

PEARLS

Intracellular accommodation of bacteria, fungi, and oomycetes by plants analyzed using transmission electron microscopy

Isabella Gantner¹, Caroline Gutjahr², Martina K. Ried-Lasi³, Andrea Cheradil¹, Julia Buchner¹, Martin Parniske^{1*}, Andreas Klingl¹

1 Faculty of Biology, LMU Munich, Martinsried, Germany, **2** Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany, **3** Leibniz Institute of Plant Biochemistry, Halle, Germany

* a.klingl@lmu.de (AK); parniske@lmu.de (MP)

Transmission electron microscopy was the key for revealing structural similarities between intracellular plant-microbe interactions.

OPEN ACCESS

Citation: Gantner I, Gutjahr C, Ried-Lasi MK, Cheradil A, Buchner J, Parniske M, et al. (2025) Intracellular accommodation of bacteria, fungi, and oomycetes by plants analyzed using transmission electron microscopy. PLoS Pathog 21(12): e1013780. <https://doi.org/10.1371/journal.ppat.1013780>

Editor: Rosa Lozano-Durán, University of Tübingen: Eberhard Karls Universität Tübingen, GERMANY

Published: December 22, 2025

Copyright: © 2025 Gantner et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Transregio TRR356/I (491090170) of the German Research Council (DFG) with TP-A02 to CG, TP-B06 to MP, TP-B08 to MKR-L and TP-Z02 to AK. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

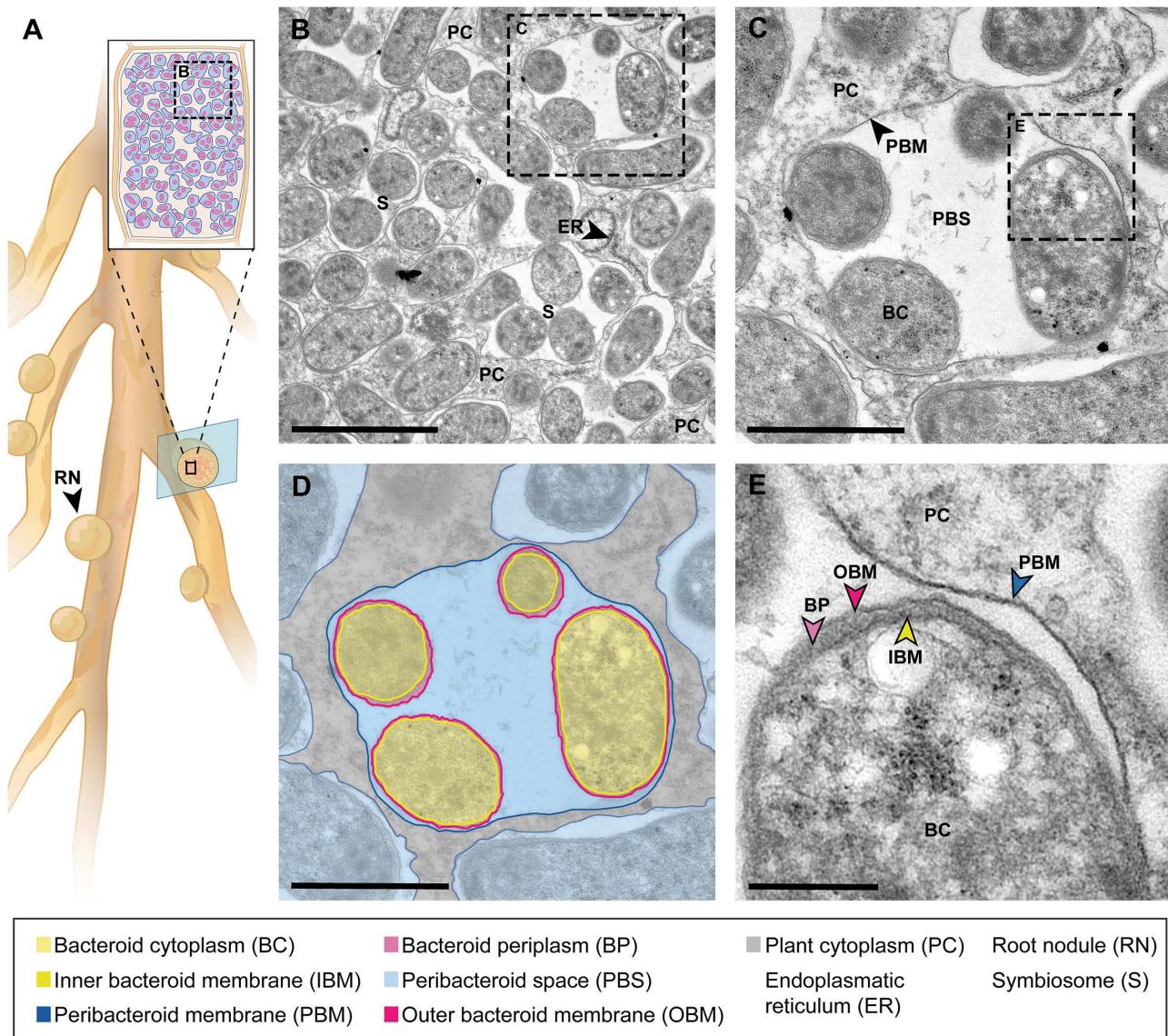
Scientific background

The advent of high-resolution imaging using transmission electron microscopy (TEM) was instrumental to reveal previously undetectable details of sub-cellular interfaces between host cells and intracellular microorganisms [1,2]. While the resolution of light microscopy is restricted to 200 nm due to the diffraction limit of light, electron microscopy has the potential to reach a resolution of 1 nm or even below [3]. This imaging capability enabled detailed exploration of the cellular ultrastructure, and revealed subcellular features like membrane invaginations [4], the structure of organelles [5], and new organelle-like cell compartments [1]. Based on the comparative analysis of TEM images originating from different laboratories working on different plant-microbe interactions, it has been postulated more than 25 years ago, that all intracellular symbioses, featuring living microorganisms in living plant cells, share a series of common structural features [6]:

(1) Entire microorganisms, in case of bacteria or their hyphal extensions in case of fungi or oomycetes, are hosted inside a living plant cell [6]. (2) A plant-derived membrane separates the accommodated microorganism from the cytoplasm of the host plant cell [6]. Depending on the interaction, this membrane is called peribacteroid membrane (PBM) in the nitrogen-fixing root nodule symbiosis (RNS) [7], periarbuscular membrane (PAM) in arbuscular mycorrhiza (AM) [8], and perihaustral or extrahaustral membrane (PHM/EHM) around the haustorium formed by pathogenic fungi or oomycetes inside living plant cells [9]. (3) The presence of a space between perimicrobial membrane and the outermost layer of the microorganism (the outer membrane in case of rhizobial bacteria and the cell wall in case of oomycetes or fungi). Depending on the interaction, this space is called peribacterial space

Competing interests: The authors have declared that no competing interests exist.

(PBS) [7], periarbuscular space (PAS) [10], and peri- or extrahaustorial space (PHS/EHS) [11].


In this Pearl, we present, explain, and compare the structural interfaces of three such intracellular interactions, documented by the same lab using the same equipment, microscope settings, and sample preparation methods, all carried out by the same scientist.

The preparation was carried out, following a protocol described previously [12]. All biological samples were chemically fixed in cacodylate buffer with 2.5% glutaraldehyde immediately after tissue harvesting, to crosslink proteins and stabilize cellular components. Samples were post-fixed with 1% osmium tetroxide for 1 h, which stabilizes and enhances electron density of lipids, and subsequently dehydrated using a graded acetone series from 10% to 100% combined with the addition of 1% uranyl acetate in the 20% acetone step. This heavy metal binds to phosphate groups, e.g., of nucleic acids and phospholipids, and improves their contrast by increasing electron density. The thick plant tissue was gradually infiltrated with Epon epoxy resin, ending with a 100% resin incubation step for 18 h. The resin-embedded samples were then polymerized at 63 °C for 24 h. After ultra-thin sectioning, images were acquired with a transmission electron microscope at an acceleration voltage of 80 kV. As examples for different plant-microbe interfaces in different plant species and tissues, we compared the nitrogen-fixing bacterium *Mesorhizobium loti* hosted inside a root nodule cell of the host plant *Lotus japonicus* (Fig 1), the AM fungus *Rhizophagus irregularis* forming an arbuscule inside a *L. japonicus* root cell (Fig 2), and the biotrophic oomycete *Hyaloperonospora arabidopsis* forming a haustorium in a leaf cell of *Arabidopsis thaliana* (Fig 3).

The ultrastructure of symbiosomes in the nitrogen-fixing root nodule symbiosis

Legumes benefit from a symbiosis (Fig 1) with nitrogen-fixing rhizobia, which can convert atmospheric nitrogen into ammonium and make it available to the host plant. In return, the host provides a carbon source, succinate, to the bacterial symbiont [14].

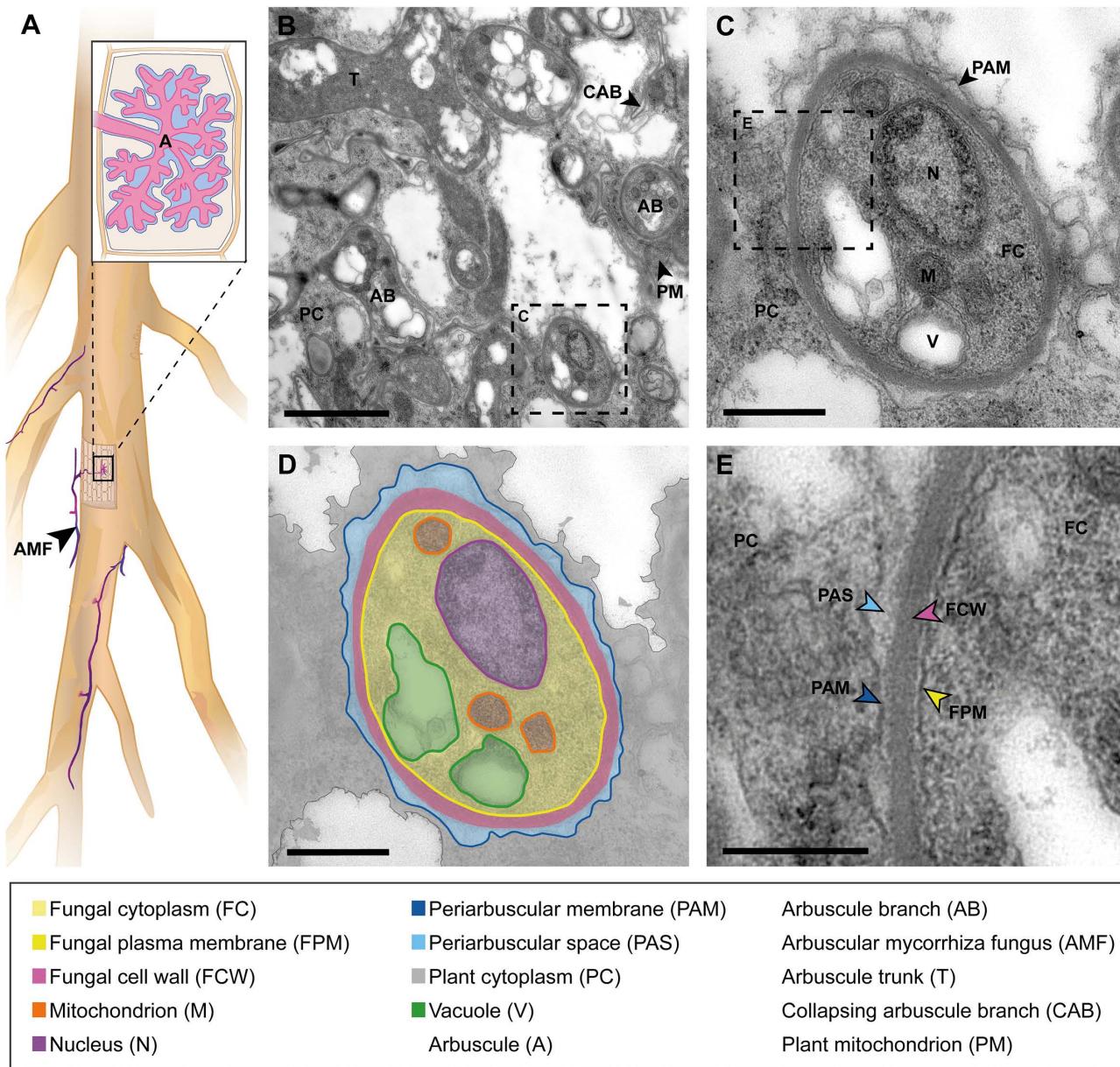

The colonization process of *L. japonicus* by *M. loti* is characterized by the formation of tubular structures called infection threads containing cell files of rhizobia. Infection threads form across the interior of host cells, and can connect opposite cell wall boundaries, enabling rhizobial passage from cell to cell, while root cortical cells divide to form a nodule primordium [15]. Inside the central tissue of the nodule, the bacteria are hosted within living plant cells inside organelle-like compartments, called symbiosomes [14], in which the bacteria are separated from the plant cytoplasm by a plant-derived PBM [6,14]. The term symbiosome was suggested by Roth, Jeon, and Stacey [16] to postulate a conceptually new organelle built from three main components, specifically the bacteroid (a term used to describe a rhizobial cell conceptually differentiated to exist as part of the symbiosome), the PBS, and the PBM in a non-lytic subcellular compartment [17]. By definition, a single symbiosome comprises the PBM surrounding the PBS and one longitudinally elongated (e.g., *Medicago*) or several (e.g., *Lotus*) bacteroids located in the PBS [18]. However, the bacteroid number per symbiosome and morphology is largely dictated by the host plant [13,14].

Fig 1. Ultrastructure of symbiosomes in the RNS between *Lotus japonicus* and *Mesorhizobium loti*. (A) Schematic drawing of a *L. japonicus* root with root nodules and a cross-section through a colonized nodule cell filled with symbiosomes. (B) TEM image of a densely colonized zone in a root nodule cell with several bacteroids packed in symbiosomes and surrounded by plant cytoplasm. In case of the bacterium *M. loti*, in symbiosis with *L. japonicus*, the bacteroid ultrastructure is similar to the free-living state [13,14]. The bacteroids maintain the rod shape with a length of around 1 μm. However, depending on whether the bacteroids were cut longitudinally or transversally, their visible shape can range from rod to round shaped. The slightly wavy appearance of the bacteroid membranes is caused by minimal shrinkage of the cells within chemical fixation. In some cases the bacteroid membranes are difficult to be recognized and to be separated from each other. Scale bar: 2.5 μm. (C) TEM image of a symbiosome and (D) corresponding schematic drawing. The symbiosome in C and D consists of four bacteroids, the PBS and the PBM. The symbiosome is surrounded by plant cell cytoplasm and other symbiosomes. The plant-derived PBM and the electron-translucent PBS represent the envelope of bacteroids. The bacteroid outer and inner membrane surrounds the cytoplasm of the *M. loti* cell and separate it from the surrounding PBS. Scale bar: 1 μm; (E) Close-up image of panel (C), with details of the plant-microbe interface and the membranes of both organisms. Scale bar: 250 nm.

<https://doi.org/10.1371/journal.ppat.1013780.g001>

The bacteroids are surrounded by PBS, which contains a variety of compounds, including enzymes, proteins, and sugars, derived from plant and bacteroid origin [19,20]. However, the critical boundary between bacteroids and plant cytoplasm is the PBM, as it controls nutrient and signal exchange between the interacting partners [21].

Fig 2. Ultrastructure of arbuscule branches formed by the AM fungus *Rhizopagrus irregularis* in symbiosis with the legume host *Lotus japonicus*. (A) Schematic drawing of a *L. japonicus* root with hyphopodia and a hypha, penetrating the root surface. A longitudinal section through a root cortex cell inside the root tissue, hosting an arbuscule. (B) TEM image of a subcellular region of a sectioned host cell showing a part of an arbuscule, with a trunk and several branches in different sizes distributed in the plant cytoplasm and between plant cell organelles. In the TEM image, the arbuscule branches appear darker than the plant cell cytoplasm and can have different shapes depending on whether they were cut longitudinally or transversally. In this section, the trunk has been sectioned longitudinally, whereas most thick and fine branches appear as round shapes as they have been cut transversally. Collapsing arbuscule branches can be recognized as squeezed fungal structures with linear shapes. Scale bar: 2 μm; (C) TEM image of an arbuscular branch cross-section and (D) corresponding schematic drawing. The arbuscule is surrounded by a plant-derived PAM and PAS and a layer of plant cell cytoplasm. The slightly wavy appearance of the PAM is caused by minimal shrinkage of structures within chemical fixation. The arbuscule cell wall and the fungal plasma membrane envelopes the cytoplasm of *R. irregularis* and appears electron dense. The fungal cytoplasm contains a nucleus and mitochondria with electron-dense substructures and several bright vacuolar spaces. Scale bar: 0.5 μm. (E) Close-up of panel (C) with details of the plant-microbe interface layers (arrows) that are in close contact to each other. Scale bar: 250 nm.

<https://doi.org/10.1371/journal.ppat.1013780.g002>

Fig 3. Ultrastructure of a haustorium of the downy mildew-causing oomycete *Hyaloperonospora arabidopsis* in *Arabidopsis thaliana*. (A) Schematic drawing showing from bottom to top an *A. thaliana* plant, a magnification of a leaf surface colonized by *H. arabidopsis*, and a longitudinal section of a palisade mesophyll leaf cell hosting a haustorium (HA). (B) TEM image of a cross-section of an oomycete intercellular hypha in the plant intercellular space and an oomycete haustorium inside the plant mesophyll cell surrounded by plant cytoplasm and a chloroplast. Scale bar: 5 μm; (C) TEM image of a haustorium in cross section and (D) corresponding schematic drawing. The haustorium is surrounded by a layer of plant cell cytoplasm, a plant-derived EHM, and the extrahaustorial matrix (EHMX). The EHMX, with a strong electron-dense appearance, is a carbohydrate-rich, gel-like layer, which lies between the haustorium and the EHM and mediates molecular exchange across this interface. The cytoplasm is surrounded by the plasma membrane and by the oomycete cell wall, a brighter, more electron-lucent appearing layer. The haustorium cytoplasm contains several bright vacuolar spaces, a nucleus, as well as mitochondria with small substructures of the cristae. The haustorium cell wall and the plasma membrane envelope the cytoplasm of the oomycete. Scale bar: 1 μm. (E) Close-up image of (C) with details of the plant-microbe interface layers (arrows), that are in direct contact to each other. Scale bar: 500 nm.

<https://doi.org/10.1371/journal.ppat.1013780.g003>

The ultrastructure of an arbuscule in arbuscular mycorrhiza symbiosis

AM is the name of a symbiosis formed between plants and fungi of the Glomeromycotina. AM fungal hyphae collect macro- and micro- nutrients, such as nitrogen and phosphate, from the soil and deliver them to the plant via arbuscules formed inside plant cells, thereby contributing to plant nutrition [22]. In return, plants provide the obligate biotrophic AM fungi with essential fatty acids that the fungus cannot synthesize on its own, and potentially sugars [23,24].

AM fungi enter the plant tissue in a plant-assisted intracellular colonization process (Fig 2A) [25]. In the cortex, in Arum-type symbioses, the fungal hyphae spread outside the host cells, in the apoplast along the longitudinal axis of the root, and penetrate into individual host cells to form a highly branched tree-shaped structure called arbuscule (lat. arbuscula=small tree) [26]. The arbuscule comprises a thick trunk, first-order thick branches, and higher-order fine branches. An individual arbuscules lives for only about 2–3 days at maturity, then it collapses gradually and disappears from the cell [27,28].

Arbuscules are surrounded by a plant-derived peri-arbuscular membrane (PAM). The PAM can be divided into two domains, one surrounding the trunk and thick branches and the other surrounding the fine branches [29]. Most of the nutrient exchange between AMF and plant hosts occurs between arbuscules and their accommodating root cortex cells, i.e., across the PAM [30]. Nutrients also need to cross the PAS, an apoplastic space between the PAM and the fungal cell wall.

The ultrastructure of an oomycete haustorium

The obligate biotrophic oomycete *Hyaloperonospora arabidopsis* (Hpa) is the causal agent of downy-mildew disease in *A. thaliana* (Fig 3). Oomycetes are filamentous eukaryotes with fungus-like growth habits, notorious for causing devastating crop losses [31].

During infection, the oomycete produces germ tubes, that penetrate the plant's outer surface via appressorium-like structures or through natural openings such as stomata and spread through the plant tissue by intercellular hyphae [32]. Once they breach the host cell wall, hyphae differentiate into haustoria, specialized structures that reside inside the host cell but remain separated by an enveloping EHM from the host cytoplasm. The EHM is a unique, plant-derived compartment with distinct protein and lipid composition [9]. The extrahaustorial matrix (EHMX) lies between the haustorium and the EHM. The EHM is thought to mediate molecular exchange between the two organisms [33]. However, in contrast to RNS and AM, direct evidence for nutrient exchange in the *Hpa*–*Arabidopsis* interaction remains limited. Haustoria are potentially involved in osmotrophic feeding [34] and effector secretion to manipulate host immunity and promote infection [35–37]. Thus, the haustorial interface is a dynamic battleground for molecular exchange and is fundamentally shaping plant–pathogen interactions.

Conclusion

We performed ultrastructural analysis of three different intracellular plant–microbe interactions covering three different kingdoms of microorganisms hosted by two different angiosperm host plants and grown in three different laboratories, but by performing the sample preparation and the electron microscopy in the same laboratory by the same person. We presented annotated images highlighting the postulate made 25 years ago, that structural similarities exist between symbiosomes, arbuscules, and haustoria [6]. We present the common and unifying feature of these interactions, the presence of a plant-derived membrane that envelops the microbe and separates it from the plant cytoplasm. We illustrated that these similarities exist regardless of the plant host species, tissue type, or whether the microbe is prokaryotic or eukaryotic, and its lifestyle, symbiotic or pathogenic. However, there are also structural differences between the presented plant–microbe interactions. In comparison to prokaryotic rhizobacteria in RNS, the eukaryotic AM fungi and oomycetes possess organelles in their cytoplasm. Furthermore, AM fungi and oomycetes exhibit a thick cell wall, while rhizobia are, in contrast to this, enclosed by the peptidoglycan layer in the periplasm and an outer membrane, that conceptually increases the

distance between the plant host and the accommodated microbe. Both must be overcome by diffusion during transport and communication between the microbe and its host [38]. The images presented in this comparative analysis also visualize profound differences for the interface spaces, PBS, PAS, and EHMX. The PBS appears rather broad and inhomogeneous in RNS, while the PAS in AM is relatively thinner and denser. The EHMX in the interaction between oomycete and *A. thaliana* appears extremely reduced and with electron-dense deposits, a feature also described for the extrahaustorial matrix of pathogenic fungi [39]. These differences in structure, optical density, and contrast agent accumulation hint towards a significant difference in the composition or concentration of substances in the PBS, PAS, and EHMX. This could be due to the different plant host and microbe species presented in this comparison, or is related to the symbiotic and pathogenic lifestyles of the organisms.

In addition, we confirmed that all these interactions are indeed featuring living microorganisms hosted by living plant cells. This conclusion is based on structural features such as the presence of organelles inside the microorganism and the plant cell: rough endoplasmatic reticulum in [Fig 1B](#), plant mitochondria in [Fig 2B](#) and chloroplasts in [Fig 3B](#). The capabilities of electron microscopy to capture such detailed observations also opens possibilities for further comparative investigations, including ultrastructural analyses of organelles in infected versus uninfected host cells, as well as studies of microbial morphology both inter- and intracellular in the host tissue. Moreover, advancing such comparative studies by integrating electron microscopy with complementary imaging techniques and molecular biology approaches can bridge knowledge gaps and yield deeper insights into the similarities and differences underlying these interactions.

References

1. Bergersen FJ, Briggs MJ. Studies on the bacterial component of soybean root nodules: cytology and organization in the host tissue. *J Gen Microbiol*. 1958;19(3):482–90. <https://doi.org/10.1099/00221287-19-3-482> PMID: 13611190
2. Goodchild DJ, Bergersen FJ. Electron microscopy of the infection and subsequent development of soybean nodule cells. *J Bacteriol*. 1966;92(1):204–13. <https://doi.org/10.1128/jb.92.1.204-213.1966> PMID: 5949564
3. Schubert V. Super-resolution microscopy - applications in plant cell research. *Front Plant Sci*. 2017;8:531. <https://doi.org/10.3389/fpls.2017.00531> PMID: 28450874
4. Turgeon BG, Bauer WD. Ultrastructure of infection-thread development during the infection of soybean by *Rhizobium japonicum*. *Planta*. 1985;163(3):328–49. <https://doi.org/10.1007/BF00395142> PMID: 24249405
5. Weiner E, Pinskey JM, Nicastro D, Otegui MS. Electron microscopy for imaging organelles in plants and algae. *Plant Physiol*. 2022;188(2):713–25. <https://doi.org/10.1093/plphys/kiab449> PMID: 35235662
6. Parniske M. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? *Curr Opin Plant Biol*. 2000;3(4):320–8. [https://doi.org/10.1016/s1369-5266\(00\)00088-1](https://doi.org/10.1016/s1369-5266(00)00088-1) PMID: 10873847
7. Robertson JG, Lyttleton P, Bullivant S, Grayston GF. Membranes in lupin root nodules. I. The role of Golgi bodies in the biogenesis of infection threads and peribacteroid membranes. *J Cell Sci*. 1978;30:129–49. <https://doi.org/10.1242/jcs.30.1.129> PMID: 649682
8. Bonfante-Fasolo P, Dexheimer J, Gianinazzi S, Gianinazzi-Pearson V, Scannerini S. Cytochemical modifications in the host-fungus interface during intracellular interactions in vesicular- arbuscular mycorrhizae. *Plant Sci Lett*. 1981;22(1):13–21. [https://doi.org/10.1016/0304-4211\(81\)90277-7](https://doi.org/10.1016/0304-4211(81)90277-7)
9. Lu Y-J, Schornack S, Spallek T, Geldner N, Chory J, Schellmann S, et al. Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. *Cell Microbiol*. 2012;14(5):682–97. <https://doi.org/10.1111/j.1462-5822.2012.01751.x> PMID: 22233428
10. Ivanov S, Austin J 2nd, Berg RH, Harrison MJ. Extensive membrane systems at the host-arbuscular mycorrhizal fungus interface. *Nat Plants*. 2019;5(2):194–203. <https://doi.org/10.1038/s41477-019-0364-5> PMID: 30737512
11. Horbach R, Navarro-Quesada AR, Knogge W, Deising HB. When and how to kill a plant cell: infection strategies of plant pathogenic fungi. *J Plant Physiol*. 2011;168(1):51–62. <https://doi.org/10.1016/j.jplph.2010.06.014> PMID: 20674079
12. Liang J, Klingl A, Lin Y-Y, Boul E, Thomas-Oates J, Marin M. A subcompatible rhizobium strain reveals infection duality in Lotus. *J Exp Bot*. 2019;70(6):1903–13. <https://doi.org/10.1093/jxb/erz057> PMID: 30775775
13. Becker A. Classic spotlight: bacteroids-views of an enigmatic bacterial state in root nodule symbiosis through the centuries. *J Bacteriol*. 2017;199(3):e00741-16. <https://doi.org/10.1128/JB.00741-16> PMID: 30208363
14. Kondorosi E, Mergaert P, Kereszt A. A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. *Annu Rev Microbiol*. 2013;67:611–28. <https://doi.org/10.1146/annurev-micro-092412-155630> PMID: 24024639
15. Suzuki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. *Int Rev Cell Mol Biol*. 2015;316:111–58. <https://doi.org/10.1016/bs.ircmb.2015.01.004> PMID: 25805123

16. Roth L, Jeon K, Stacey G. Homology in endosymbiotic systems: the term symbosome. In: Palacios R, Verma D, editors. Molecular genetic of plant-microbe interactions. St. Paul, Minnesota: APS Press; 1988. p. 220–5.
17. Mellor RB. Bacteroids in the rhizobium-legume symbiosis inhabit a plant internal lytic compartment: implications for other microbial endosymbioses. *J Exp Bot.* 1989;40(8):831–9. <https://doi.org/10.1093/jxb/40.8.831>
18. Roth LE, Stacey G. Bacterium release into host cells of nitrogen-fixing soybean nodules: the symbosome membrane comes from three sources. *Eur J Cell Biol.* 1989;49(1):13–23. PMID: [2759097](#)
19. Katinakis P, Lankhorst RM, Louwerse J, van Kammen A, van den Bos RC. Bacteroid-encoded proteins are secreted into the peribacteroid space by *Rhizobium leguminosarum*. *Plant Mol Biol.* 1988;11(2):183–90. <https://doi.org/10.1007/BF00015670> PMID: [24272260](#)
20. Tejima K, Arima Y, Yokoyama T, Sekimoto H. Composition of amino acids, organic acids, and sugars in the peribacteroid space of soybean root nodules. *Soil Sci Plant Nutr.* 2003;49(2):239–47. <https://doi.org/10.1080/00380768.2003.10410003>
21. Bapaume L, Reinhardt D. How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. *Front Plant Sci.* 2012;3:223. <https://doi.org/10.3389/fpls.2012.00223> PMID: [23060892](#)
22. Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P-E. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. *New Phytol.* 2019;223(3):1127–42. <https://doi.org/10.1111/nph.15775> PMID: [30843207](#)
23. Roth R, Paszkowski U. Plant carbon nourishment of arbuscular mycorrhizal fungi. *Curr Opin Plant Biol.* 2017;39:50–6. <https://doi.org/10.1016/j.pbi.2017.05.008> PMID: [28601651](#)
24. Keymer A, Gutjahr C. Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. *Curr Opin Plant Biol.* 2018;44:137–44. <https://doi.org/10.1016/j.pbi.2018.04.005> PMID: [29729528](#)
25. Gutjahr C, Parniske M. Cell and developmental biology of arbuscular mycorrhiza symbiosis. *Annu Rev Cell Dev Biol.* 2013;29:593–617. <https://doi.org/10.1146/annurev-cellbio-101512-122413> PMID: [24099088](#)
26. Demchenko K, Winzer T, Stougaard J, Parniske M, Pawłowski K. Distinct roles of *Lotus japonicus* SYMRK and SYM15 in root colonization and arbuscule formation. *New Phytol.* 2004;163(2):381–92. <https://doi.org/10.1111/j.1469-8137.2004.01123.x> PMID: [33873620](#)
27. Kobae Y, Hata S. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. *Plant Cell Physiol.* 2010;51(3):341–53. <https://doi.org/10.1093/pcp/pcq013> PMID: [20097910](#)
28. Kobae Y, Gutjahr C, Paszkowski U, Kojima T, Fujiwara T, Hata S. Lipid droplets of arbuscular mycorrhizal fungi emerge in concert with arbuscule collapse. *Plant Cell Physiol.* 2014;55(11):1945–53. <https://doi.org/10.1093/pcp/pcu123> PMID: [25231957](#)
29. Pumplin N, Harrison MJ. Live-cell imaging reveals periarbuscular membrane domains and organelle location in *Medicago truncatula* roots during arbuscular mycorrhizal symbiosis. *Plant Physiol.* 2009;151(2):809–19. <https://doi.org/10.1104/pp.109.141879> PMID: [19692536](#)
30. Luginbuehl LH, Oldroyd GED. Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. *Curr Biol.* 2017;27(17):R952–63. <https://doi.org/10.1016/j.cub.2017.06.042> PMID: [28898668](#)
31. Judelson HS, Ah-Fong AMV. Exchanges at the plant-oomycete interface that influence disease. *Plant Physiol.* 2019;179(4):1198–211. <https://doi.org/10.1104/pp.18.00979> PMID: [30538168](#)
32. Hardham AR. Cell biology of plant-oomycete interactions. *Cell Microbiol.* 2007;9(1):31–9. <https://doi.org/10.1111/j.1462-5822.2006.00833.x> PMID: [17081190](#)
33. Bozkurt TO, Belhaj K, Dagdas YF, Chaparro-Garcia A, Wu C-H, Cano LM, et al. Rerouting of plant late endocytic trafficking toward a pathogen interface. *Traffic.* 2015;16(2):204–26. <https://doi.org/10.1111/tra.12245> PMID: [25430691](#)
34. Evangelisti E, Govers F. Roadmap to success: how oomycete plant pathogens invade tissues and deliver effectors. *Annu Rev Microbiol.* 2024;78(1):493–512. <https://doi.org/10.1146/annurev-micro-032421-121423> PMID: [39227351](#)
35. Liu T, Song T, Zhang X, Yuan H, Su L, Li W, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. *Nat Commun.* 2014;5:4686. <https://doi.org/10.1038/ncomms5686> PMID: [25156390](#)
36. Wang S, Boevink PC, Welsh L, Zhang R, Whisson SC, Birch PRJ. Delivery of cytoplasmic and apoplastic effectors from *Phytophthora infestans* haustoria by distinct secretion pathways. *New Phytol.* 2017;216(1):205–15. <https://doi.org/10.1111/nph.14696> PMID: [28758684](#)
37. Wang S, Welsh L, Thorpe P, Whisson SC, Boevink PC, Birch PRJ. The *Phytophthora infestans* Haustorium is a site for secretion of diverse classes of infection-associated proteins. *mBio.* 2018;9(4):e01216-18. <https://doi.org/10.1128/mBio.01216-18> PMID: [30154258](#)
38. Dodds PN, Catanzariti A-M, Lawrence GJ, Ellis JG. Avirulence proteins of rust fungi: penetrating the host–haustorium barrier. *Aust J Agric Res.* 2007;58(6):512–7. <https://doi.org/10.1071/ar07055>
39. Mims CW, Rodriguez-Llorente C, Richardson EA. Ultrastructure of the host-pathogen interface in daylily leaves infected by the rust fungus *Puccinia hemerocallidis*. *Protoplasma.* 2002;219(3–4):221–6. <https://doi.org/10.1007/s007090200023> PMID: [12099222](#)