F [26]
Syphilis Treponema pallidum + ND + [32]

Protozoa Chagas disease T. cruzi + + aF 4 [27-29,47,50]
Malaria P. chabaudi + ND ND + [30]

Fungi Paracocciodosis P. brasiliensis AF ND ND AF [34,35]
Histoplasmosis H. capsulatum + + ND + [36]
Neosporosis Neospora caninum = ND ND aF [89]

Helminths Schistosomiasis S. mansoni + ND ND + [31,32,90]
Trichinosis Trichinella spiralis + ND ND + [33]

ND, not determined.
DOI: 10.1371/journal.ppat.0020062.t002

cruzi infection, for example, we noticed changes in TEC
phenotypes: some cortical TECs expressed cytoskeletal
markers normally restricted to the medullary epithelium.
Simultaneously, epithelial cells in the medulla expressed the
cytokeratin pair 8/18, which is restricted to cortical TECs in
normal conditions [27]. It is noteworthy that such changes are
not specific of the infection by 7. cruzi, since they were also
found in mice infected with Schistosoma mansoni [32].

In some viral infections, such as those caused by HIV and
measles virus, the thymic epithelium is also severely damaged,
with changes in phenotype and induction of apoptosis in
adjacent thymocytes [17,56]. Studies performed with in vitro
infection of human TECs by measles virus revealed that, in
addition to inducing apoptosis in thymocytes, the virus
arrests cell growth and induces terminal differentiation of the
thymic epithelium [56].

In keeping with the densification of the TEC network, seen
in vivo following some acute infections, including
experimental Chagas disease, the MHC class II meshwork seen
in the thymic microenvironment is also denser than the
profiles seen in control thymuses [27]. Although solid data are
scarce, this pattern is likely a general one in acute infections
that generate atrophy of the thymic lobules, and thus it
should be placed in the context of interactions with adjacent
lymphocytes. It is conceivable that a denser MHC network
results in an altered presentation of endogenous peptides to
developing thymocytes, yielding alterations in the genesis of
the intrathymic T cell repertoire. This issue will be further
discussed below.

With respect to soluble products, we observed in 7. cruzi-
infected mice a transient decrease in the serum levels of the
thymic hormone thymulin [27], known to be restrictedly
produced by TECs [3]. In human HIV infection a consistent
and long-term diminution of thymulin secretion has also
been documented, in terms of both serum levels and
intrathymic contents of the hormone [17,57,58].

Concerning microenvironmentally derived cytokines,
studies using experimental HIV infection in humanized
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immunodeficient SCID-hu mice (pretransplanted with
human thymic fragments) revealed an increase in IL-6 mRNA
in the microenvironmental compartment of the thymus,
although the levels of CXCL12 mRNA were not significantly
altered [55].

An interesting feature is that interaction of thymocytes
with thymic epithelial cells seems to be required for HIV
replication in humans [59], leading to the secretion of various
cytokines by the thymic epithelium, including IL-7, a major
soluble factor in intrathymic T cell differentiation. In fact,
the same research group showed more recently that TEC-
derived IL-7 is able to up-regulate the expression of the
CXC12 receptor CXCR4 by mature CD4" single-positive
thymocytes, which favors HIV replication in these cells [60].

Regarding TEC-derived chemokines, in a recent study we
noticed in 7. cruzi-acutely infected mice an increase in the
intrathymic contents of CXCL12 concomitant with an
increase in the membrane density of CXCR4 in the
corresponding thymocytes [12,61]. Unfortunately, we have
not measured IL-7 production by TECs of infected animals or
cultures; this study should be instructive in better
understanding the mechanisms leading to enhancement of
CXCR4 expression.

In addition to soluble moieties, the intrathymic production
of ECM is altered in infectious diseases (Figure 4). By using
immunohistochemistry, we found increased deposition of
ECM components such as laminin, fibronectin, and type IV
collagen in various human and experimental acute infectious
diseases, including rabies, syphilis, measles, Chagas disease,
and schistosomiasis [32]. One could argue that such an
increased in the intrathymic contents of ECM molecules
merely reflects the atrophy of the organ, with a densification
of the ECM-containing network as a result of thymocyte loss.
Although such mechanical response is likely to occur, at least
in experimental Chagas disease it does not solely account for
the ECM increase, since in vitro 7. cruzi infection of cultured
thymic epithelial cells, as well as TEC cultures derived from in
vivo-infected animals, does result in a enhancement of ECM
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DOI: 10.1371/journal.ppat.0020062.g004

Figure 4. Increase in Intrathymic ECM Following Acute T. cruzi Infection in Mice

Cryostat sections of thymuses from normal (A) or T. cruzi-infected mice (B, C, and D) were immunostained with anti-fibronectin immune serum (A, B, and
Q) or unrelated antibody (D). In control thymus (A), the typical fibronectin-containing network is seen, being more prominent in the medullary region of
the thymic lobule (M), as compared to the cortex (C). This pattern is dramatically changed in the atrophic thymuses from T. cruzi-infected animals (B and
Q), in which the fibronectin network is much denser in both cortex and medulla. Such immunolabeling is specific, since an unrelated antibody did not
yield any significant fluorescence when applied on the thymus section from an infected mouse (D). Mice were infected with 10° trypomastigote forms
of the parasite (Colombian strain), and sacrificed 21 d later, at the peak of parasitemia. C, cortex; Cap, capsule; M, medulla; S, septum. Bar represents 100
um for all photomicrographs. Pictures were kindly provided by Désio Aurélio Farias-de-Oliveira.

production [62]. Moreover, it is interesting to note that in
thymuses from 7. cruzi acutely infected mice, thymocytes
exhibit an increase in membrane density of ECM receptors
for fibronectin and laminin [63]. As detailed below, such
features are likely related to alterations in the migratory
patterns of thymocytes.

Intrathymic T cell migration in infectious diseases: Putative
relationship with release of potentially autoreactive cells.
Changes in the patterns of peripheral T cell migration have
been reported in infectious diseases, and can been
demonstrated in Chagas disease [64-66]. Such changes are
obviously necessary in T cell-dependent immune responses
mounted against the infectious agent, although they can
generate autoimmune events. Although relatively few data
are available on migratory disturbances of T lymphocytes
within the thymus, we obtained evidence that thymocyte
migration is altered in experimental 7. c¢ruzi infection. As
mentioned above, TNC complexes can be considered an in
vitro model of thymocyte migration in the thymic epithelium.
In mice experimentally infected with 7. cruzi, we found a
decrease in the number and size of TNCs [50,62], although
thymocyte release from the remaining lymphoepithelial
complexes was faster than from corresponding controls, an
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event likely due to the enhancement of ECM production.
Similar results were observed when TNC complexes from
normal animals were infected in vitro [62].

Considering that most intra-TNC thymocytes are immature
CD47CD8" cells, one could raise the hypothesis that the
migratory capacity of these cells is enhanced in murine
Chagas disease. Accordingly, we found a significant increase
in the relative and absolute numbers of CD47CD8" cells in
peripheral lymphoid organs of 7. cruzi-infected mice in both
acute and chronic phases of the disease. These lymphocytes
are actually T cells since they express variable amounts of
CD3 and TCR on their membranes [63,64]. Moreover, the
thymic dependence of this increase in peripheral CD4"CD8"
T lymphocytes was demonstrated by the fact that it could be
prevented in animals that were thymectomized prior to
infection [63].

As seen in Figure 5, cD4"CD8*' peripheral T cells seen in
experimental Chagas disease exhibited higher amounts of
ECM receptors including the integrins VLA-4, VLA-5, and
VLA-6 [65-69], indicating that an abnormal ECM-mediated
interaction could be favoring the release of immature
thymocytes from the organ.

More recently, we found that multiple driving forces likely
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Figure 5. Appearance of Immature Thymus-Derived T Cells in Lymph
Nodes of T. cruzi-Infected Mice

The bar graph at the upper left shows the significant increase in the
absolute numbers of CD4"CD8" lymphocytes seen in subcutaneous
lymph nodes of acutely infected mice. The flow cytometry dot plots to
the right show the enhancement of these CD4"CD8" cells in the infected
animal and compared to the age-matched control. These immature
double-positive T cells express higher amounts of the fibronectin
receptor VLA-4, as ascertained by the cytofluorometric detection of the
CD49d integrin subunit (bottom graph). Adapted from [43].

favor export of CD4"CD8" cells from the thymus of infected
animals. Following acute T. cruzi infection, intrathymic
CXCLI12 contents increase and thymocytes from infected
animals express higher levels of the corresponding receptor
CXCR4. Accordingly, CXCL12 has a synergic effect with
fibronectin in enhancing ex vivo migratory response of these
cells [61].

A second aspect deserving comment is that some of the
CD4"CD8" cells seen in the periphery of infected animals
appears to have bypassed intrathymic events of negative
selection. In experiments performed on lymph nodes of
acutely or chronically infected BALB/c mice, we found
immature CD4*CD8" cells as well as mature T cells bearing
“forbidden” TCRs that should have been deleted in thymus,
including those belonging to the VB5 and V12 TCR
families [64]. Conjointly, these data indicate that such
CD4"CD8" cells abnormally released from the thymus of T.
cruzi infected have bypassed intrathymic negative selection,
thus bearing a potential autoreactive phenotype that
apparently differentiates in the periphery into CD4" or CD8"
single-positive cells [64]. In this respect, it is noteworthy that
CD4" T cell-mediated autoreactivity against myocardial cells
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has been experimentally demonstrated in murine Chagas
disease [68,69].

The findings discussed above illustrate the notion that the
ability of the thymus to release lymphocytes into the
periphery of the immune system is crucial for determining
the role of this organ in the pathophysiology of infectious
disease. This ability can be evaluated through the analysis of
the so-called “recent thymic emigrants” (RTEs) [11]. In
experimental animals, these cells can be tracked in the
periphery, following intrathymic labeling of lymphocytes
with fluorescein isothiocyanate. The FITC" cells seen in
peripheral lymphoid organs or in the blood are those recently
exported from the thymus. Alternatively, RTEs can be
evaluated by the presence of T cell excision circles (TRECs),
circular DNA fragments derived from the rearrangement of
TCR genes that remain within mature thymocytes and RTEs.
This is the method mostly used for determining RTEs in
humans.

In the case of experimental Chagas disease, the idea is
plausible that changes in thymocyte migration are at the
origin of the release of potentially autoreactive T cell clones.
Nevertheless, this notion remains as a hypothesis, since the
actual autoimmune nature of these cells has not been
established. In a broader sense, it will be worthwhile to search
for potentially autoreactive cells in other infectious diseases,
to better understand the role of the thymus in these
conditions.

Despite the abnormal release of immature thymocytes seen
in acute T. cruzi infection, the overall rate of mature
thymocyte export in infectious disease is likely lower than
what is seen in normal conditions, due to the low absolute
numbers of these cells in the thymus. Because of the degree of
thymic atrophy seen in these acutely infected animals, tracing
RTEs in the periphery of the immune system by intrathymic
injection of fluorescein isothiocyanate was not technically
feasible (unpublished data), and the analysis of TREC™ cells
has not been done so far.

By contrast, TREC analysis has been performed in human
and simian immunodeficiency virus infections, and in both
cases the numbers of TREC" T lymphocytes in the peripheral
blood were lower than in uninfected individuals [18,70].
Importantly, specific highly active antiretroviral therapy
(HAART) in AIDS patients promoted an increase in recent
thymic emigrants, or TREC" cells, in the blood [71]. Actually,
this effect could be further enhanced by using HAART plus
growth hormone treatment [72]. Patients considered poor
responders to HAART exhibited minimal thymic tissue (as
defined by computer tomography scanning) and had
significantly fewer circulating TRECTCD4" T cells than did
the good HAART responders [73], indicating that poor CD4"
T cell replenishment in treated AIDS patients may in part
reflect decreased thymic function. In addition, long-term
survivors of pediatric HIV infection showed recovery of
thymic volume and numbers of circulating TRECs to levels
that reached values similar to uninfected age-matched
individuals [74].

Modulation of thymocyte export in AIDS may be a direct
effect of virus-derived proteins on T cells. It has been
determined that the HIV nef regulatory protein alone is able
to inhibit CXC12-induced migration of peripheral cp4t T
cells by interfering with the CXCR4 downstream signaling
pathway [75].
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A different scenario has been drawn for measles virus-
infected children, in which an increased relative number of
TREC" cells were reported despite the existence of thymic
atrophy [76]. Nevertheless, this conclusion should be made
with caution, since in parallel with the slight (although
statistically significant) relative increase of circulating RTEs,
the authors also reported that the same children had severe
lymphopenia that corresponded to a 50% decrease in total
numbers of lymphocytes. Thus, in terms of absolute cell
export from the thymus, a decrease (rather than an increase)
in exit of thymocytes may occur following human measles
virus infection.

Anti-thymus antibodies in infectious diseases. In addition
to the mechanisms discussed above, in terms of the changes
seen in both lymphoid and microenvironmental
compartments of the thymus with infectious diseases (that in
some cases may be related to an abnormal release of
potentially autoreactive cells), there is evidence that the
thymus itself is a target of autoimmune events. For example,
we found anti-TEC and anti-thymocyte antibodies in both
acute and chronic phases of experimental and human Chagas
disease [27,77]. In human syphilis, we observed
immunoglobulin deposits in basement membrane of thymic
lobules and increased numbers of B cells within the thymic
lobules (unpublished data). Intrathymic deposits of
immunoglobulins and complement, as well as plasma cells,
were also reported in AIDS patients [27,78]. Importantly,
circulating self-reactive antibodies from AIDS patients
promoted massive thymocyte destruction when injected into
normal mice [79]. Thus, it is possible that intrathymic
antibody deposition may play a role in thymic functions
under the context of a given infectious disease. This
hypothesis obviously needs to be better evaluated, but
represents an interesting field of investigation.

Intrathymic detection of infectious agents. The various
aspects discussed above, concerning both the lymphoid and
microenvironmental changes of the thymus in infectious
diseases, lead to an obvious question: To what extent are
these alterations due to a direct intrathymic effect of the
given infectious agent? To answer this question a first
approach is to define whether or not the infectious agent (or
respective-derived moieties) can be detected intrathymically.
Rather surprisingly, despite the existence of the so-called
blood-thymus barrier, infectious agents have been detected
within the organ, including viruses (HIV, SIV,
lymphocoriomeningitis, etc.), protozoan parasites such as 7.
cruzi, and even fungi, as exemplified by Paracoccidioides
brasiliensis in Figure 6.

We found T. cruzi parasites in both thymic macrophages
and epithelial cells [63]. Accordingly, these
microenvironmental components can be infected in vitro, as
seen in Figure 7. In this case, intrathymic infection may play a
direct role in generating thymic atrophy, since the parasite-
derived trans-sialidase is likely at the origin of thymocyte
death seen in acutely infected animals [50].

Measles virus can also infect the thymic epithelium, both in
vivo and in vitro. Studies using human TEC cultures showed
that the virus can enter the cells via a specific membrane
protein termed the nucleoprotein receptor [80].

Choriomeningitis virus, as well as HIV and SIV, are able to
infect thymic lymphocytes. Moreover, it is likely that HIV
infects the thymic microenvironment, since a significant viral
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Figure 6. Intrathymic Presence of the Fungus P. brasiliensis

Fungus particles (red arrows) are shown by immunohistochemistry
(upper image) and scanning electron microscopy (lower image). Note
that infective particles are encircled by microenvironmental cells bearing
large nuclei. Pictures were kindly provided by Dr. Liana Verinaud.

load was found in the microenvironmental compartment of
the thymus in HIV-infected SCID-hu mice [55], a finding that
was recently confirmed by the demonstration of infected
thymic dendritic cells [81]. Whether or not the thymic
epithelium is also infected by this virus is an issue that
deserves further investigation.

Conceptually, the fact that some infectious agents enter the
thymus and infect thymic cells raises the hypothesis of central
tolerance for at least some infectious agent-derived antigens.
This issue remains largely unexplored and represents a
relevant field for further investigation.

Conversely, intrathymic manipulation also offers a
potential way to enhance the ability of T cells to control
infection. This will be hopefully be achieved through the use
of so-called “thymic vaccination.” The concept is based on
the fact that slightly altered peptides bearing lower affinity to
the corresponding TCR than to the natural cognate ligand
may induce positive selection of this molecule when injected
intrathymically, leading to antigen-specific T cell export from
the thymus [82,83]. Accordingly, in theory it should be
possible to enhance the immune response against a given
infection agent by increasing the numbers of positively
selected thymocytes able to recognize a given molecule of the
corresponding infectious agent.
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Figure 7. In Vitro Infection of Mouse Thymic Microenvironmental Cells
by T. cruzi

The presence of the amastigote forms of the parasite within cultured
thymic epithelial cells was ascertained by Giemsa staining (A) and by
immunohistochemistry (B). Infected thymic phagocytic cells are shown in
(Q). Arrows indicate intracellular amastigote clusters. Pictures were kindly
provided by Désio Aurélio Farias de Oliveira.

Conclusions and perspectives. The many aspects discussed
above clearly illustrate that the thymus is a target organ in a
variety of infectious diseases. The dynamic alterations in
thymocyte subpopulations, including proliferation and death,
the shaping of the T cell repertoire, and quantitative and
qualitative migratory changes in thymocyte subpopulations,
are likely related to events that take place later in the
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periphery of the immune system, thus influencing the
pathophysiology of a given infection.

Although thymic atrophy is one common feature in a
variety of infectious diseases, the mechanisms driving such
thymocyte death apparently vary according to a given
infection, and thus deserve detailed investigation.

Another important issue that needs to be further
developed is the presence of a given infectious agent within
the thymus versus the potential impact on the generation of
the T cell repertoire, including tolerance to some peptides
derived from the infectious organism.

In conclusion, more studies on the thymus in the context of
infectious diseases are needed, to better understand the
behavior of this organ in respect to thymocyte differentiation
under the biological pressure of a given infection. These
studies should address the generation of the T cell repertoire
and potential autoimmune events (including cell death and
cell expansion) and the export of cells toward the periphery.
Such a systematic approach will certainly be helpful in
improved design of specific immunotherapeutic
interventions.

We should also consider attempts to enhance antigen-
specific expansion of the thymus-derived repertoire through
thymic vaccination with altered ligand peptides.
Furthermore, modulators of thymocyte migration and
proliferation should be considered in order to yield larger
numbers of antigen-specific T cells exiting the thymus and
colonizing T cell regions of peripheral lymphoid organs—
procedures that should result in the enhancement of the
corresponding immunological response.

Lastly, the surprising (yet consistent) data unraveling a
functional second thymus in the adult mouse [84] places on
the stage a whole additional set of studies that should be
carried out in order to see, at least in the mouse model, if a
neck-located thymus is equally sensitive to the various
infections discussed in this review.
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