

PEARLS

Parasite nucleosomes: Chromatin dynamics rewired

Gauri Deák^{1,2*}, Marcus D. Wilson^{1,2*}

1 Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, United Kingdom, **2** Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, United Kingdom

* G.Deak@sms.ed.ac.uk (GD); marcus.wilson@ed.ac.uk (MDW)

Introduction

Unicellular protist parasites constitute a global threat to human, animal, and plant health. Although the demands of multicellularity are absent in these organisms, they experience rapid environmental changes as they navigate through their life cycles inside a host or vector. A parasitic lifestyle, therefore, necessitates flexible utilisation of resources and phenotypic plasticity; one means to achieve this is through the organisation and regulation of their genome.

In most eukaryotes, genomic DNA is packaged into chromatin, a linear, foldable, and modular polymer. The fundamental unit of chromatin is a nucleosome, which typically consists of two copies of four histone proteins (H2A, H2B, H3, and H4) that assemble into a disk-shaped octamer and wrap ~145 bp DNA [1]. In addition to DNA packaging, nucleosomes modulate access to DNA and serve as a scaffold for protein interactions during essential cellular processes such as DNA transcription, replication, and repair [2] (Fig 1A). Nucleosome function can also be fine-tuned via dynamic histone post-translational modifications (PTMs), histone variants, and active nucleosome remodelling (Fig 1A). However, these processes are often highly divergent in protist parasites.

Why is chromatin structure in parasites clinically relevant?

The importance of parasite chromatin is underscored by a number of molecular pathways where gene regulation, parasite development, and pathogenicity intersect. For example, recent work revealed that an ISWI-like chromatin remodeller from *Plasmodium falciparum* can slide nucleosomes and likely interacts with histone chaperones and PTM-related proteins, creating permissive or repressive chromatin environments at developmentally-regulated gene promoters [3]. Importantly, inhibition of the remodeller and histone-modifying enzymes impairs parasite gametogenesis, providing a promising avenue for blocking malaria transmission [3,4]. Similarly, ISWI-like remodelling proteins from *Toxoplasma gondii* can influence chromatin accessibility at promoters and are important for parasite viability [5,6].

The role of nucleosomes is also evident in *Trypanosoma brucei*, where most genes are constitutively transcribed, except a silent repertoire of variant surface

OPEN ACCESS

Citation: Deák G, Wilson MD (2025) Parasite nucleosomes: Chromatin dynamics rewired. PLoS Pathog 21(12): e1013781. <https://doi.org/10.1371/journal.ppat.1013781>

Editor: Julius Lukeš, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, CZECHIA

Published: December 15, 2025

Copyright: © 2025 Deák, Wilson. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: M.D.W. is supported by a Sir Henry Dale Fellowship from the Wellcome Trust [210493/Z/18/Z] (<https://wellcome.org/>). G.D. is supported by the BBSRC EASTBIO Doctoral Training Partnership [BB/M010996/1] (<https://biology.ed.ac.uk/eastbio>). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

glycoprotein (VSG) genes, where only one gene is expressed at a time to facilitate evasion of the host adaptive immune response [7]. Nucleosome occupancy and chromatin compaction anti-correlate with VSG expression status [8–10] and histone variants [10], chaperones [11,12], and histone PTM-related proteins [13,14] are crucial for maintaining monoallelic expression of a single VSG gene in the context of specialised 3D chromatin compartments [15]. Antigenic variation occurs through periodic switching of the active VSG gene and involves regulated chromatin re-organisation. Artificial disruption of this system leads to easier parasite clearance and subsequent health in the host [16].

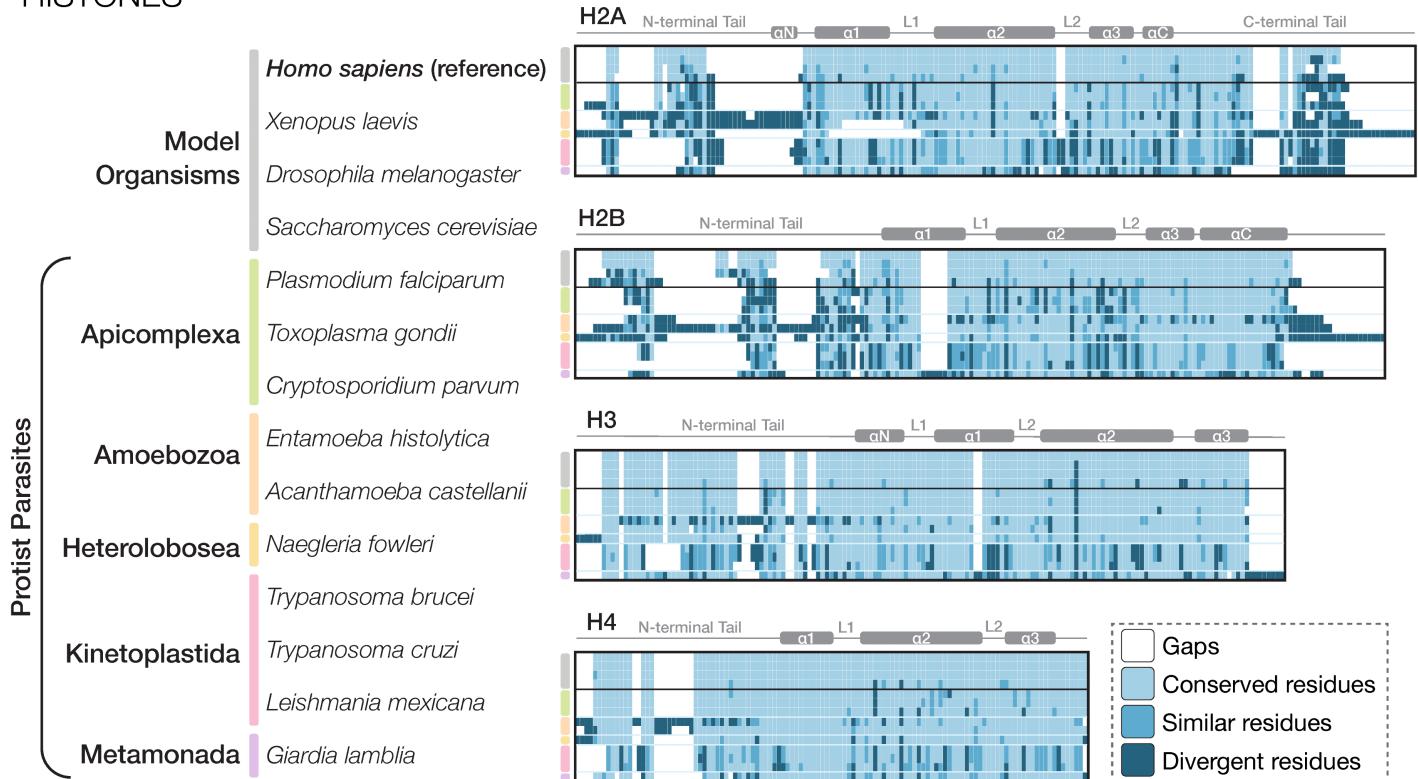
Less is known about chromatin pathways in parasites like *Giardia* and *Entamoeba*, but again, histone PTMs are implicated in developmental changes that are important for parasite transmission [17,18]. These examples highlight that nucleosomes are often at the mechanistic core of gene regulation events and contribute to parasite pathogenicity. Importantly, the essential chromatin pathways in parasites are highly divergent and open therapeutic avenues for designing drugs with minimal off-target effects on the host. Understanding parasitic chromatin will therefore continue to be clinically relevant.

What makes parasite nucleosomes unusual?


Due to their central, structural function in shaping chromatin architecture and interactions, histones tend to be highly conserved across eukaryotes. However, this is not the case for some parasitic protists (Fig 1B) and is reflected in the properties of their chromatin. For example, chromatin extracted from *Trypanosoma brucei*, *Trypanosoma cruzi*, and *Entamoeba histolytica* cells is less condensed and more sensitive to nuclease digestion compared to model eukaryotes [19,20]. In part, this may be mediated by divergence (e.g., in trypanosomatids and *Entamoeba*) or even absence (e.g., in *Plasmodium* and *Giardia*) of linker histone H1 [21], and an altered balance of genomic DNA sequence content (e.g., in *Plasmodium*) [22]. However, nucleosomes reconstituted with *Trypanosoma brucei* [23], *Plasmodium falciparum* [24], and *Giardia lamblia* [25] histones *in vitro* are also more labile when heated or treated with salt. The common denominator across these studies is decreased chromatin stability, but it remains unclear why this is the case.

One possibility is that altered chromatin is a function of the local environment. For example, temperature changes between the insect vector and a warm-blooded mammalian host could be associated with global changes that favour chromatin opening. However, in parasites like *T. brucei* and *T. cruzi*, 3D chromatin organisation and bulk nucleosome occupancy are constant across different life cycle stages [26,27], and chromatin from trypanosome mammalian host stages is more compact and less sensitive to nuclease digestion [20,28]. This suggests that the relationship between environmental changes and chromatin compaction is unlikely to be linear and is instead more complex.

Is decondensed chromatin a shared feature of smaller genomes such as those found in protist parasites? Evidence for small genome size coupled to lower nucleosome stability is also apparent from yeasts [29,30], and previous analyses have


A.

CHROMATIN

B.

HISTONES

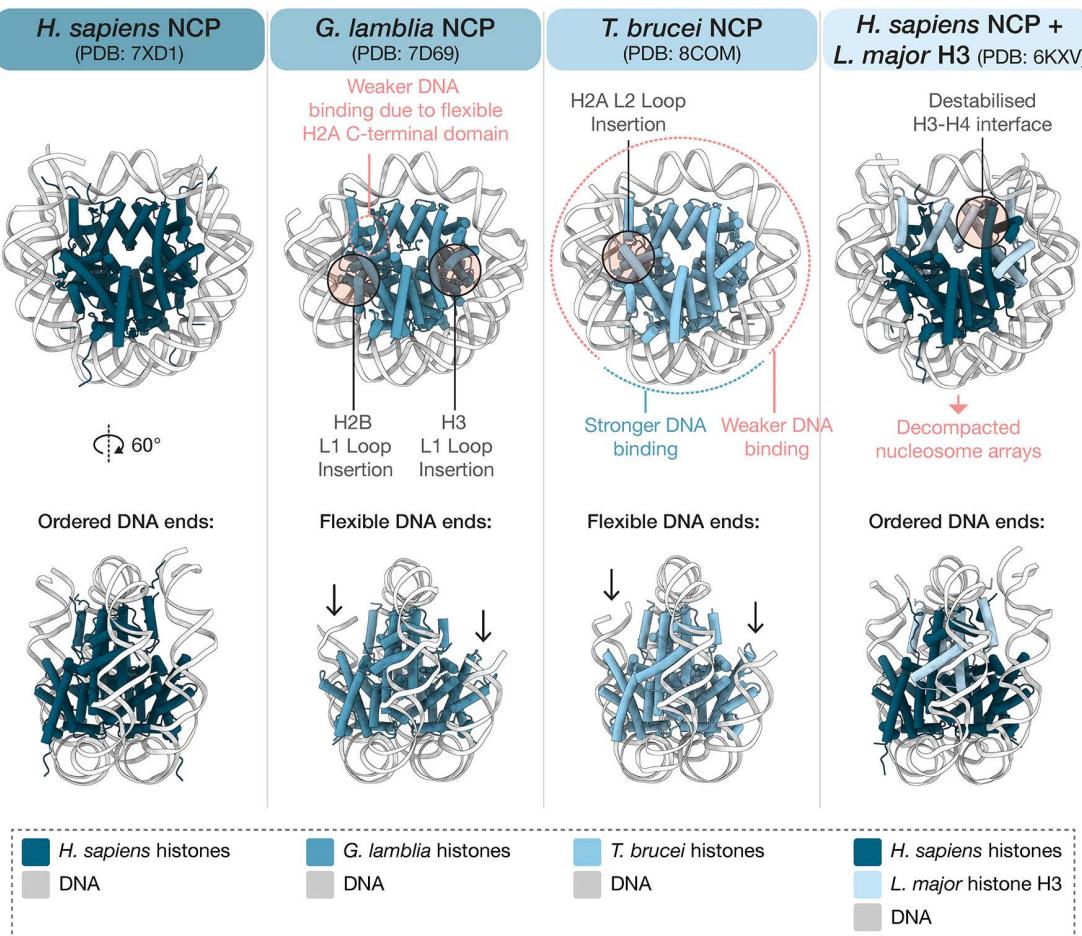
Fig 1. Nucleosomes are the building blocks of chromatin. A. A. Genomic DNA (black) is wrapped around nucleosomes (grey circles), which consist of four histones with a structured core and disordered N- and/or C-terminal tails (grey lines). The nucleosome core particles (NCP) are separated by linker DNA. The properties of histones can be modulated by PTMs (light blue circles; e.g., acetylation, methylation, ubiquitylation, etc.), which are maintained by 'writers' that deposit the PTMs, 'readers' that bind to the PTMs to recruit downstream factors, and 'erasers' that remove the PTMs. Nucleosomes can also undergo dynamic sliding, changes in composition due to replacement of canonical histones with histone variants, and assembly/disassembly by chromatin remodelers or histone chaperones. **B.** Histones are divergent in protist parasites. Protein multiple sequence alignments for each histone

(H2A, H2B, H3, and H4) from various model organisms (grey) and protist parasites (coloured by phylum) are shown as heatmaps. The secondary structure of each histone is shown above each alignment ("a" = α -helix, "L" = loop). Conserved residues = residues that are identical to each reference sequence (*Homo sapiens* histones); Similar residues = residues with a PAM250 score > 0.5 ; Divergent residues = residues with a PAM250 score ≤ 0.5 .

<https://doi.org/10.1371/journal.ppat.1013781.g001>

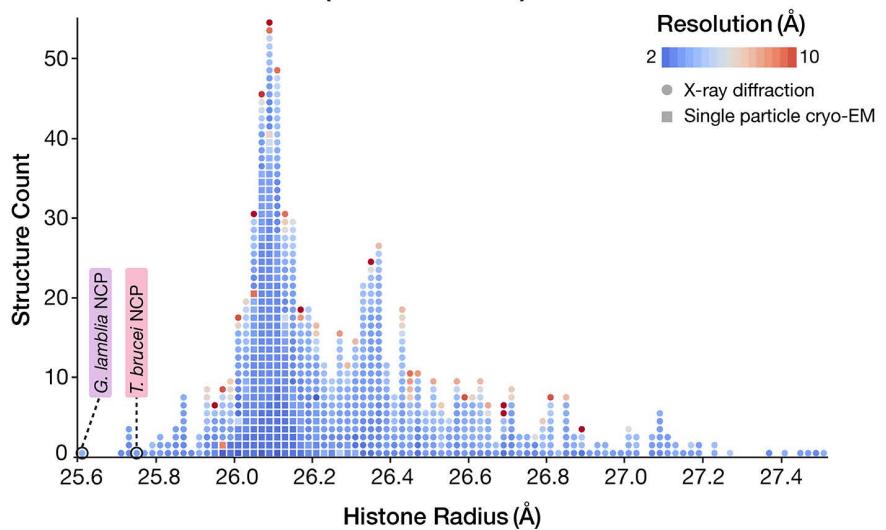
shown that histone-driven chromatin compaction can co-evolve with genome size to offset discrepancies between genome expansion and limited nuclear volume [31]. It is possible that nucleosome stability could also reflect genome transposon load, transcriptional activity, replication speed, or other chromatin processes. However, systematic comparisons between these parameters and histone evolution are needed to dissect whether the biophysical properties of nucleosomes correlate with chromatin functions across different genome types and scales in parasites.

What do we know about the structure of parasite nucleosomes so far?


At the time of writing, the Protein Data Bank contained ~800 published nucleosome structures. Of these, only three comprise parasite histones, namely the structure of the *Giardia lamblia* nucleosome core particle (NCP) [25], the structure of the *Trypanosoma brucei* NCP [23], and the structure of a hybrid NCP composed of *Leishmania major* histone H3 and human histones H2A, H2B, and H4 [32] (Fig 2). These structures revealed that despite considerable histone sequence divergence, the core architecture of the histone fold and how histones pack together in the nucleosome is conserved (Fig 2A). However, sequence divergence at the amino acid level leads to large functional consequences on the biomechanical properties of both *G. lamblia* and *T. brucei* NCPs. Both parasite NCP structures are more oval in shape (Fig 2B) and display weaker DNA binding that leads to displaced DNA ends. They also include structural deviations in histone loop regions, and contain substantial alterations at histone-histone and histone-DNA interfaces (Fig 2A). Even the addition of a single parasite histone in hybrid nucleosomes affects overall nucleosome characteristics [32]. These features provide a biochemical explanation for the reduced stability and loose DNA binding of parasite nucleosomes. They also suggest that parasite nucleosomes are likely to have altered nucleosome (dis)assembly dynamics during DNA-templated events (e.g., the passage of RNA or DNA polymerases). However, the mechanistic effects of altered nucleosome DNA binding and stability remain to be investigated.

The nucleosome acidic patch: does it support chromatin interactions in parasites?

Chromatin proteins interact with nucleosomes by often combining interactions with nucleosomal DNA, the flexible histone tails (which often harbour histone PTMs), and/or the nucleosome histone disk surface. The most common binding hotspot on the disk surface is the acidic patch, which supports varied interactions with chromatin remodelling complexes, histone or DNA modifying enzymes, and signalling factors [2]. The patch comprises eight acidic amino acids in histones H2A and H2B, which are largely conserved in both model organisms and protist parasites (Fig 3A). However, the surrounding amino acids can often be substantially altered and change the local chemical environment of the patch. This is the case for both *T. brucei* and *G. lamblia* nucleosomes, where the acidic patch differs both in shape and surface charge (Fig 3B), preventing interactions with well-characterised binders [23,25]. It is unclear if and how different chromatin proteins have co-evolved to bind a “noncanonical” acidic patch in these parasites.


A recent study revealed that the *T. brucei* histone methyltransferase DOT1A interacts with the nucleosome acidic patch via a flexible loop that is homologous to mammalian/yeast DOT1 enzymes, but divergent at the sequence level [33]. The loops harbours two suspected ‘arginine anchors’, a conserved mechanism of engaging the acidic patch by chromatin proteins [2]. However, further studies are needed to understand the importance of this interaction *in vivo* and to investigate whether the acidic patch is also co-opted by other pathways in *T. brucei*. Furthermore, the histone tails themselves have been described to interact with adjacent nucleosome acidic patches to help aid chromatin compaction in model eukaryotes [1,34]. Whether this is also possible in parasites and could help explain differences in parasite chromatin compaction is a fascinating avenue of future study.

A.

B.

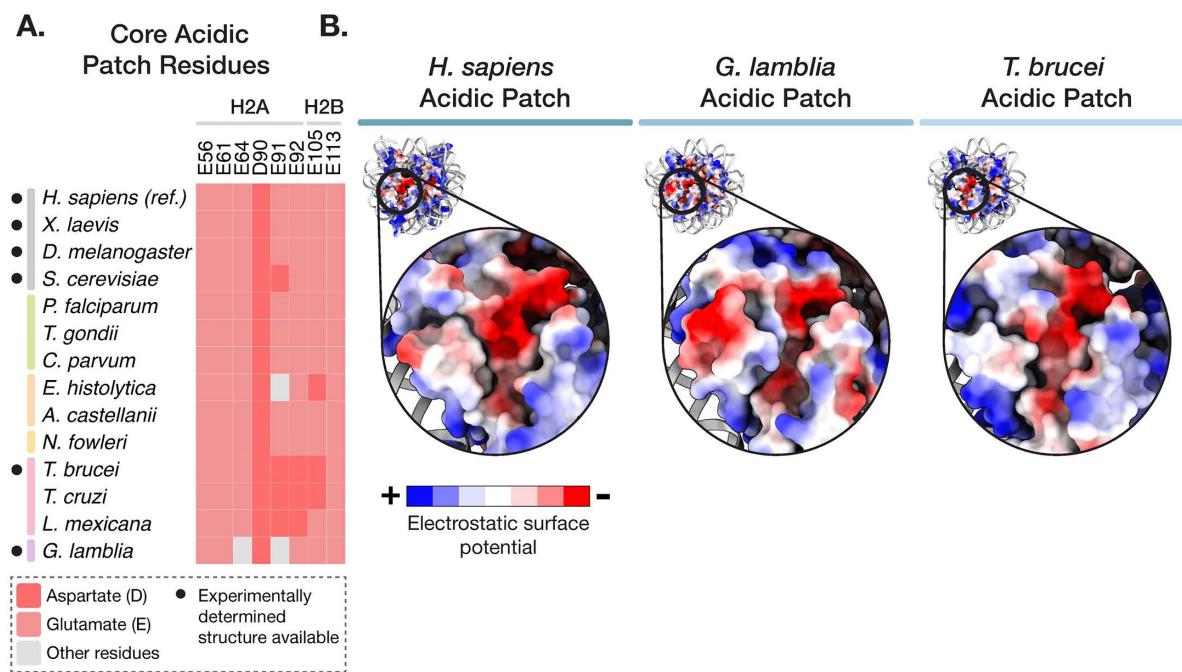

Radii of Nucleosome Structures (NucleosomeDB)

Fig 2. Parasite histones alter nucleosome properties. A. Comparison of *H. sapiens*, *G. lamblia*, *T. brucei*, and chimeric *H. sapiens/L. major* NCP structures; Protein Data Bank (PDB) accession codes: 7XD1 [35], 7D69 [25], 8COM [23], and 6KXV [32] respectively. Top row: Top view of each NCP.

Structural differences in loop regions and DNA-binding properties are indicated. Bottom row: Side view of each NCP. The flexible DNA ends of *G. lamblia* and *T. brucei* NCPs are indicated with arrows. **B.** A distribution plot from NucleosomeDB (retrieved in Nov. 2025) [36] showing the radii of the histone protein component of published nucleosome structures. Circles represent structures determined by single particle cryo-EM and squares represent structures solved by X-ray crystallography. The outlier positions of the *G. lamblia* NCP (PDB: 7D69) [25] and *T. brucei* NCP (PDB: 8COM) [23] are indicated. Each structure is coloured based on its resolution.

<https://doi.org/10.1371/journal.ppat.1013781.g002>

Fig 3. Atypical acidic patches in parasite nucleosomes. **A.** Conservation of acidic patch residues in histones H2A and H2B across model organisms (grey) and protist parasites (coloured by phylum). Residue numbering corresponds to the *H. sapiens* H2A and H2B histone sequences. Species for which experimentally determined structures of nucleosomes are available are indicated with a black circle. **B.** Close-up view of the acidic patch in human, *G. lamblia*, and *T. brucei* NCPs, PDBs: 7XD1 [35], 7D69 [25], and 8COM [23], respectively. DNA is shown as a grey cartoon. Histones are coloured by electrostatic surface potential (red = acidic, blue = basic).

<https://doi.org/10.1371/journal.ppat.1013781.g003>

Future perspectives

The nucleosome serves as a versatile scaffold that compacts DNA and both prevents or facilitates chromatin interactions that are important for parasite development and virulence. The biophysical and structural properties of parasitic nucleosomes differ compared to model eukaryotes, leaving gaps in our present understanding of chromatin biology in these organisms. However, recent advances in genetic manipulation methods, high-throughput–omics, structural approaches, single-molecule technology, and computational predictions hold large promise for answering mechanistic questions on *why* and *how* chromatin dynamics are rewired to facilitate parasite gene regulation. We leave the reader with a few fundamental questions:

- How do the altered DNA-binding properties of parasite nucleosomes affect nucleosome spacing and DNA access by transcription, replication, and repair machinery?
- Does inherent nucleosome instability alter the rate of nucleosome assembly/disassembly dynamics *in vivo*? What are the functional consequences?

- What are the roles of unique histone PTMs, unusual or absent linker histones, and histone variants in parasites?
- How does nucleosome state and chromatin proteins affect interactions with divergent nucleosomes to facilitate parasite life cycle progression and antigenic variation in the host?
- How do nucleosomes across divergent parasite species differ in composition and function? Are there any patterns or histone motifs that can explain the balance between structural constraints on nucleosome architecture and nucleosome plasticity?

Acknowledgments

We sincerely thank all the researchers in the parasitology and chromatin fields for their dedicated efforts in advancing present understanding of nucleosomes in parasites and note that a large body of work was not referenced in this text due to space constraints. We also thank James A. Watson for feedback on the manuscript. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.

Author contributions

Conceptualization: Gauri Deák, Marcus D. Wilson.

Formal analysis: Gauri Deák.

Funding acquisition: Marcus D. Wilson.

Supervision: Marcus D. Wilson.

Writing – original draft: Gauri Deák.

Writing – review & editing: Gauri Deák, Marcus D. Wilson.

References

1. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. *Nature*. 1997;389(6648):251–60. <https://doi.org/10.1038/38444> PMID: 9305837
2. McGinty RK, Tan S. Principles of nucleosome recognition by chromatin factors and enzymes. *Curr Opin Struct Biol*. 2021;71:16–26. <https://doi.org/10.1016/j.sbi.2021.05.006> PMID: 34198054
3. Watzlowik MT, Silberhorn E, Das S, Singhal R, Venugopal K, Holzinger S, et al. *Plasmodium* blood stage development requires the chromatin remodeller Snf2L. *Nature*. 2025;639(8056):1069–75. <https://doi.org/10.1038/s41586-025-08595-x> PMID: 39972139
4. Coetze N, von Grünig H, Opperman D, van der Watt M, Reader J, Birkholtz L-M. Epigenetic inhibitors target multiple stages of *Plasmodium falciparum* parasites. *Sci Rep*. 2020;10(1):2355. <https://doi.org/10.1038/s41598-020-59298-4> PMID: 32047203
5. Zhu Y, Fan B, Xu H, Li Y, Liang X, Xue L, et al. Regulation of the developmental programs in *Toxoplasma* by a novel SNF2L-containing chromatin remodeling complex. *Nat Commun*. 2025;16(1):5757. <https://doi.org/10.1038/s41467-025-60795-1> PMID: 40593611
6. Pachano B, Farhat DC, Shahinas M, von Velsen J, Corrao C, Belmudes L, et al. An ISWI-related chromatin remodeller regulates stage-specific gene expression in *Toxoplasma gondii*. *Nat Microbiol*. 2025;10(5):1156–70. <https://doi.org/10.1038/s41564-025-01980-2> PMID: 40217127
7. Glover L, Hutchinson S, Alsfeld S, McCulloch R, Field MC, Horn D. Antigenic variation in African trypanosomes: the importance of chromosomal and nuclear context in VSG expression control. *Cell Microbiol*. 2013;15(12):1984–93. <https://doi.org/10.1111/cmi.12215> PMID: 24047558
8. Figueiredo LM, Cross GAM. Nucleosomes are depleted at the VSG expression site transcribed by RNA polymerase I in African trypanosomes. *Eukaryot Cell*. 2010;9(1):148–54. <https://doi.org/10.1128/EC.00282-09> PMID: 19915072
9. Stanne TM, Rudenko G. Active VSG expression sites in *Trypanosoma brucei* are depleted of nucleosomes. *Eukaryot Cell*. 2010;9(1):136–47. <https://doi.org/10.1128/EC.00281-09> PMID: 19915073
10. Müller LSM, Cosentino RO, Förstner KU, Guizetti J, Wedel C, Kaplan N, et al. Genome organization and DNA accessibility control antigenic variation in trypanosomes. *Nature*. 2018;563(7729):121–5. <https://doi.org/10.1038/s41586-018-0619-8> PMID: 30333624
11. Alsfeld S, Horn D. Cell-cycle-regulated control of VSG expression site silencing by histones and histone chaperones ASF1A and CAF-1b in *Trypanosoma brucei*. *Nucleic Acids Res*. 2012;40(20):10150–60. <https://doi.org/10.1093/nar/gks813> PMID: 22941664

12. Faria J, Glover L, Hutchinson S, Boehm C, Field MC, Horn D. Monoallelic expression and epigenetic inheritance sustained by a *Trypanosoma brucei* variant surface glycoprotein exclusion complex. *Nat Commun.* 2019;10(1):3023. <https://doi.org/10.1038/s41467-019-10823-8> PMID: 31289266
13. Wang Q-P, Kawahara T, Horn D. Histone deacetylases play distinct roles in telomeric VSG expression site silencing in African trypanosomes. *Mol Microbiol.* 2010;77(5):1237–45. <https://doi.org/10.1111/j.1365-2958.2010.07284.x> PMID: 20624217
14. Eisenhuth N, Vellmer T, Rauh ET, Butter F, Janzen CJ. A DOT1B/Ribonuclease H2 protein complex is involved in R-loop processing, genomic integrity, and antigenic variation in *Trypanosoma brucei*. *mBio.* 2021;12(6):e01352-21.
15. Singh P, Walther L, Cabahug MD, Faria JRC, Bryant JM. Parasite genome organization: come together, right now! *Trends Parasitol.* 2025;41(9):753–68. <https://doi.org/10.1016/j.pt.2025.07.010> PMID: 40780972
16. Aresta-Branco F, Sanches-Vaz M, Bento F, Rodrigues JA, Figueiredo LM. African trypanosomes expressing multiple VSGs are rapidly eliminated by the host immune system. *Proc Natl Acad Sci U S A.* 2019;116(41):20725–35. <https://doi.org/10.1073/pnas.1905120116> PMID: 31554700
17. Salusso A, Złociński N, Mayol GF, Zamponi N, Rópolo AS. Histone methyltransferase 1 regulates the encystation process in the parasite *Giardia lamblia*. *FEBS J.* 2017;284(15):2396–409. <https://doi.org/10.1111/febs.14131> PMID: 28605118
18. Lozano-Amado D, Ávila-López PA, Hernández-Montes G, Briseño-Díaz P, Vargas M, Lopez-Rubio J-J, et al. A class I histone deacetylase is implicated in the encystation of Entamoeba invadens. *Int J Parasitol.* 2020;50(12):1011–22. <https://doi.org/10.1016/j.ijpara.2020.05.014> PMID: 32822677
19. Torres-Guerrero H, Peattie DA, Meza I. Chromatin organization in *Entamoeba histolytica*. *Mol Biochem Parasitol.* 1991;45(1):121–30. [https://doi.org/10.1016/0166-6851\(91\)90033-3](https://doi.org/10.1016/0166-6851(91)90033-3) PMID: 2052032
20. Hecker H, Betschart B, Bender K, Burri M, Schlimme W. The chromatin of trypanosomes. *Int J Parasitol.* 1994;24(6):809–19. [https://doi.org/10.1016/0020-7519\(94\)90007-8](https://doi.org/10.1016/0020-7519(94)90007-8) PMID: 7982743
21. Dalmasso MC, Sullivan WJ Jr, Angel SO. Canonical and variant histones of protozoan parasites. *Front Biosci (Landmark Ed).* 2011;16(6):2086–105. <https://doi.org/10.2741/3841> PMID: 21622164
22. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite *Plasmodium falciparum*. *Nature.* 2002;419(6906):498–511. <https://doi.org/10.1038/nature01097> PMID: 12368864
23. Deák G, Wapenaar H, Sandoval G, Chen R, Taylor MRD, Burdett H, et al. Histone divergence in trypanosomes results in unique alterations to nucleosome structure. *Nucleic Acids Res.* 2023;51(15):7882–99. <https://doi.org/10.1093/nar/gkad577> PMID: 37427792
24. Silberhorn E, Schwartz U, Löffler P, Schmitz S, Symelka A, de Koning-Ward T, et al. *Plasmodium falciparum* nucleosomes exhibit reduced stability and lost sequence dependent nucleosome positioning. *PLoS Pathog.* 2016;12(12):e1006080. <https://doi.org/10.1371/journal.ppat.1006080> PMID: 28033404
25. Sato S, Takizawa Y, Hoshikawa F, Dacher M, Tanaka H, Tachiwana H, et al. Cryo-EM structure of the nucleosome core particle containing *Giardia lamblia* histones. *Nucleic Acids Res.* 2021;49(15):8934–46. <https://doi.org/10.1093/nar/gkab644> PMID: 34352093
26. Maree JP, Povelones ML, Clark DJ, Rudenko G, Patterton H-G. Well-positioned nucleosomes punctuate polycistronic pol II transcription units and flank silent VSG gene arrays in *Trypanosoma brucei*. *Epigenetics Chromatin.* 2017;10:14. <https://doi.org/10.1186/s13072-017-0121-9> PMID: 28344657
27. Díaz-Viráquez F, Chiribao ML, Libisch MG, Robello C. Genome-wide chromatin interaction map for *Trypanosoma cruzi*. *Nat Microbiol.* 2023;8(11):2103–14. <https://doi.org/10.1038/s41564-023-01483-y> PMID: 37828247
28. Povelones ML, Gluenz E, Dembek M, Gull K, Rudenko G. Histone H1 plays a role in heterochromatin formation and VSG expression site silencing in *Trypanosoma brucei*. *PLoS Pathog.* 2012;8(11):e1003010. <https://doi.org/10.1371/journal.ppat.1003010> PMID: 23133390
29. Koyama M, Nagakura W, Tanaka H, Kujirai T, Chikashige Y, Haraguchi T, et al. In vitro reconstitution and biochemical analyses of the Schizosaccharomyces pombe nucleosome. *Biochem Biophys Res Commun.* 2017;482(4):896–901.
30. Fukushima Y, Hatazawa S, Hirai S, Kujirai T, Ehara H, Sekine S-I, et al. Structural and biochemical analyses of the nucleosome containing Komagataella pastoris histones. *J Biochem.* 2022;172(2):79–88. <https://doi.org/10.1093/jb/mvac043> PMID: 35485963
31. Macadangdang BR, Oberai A, Spektor T, Campos OA, Sheng F, Carey MF, et al. Evolution of histone 2A for chromatin compaction in eukaryotes. *Elife.* 2014;3:e02792. <https://doi.org/10.7554/elife.02792> PMID: 24939988
32. Dacher M, Tachiwana H, Horikoshi N, Kujirai T, Taguchi H, Kimura H, et al. Incorporation and influence of Leishmania histone H3 in chromatin. *Nucleic Acids Res.* 2019;47(22):11637–48. <https://doi.org/10.1093/nar/gkz1040> PMID: 31722422
33. Frisbie VS, Hashimoto H, Xie Y, De Luna Vitorino FN, Baeza J, Nguyen T, et al. Two DOT1 enzymes cooperatively mediate efficient ubiquitin-independent histone H3 lysine 76 tri-methylation in kinetoplastids. *Nat Commun.* 2024;15(1):2467. <https://doi.org/10.1038/s41467-024-46637-6> PMID: 38503750
34. Dorigo B, Schalch T, Bystricky K, Richmond TJ. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. *J Mol Biol.* 2003;327(1):85–96. [https://doi.org/10.1016/s0022-2836\(03\)00025-1](https://doi.org/10.1016/s0022-2836(03)00025-1) PMID: 12614610
35. Ai H, Sun M, Liu A, Sun Z, Liu T, Cao L, et al. H2B Lys34 ubiquitination induces nucleosome distortion to stimulate Dot1L activity. *Nat Chem Biol.* 2022;18(9):972–80. <https://doi.org/10.1038/s41589-022-01067-7> PMID: 35739357
36. Armeev GA, Gribkova AK, Shaytan AK. NucleosomeDB—a database of 3D nucleosome structures and their complexes with comparative analysis toolkit. *bioRxiv.* 2023.