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Introduction

Unicellular protist parasites constitute a global threat to human, animal, and plant 
health. Although the demands of multicellularity are absent in these organisms, they 
experience rapid environmental changes as they navigate through their life cycles 
inside a host or vector. A parasitic lifestyle, therefore, necessitates flexible utilisation 
of resources and phenotypic plasticity; one means to achieve this is through the 
organisation and regulation of their genome.

In most eukaryotes, genomic DNA is packaged into chromatin, a linear, foldable, 
and modular polymer. The fundamental unit of chromatin is a nucleosome, which 
typically consists of two copies of four histone proteins (H2A, H2B, H3, and H4) that 
assemble into a disk-shaped octamer and wrap ~145 bp DNA [1]. In addition to DNA 
packaging, nucleosomes modulate access to DNA and serve as a scaffold for protein 
interactions during essential cellular processes such as DNA transcription, replica-
tion, and repair [2] (Fig 1A). Nucleosome function can also be fine-tuned via dynamic 
histone post-translational modifications (PTMs), histone variants, and active nucleo-
some remodelling (Fig 1A). However, these processes are often highly divergent in 
protist parasites.

Why is chromatin structure in parasites clinically relevant?

The importance of parasite chromatin is underscored by a number of molecular path-
ways where gene regulation, parasite development, and pathogenicity intersect. For 
example, recent work revealed that an ISWI-like chromatin remodeller from Plasmo-
dium falciparum can slide nucleosomes and likely interacts with histone chaperones 
and PTM-related proteins, creating permissive or repressive chromatin environ-
ments at developmentally-regulated gene promoters [3]. Importantly, inhibition of the 
remodeller and histone-modifying enzymes impairs parasite gametogenesis, provid-
ing a promising avenue for blocking malaria transmission [3,4]. Similarly, ISWI-like 
remodelling proteins from Toxoplasma gondii can influence chromatin accessibility at 
promoters and are important for parasite viability [5,6].

The role of nucleosomes is also evident in Trypanosoma brucei, where most 
genes are constitutively transcribed, except a silent repertoire of variant surface 
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glycoprotein (VSG) genes, where only one gene is expressed at a time to facilitate 
evasion of the host adaptive immune response [7]. Nucleosome occupancy and chro-
matin compaction anti-correlate with VSG expression status [8–10] and histone vari-
ants [10], chaperones [11,12], and histone PTM-related proteins [13,14] are crucial 
for maintaining monoallelic expression of a single VSG gene in the context of spe-
cialised 3D chromatin compartments [15]. Antigenic variation occurs through periodic 
switching of the active VSG gene and involves regulated chromatin re-organisation. 
Artificial disruption of this system leads to easier parasite clearance and subsequent 
health in the host [16].

Less is known about chromatin pathways in parasites like Giardia and Entamoeba, 
but again, histone PTMs are implicated in developmental changes that are important 
for parasite transmission [17,18]. These examples highlight that nucleosomes are 
often at the mechanistic core of gene regulation events and contribute to parasite 
pathogenicity. Importantly, the essential chromatin pathways in parasites are highly 
divergent and open therapeutic avenues for designing drugs with minimal off-target 
effects on the host. Understanding parasitic chromatin will therefore continue to be 
clinically relevant.

What makes parasite nucleosomes unusual?

Due to their central, structural function in shaping chromatin architecture and interac-
tions, histones tend to be highly conserved across eukaryotes. However, this is not 
the case for some parasitic protists (Fig 1B) and is reflected in the properties of their 
chromatin. For example, chromatin extracted from Trypanosoma brucei, Trypano-
soma cruzi, and Entamoeba histolytica cells is less condensed and more sensitive 
to nuclease digestion compared to model eukaryotes [19,20]. In part, this may be 
mediated by divergence (e.g., in trypanosomatids and Entamoeba) or even absence 
(e.g., in Plasmodium and Giardia) of linker histone H1 [21], and an altered balance of 
genomic DNA sequence content (e.g., in Plasmodium) [22]. However, nucleosomes 
reconstituted with Trypanosoma brucei [23], Plasmodium falciparum [24], and Giardia 
lamblia [25] histones in vitro are also more labile when heated or treated with salt. 
The common denominator across these studies is decreased chromatin stability, but 
it remains unclear why this is the case.

One possibility is that altered chromatin is a function of the local environment. For 
example, temperature changes between the insect vector and a warm-blooded mam-
malian host could be associated with global changes that favour chromatin opening. 
However, in parasites like T. brucei and T. cruzi, 3D chromatin organisation and bulk 
nucleosome occupancy are constant across different life cycle stages [26,27], and 
chromatin from trypanosome mammalian host stages is more compact and less 
sensitive to nuclease digestion [20,28]. This suggests that the relationship between 
environmental changes and chromatin compaction is unlikely to be linear and is 
instead more complex.

Is decondensed chromatin a shared feature of smaller genomes such as those 
found in protist parasites? Evidence for small genome size coupled to lower nucle-
osome stability is also apparent from yeasts [29,30], and previous analyses have 
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Fig 1.  Nucleosomes are the building blocks of chromatin. A. Genomic DNA (black) is wrapped around nucleosomes (grey circles), which consist of 
four histones with a structured core and disordered N- and/or C-terminal tails (grey lines). The nucleosome core particles (NCP) are separated by linker 
DNA. The properties of histones can be modulated by PTMs (light blue circles; e.g., acetylation, methylation, ubiquitylation, etc.), which are maintained 
by ‘writers’ that deposit the PTMs, ‘readers’ that bind to the PTMs to recruit downstream factors, and ‘erasers’ that remove the PTMs. Nucleosomes 
can also undergo dynamic sliding, changes in composition due to replacement of canonical histones with histone variants, and assembly/disassembly 
by chromatin remodellers or histone chaperones. B. Histones are divergent in protist parasites. Protein multiple sequence alignments for each histone 
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shown that histone-driven chromatin compaction can co-evolve with genome size to offset discrepancies between 
genome expansion and limited nuclear volume [31]. It is possible that nucleosome stability could also reflect genome 
transposon load, transcriptional activity, replication speed, or other chromatin processes. However, systematic compari-
sons between these parameters and histone evolution are needed to dissect whether the biophysical properties of nucleo-
somes correlate with chromatin functions across different genome types and scales in parasites.

What do we know about the structure of parasite nucleosomes so far?

At the time of writing, the Protein Data Bank contained ~800 published nucleosome structures. Of these, only three 
comprise parasite histones, namely the structure of the Giardia lamblia nucleosome core particle (NCP) [25], the structure 
of the Trypanosoma brucei NCP [23], and the structure of a hybrid NCP composed of Leishmania major histone H3 and 
human histones H2A, H2B, and H4 [32] (Fig 2). These structures revealed that despite considerable histone sequence 
divergence, the core architecture of the histone fold and how histones pack together in the nucleosome is conserved (Fig 
2A). However, sequence divergence at the amino acid level leads to large functional consequences on the biomechani-
cal properties of both G. lamblia and T. brucei NCPs. Both parasite NCP structures are more oval in shape (Fig 2B) and 
display weaker DNA binding that leads to displaced DNA ends. They also include structural deviations in histone loop 
regions, and contain substantial alterations at histone-histone and histone-DNA interfaces (Fig 2A). Even the addition of 
a single parasite histone in hybrid nucleosomes affects overall nucleosome characteristics [32]. These features provide a 
biochemical explanation for the reduced stability and loose DNA binding of parasite nucleosomes. They also suggest that 
parasite nucleosomes are likely to have altered nucleosome (dis)assembly dynamics during DNA-templated events (e.g., 
the passage of RNA or DNA polymerases). However, the mechanistic effects of altered nucleosome DNA binding and 
stability remain to be investigated.

The nucleosome acidic patch: does it support chromatin interactions in parasites?

Chromatin proteins interact with nucleosomes by often combining interactions with nucleosomal DNA, the flexible histone 
tails (which often harbour histone PTMs), and/or the nucleosome histone disk surface. The most common binding hotspot 
on the disk surface is the acidic patch, which supports varied interactions with chromatin remodelling complexes, histone 
or DNA modifying enzymes, and signalling factors [2]. The patch comprises eight acidic amino acids in histones H2A 
and H2B, which are largely conserved in both model organisms and protist parasites (Fig 3A). However, the surrounding 
amino acids can often be substantially altered and change the local chemical environment of the patch. This is the case 
for both T. brucei and G. lamblia nucleosomes, where the acidic patch differs both in shape and surface charge (Fig 3B), 
preventing interactions with well-characterised binders [23,25]. It is unclear if and how different chromatin proteins have 
co-evolved to bind a “noncanonical” acidic patch in these parasites.

A recent study revealed that the T. brucei histone methyltransferase DOT1A interacts with the nucleosome acidic patch 
via a flexible loop that is homologous to mammalian/yeast DOT1 enzymes, but divergent at the sequence level [33]. The 
loops harbours two suspected ‘arginine anchors’, a conserved mechanism of engaging the acidic patch by chromatin 
proteins [2]. However, further studies are needed to understand the importance of this interaction in vivo and to investigate 
whether the acidic patch is also co-opted by other pathways in T. brucei. Furthermore, the histone tails themselves have 
been described to interact with adjacent nucleosome acidic patches to help aid chromatin compaction in model eukary-
otes [1,34]. Whether this is also possible in parasites and could help explain differences in parasite chromatin compaction 
is a fascinating avenue of future study.

(H2A, H2B, H3, and H4) from various model organisms (grey) and protist parasites (coloured by phylum) are shown as heatmaps. The secondary 
structure of each histone is shown above each alignment (“α” = α-helix, “L” = loop). Conserved residues = residues that are identical to each reference 
sequence (Homo sapiens histones); Similar residues = residues with a PAM250 score > 0.5; Divergent residues = residues with a PAM250 score ≤ 0.5.

https://doi.org/10.1371/journal.ppat.1013781.g001

https://doi.org/10.1371/journal.ppat.1013781.g001
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Fig 2.  Parasite histones alter nucleosome properties. A. Comparison of H. sapiens, G. lamblia, T. brucei, and chimeric H. sapiens/L. major NCP 
structures; Protein Data Bank (PDB) accession codes: 7XD1 [35], 7D69 [25], 8COM [23], and 6KXV [32] respectively. Top row: Top view of each NCP. 
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Future perspectives

The nucleosome serves as a versatile scaffold that compacts DNA and both prevents or facilitates chromatin interactions 
that are important for parasite development and virulence. The biophysical and structural properties of parasitic nucle-
osomes differ compared to model eukaryotes, leaving gaps in our present understanding of chromatin biology in these 
organisms. However, recent advances in genetic manipulation methods, high-throughput–omics, structural approaches, 
single-molecule technology, and computational predictions hold large promise for answering mechanistic questions on 
why and how chromatin dynamics are rewired to facilitate parasite gene regulation. We leave the reader with a few funda-
mental questions:

•	 How do the altered DNA-binding properties of parasite nucleosomes affect nucleosome spacing and DNA access by 
transcription, replication, and repair machinery?

•	 Does inherent nucleosome instability alter the rate of nucleosome assembly/disassembly dynamics in vivo? What are 
the functional consequences?

Fig 3.  Atypical acidic patches in parasite nucleosomes. A. Conservation of acidic patch residues in histones H2A and H2B across model organ-
isms (grey) and protist parasites (coloured by phylum). Residue numbering corresponds to the H. sapiens H2A and H2B histone sequences. Species 
for which experimentally determined structures of nucleosomes are available are indicated with a black circle. B. Close-up view of the acidic patch 
in human, G. lamblia, and T. brucei NCPs, PDBs: 7XD1 [35], 7D69 [25], and 8COM [23], respectively. DNA is shown as a grey cartoon. Histones are 
coloured by electrostatic surface potential (red = acidic, blue = basic).

https://doi.org/10.1371/journal.ppat.1013781.g003

Structural differences in loop regions and DNA-binding properties are indicated. Bottom row: Side view of each NCP. The flexible DNA ends of G. lamblia 
and T. brucei NCPs are indicated with arrows. B. A distribution plot from NucleosomeDB (retrieved in Nov. 2025) [36] showing the radii of the histone 
protein component of published nucleosome structures. Circles represent structures determined by single particle cryo-EM and squares represent struc-
tures solved by X-ray crystallography. The outlier positions of the G. lamblia NCP (PDB: 7D69) [25] and T. brucei NCP (PDB: 8COM) [23] are indicated. 
Each structure is coloured based on its resolution.

https://doi.org/10.1371/journal.ppat.1013781.g002

https://doi.org/10.1371/journal.ppat.1013781.g003
https://doi.org/10.1371/journal.ppat.1013781.g002


PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1013781  December 15, 2025 7 / 8

•	 What are the roles of unique histone PTMs, unusual or absent linker histones, and histone variants in parasites?

•	 How does nucleosome state and chromatin proteins affect interactions with divergent nucleosomes to facilitate parasite 
life cycle progression and antigenic variation in the host?

•	 How do nucleosomes across divergent parasite species differ in composition and function? Are there any patterns or 
histone motifs that can explain the balance between structural constraints on nucleosome architecture and nucleosome 
plasticity?
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