

REVIEW

How *Klebsiella pneumoniae* controls its virulence

To Nguyen Thi Nguyen[✉], Gareth Howells[✉], Francesca L. Short*

Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia

✉ These authors contributed equally to this work.

* francesca.short@monash.edu

Abstract

OPEN ACCESS

Citation: Nguyen TNT, Howells G, Short FL (2025) How *Klebsiella pneumoniae* controls its virulence. PLoS Pathog 21(9): e1013499. <https://doi.org/10.1371/journal.ppat.1013499>

Editor: Laura A. Mike, University of Pittsburgh, UNITED STATES OF AMERICA

Published: September 15, 2025

Copyright: © 2025 Nguyen et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: FS was funded by DECRA fellowship (DE200101524) from the Australian Research Council and received a salary from this grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Abbreviations: AMR, antimicrobial resistance; CRP, catabolite repressor protein; MDR, multidrug resistance; sRNA, small RNA; TraDIS,

The bacterial pathogen *Klebsiella pneumoniae* is a serious public health threat due to its propensity to develop antimicrobial resistance (AMR), the emergence of hypervirulent strains able to cause community-acquired infections, and the more recent development of convergent strains that exhibit both traits. Pathogenesis in *K. pneumoniae* is attributed to a range of largely horizontally-acquired virulence or fitness factors that collectively mediate immune evasion, attachment, intermicrobial competition and nutrition in different niches within the host. An outstanding research question is how expression of these factors is coordinated during infection, and how this regulatory control varies in genetically distinct lineages. Here we review recent progress in understanding the regulators and networks that control *K. pneumoniae* virulence or host fitness factor expression, discuss the role of plasmid–chromosome regulatory crosstalk in pathogenesis, and explore the potential of new global approaches to enhance our understanding. This knowledge will be instrumental in accurately predicting virulence from genome sequence in new emergent *K. pneumoniae* lineages, in order to track and manage this priority pathogen.

Introduction

Klebsiella pneumoniae is a gram-negative Enterobacteriaceae family pathogen of global concern. Carbapenem and cephalosporin resistant *K. pneumoniae* have been classed as World Health Organization priority pathogens [1] and *K. pneumoniae* infections were responsible for an estimated loss of 31 million disability-adjusted life years in 2019 [2]. *Klebsiella pneumoniae* is characterized by extremely high genomic diversity and the ability to inhabit a broad range of host and environmental niches [3,4].

Despite its clinical spread, many common bacterial virulence factors such as toxins are rare or absent in *K. pneumoniae*, with its strategy for proliferation in the host instead described as “Going on the offense with a good defense” [5]. *K. pneumoniae* host colonization and pathogenesis are the subject of several recent reviews

transposon directed insertion-site sequencing.

[6–10], and key features will be summarized here. *K. pneumoniae* possesses a suite of horizontally-acquired, ostensibly “plug and play” host fitness factors that contribute to infection by subverting host immunity, acquiring nutrients within the host, mediating intermicrobial competition, or a combination of these processes. These factors include a protective surface capsule, which can be hypermucoviscous, siderophores for iron acquisition, O-antigen, Type VI secretion systems and different types of fimbriae. Presence or absence of particular virulence factors, primarily carried on non-conjugative large virulence plasmids such as pLVPK [11], support the division of *K. pneumoniae* into hypervirulent (hvKp) and classical (cKp) (non-hypervirulent) isolates, where the former are those able to cause community-acquired disease (defined in research as an LD50 < 10⁷ in murine intranasal infection) [12,13]. Hypervirulence-associated factors include the siderophores aerobactin, salmochelin, and yersiniabactin, and the hypermucoidy-linked *rmpA* and *rmpA2* operons, which are associated with specific mobile genetic elements [14–16]. Recent genomics studies have been undertaken to characterize *K. pneumoniae* from a genomic epidemiology perspective, and to map the evolution and distribution of its pathogenicity determinants [17–19]. In general, our understanding of *K. pneumoniae* pathogenesis is hindered by the genomic diversity of the population. While approximately 2000–3000 genes are shared by 95% of isolates, more than half of *K. pneumoniae* genes vary between isolates [20]. This accessory genome includes approximately 30,000 protein coding genes and the majority of genes linked to virulence [10,20] and an outstanding area in understanding *K. pneumoniae* pathogenesis is how expression of its diverse set of virulence-associated genes is coordinated and controlled in different genetic backgrounds.

Current knowledge of *K. pneumoniae* pathogenesis is drawn from studies of well-established laboratory strains as well as more recent clinical isolates. Two widely used reference isolates for pathogenesis studies are strains Kp52.145 (a laboratory derivative of CIP52.145/B5055) [21] and ATCC43816 or its derivative KPPR1 [22], which have been used for foundational studies of capsule, hypermucoidy and iron acquisition, among others (e.g., [23–26]). Both are mouse-virulent, capsule type K2 isolates of clonal groups CG66 (Kp52.145) and CG493 (ATCC43816), respectively. Kp52.145 possesses two virulence-associated plasmids, is hypermucoid, and makes all four siderophores, while ATCC43816 lacks plasmids and does not produce aerobactin [21]. These isolates are from clonal groups only rarely encountered in the clinic, and since the 2000s many studies have explored pathogenesis in exemplars of the widespread hvKp lineage CG23, such as NTUH-K2044 [27], and SGH10 [28], both of which produce capsule of type K1.

The success of *K. pneumoniae* as a pathogen depends on its ability to fine-tune its behavior in different environments. For example, in a single human infection *K. pneumoniae* may spread from a mucosal surface such as the oropharynx, before colonizing the bloodstream and lungs [29–31] or from a patient’s own gastrointestinal microbiota to self-acquired infections such as UTIs [32,33]. In this process, populations of *K. pneumoniae* will experience multiple environments and selection pressures, including competition with other bacteria [34] and the host immune response [35], and diverse phenotypes will be more fit at different stages.

Complex signal transduction networks dictate the expression of the *K. pneumoniae* genes needed to thrive in different environments. Understanding these networks, and how they operate in different lineages of *K. pneumoniae*, could provide routes to reliably predict *K. pneumoniae* phenotype from genotype, or design new virulence-subverting therapeutics. In this review, we examine the main mechanisms that regulate expression of the primary *K. pneumoniae* virulence-associated factors, current knowledge of the role of accessory genes in controlling pathogenesis, and explore future research directions that would improve our understanding of this critical pathogen.

Components of bacterial gene regulation networks

Bacteria use complex regulation hierarchies and networks to sense their environments and control gene transcription and translation in response. Gene expression is primarily controlled at the level of transcription initiation. At the most primary level, sigma factors (σ) dictate where RNA polymerase is able to initiate transcription by binding to specific promoter sequences [36,37]. A variety of σ factors bind to different conserved promoter sequences to control gene expression in response to different environmental stimuli [37]. Transcription factor proteins activate or repress transcription by binding to specific DNA recognition sequences, usually at or near a promoter, to alter interactions of RNA polymerase with that promoter [38,39]. Transcription factors are themselves activated or deactivated by either small molecule binding, or phosphorylation by histidine kinase partners as part of two-component systems (reviewed specifically for *K. pneumoniae* in [40]). The majority of transcription factors are local regulators that control one or a few genes, while some are global regulators with hundreds of genes under their direct control [38]. Precise and complex regulation circuits can be built from σ factors together with transcription factors, and many genes are regulated by multiple transcription factors that themselves respond to different cues [38,41].

Nucleoid-associated proteins such as H-NS and IHF provide another level of control over transcription by altering DNA accessibility, and are distinguished from transcription factors by their high abundance, relaxed DNA binding specificity and overall effects on DNA architecture and compaction [42]. Beyond transcription, small RNA (sRNA) regulation provides a global, fast-acting layer of control over which transcripts go on to be translated into proteins and exert their function [43]. Overall, bacteria use multiple sophisticated, intersecting regulatory systems to control which genes are expressed and when.

Despite the wealth of knowledge built over the past decades, understanding these regulatory networks is still challenging; in *Escherichia coli* MG1665 – a model bacterium for regulation – condition-specific gene expression can be predicted with up to 86% accuracy, but the specific direct regulators can be unambiguously linked for only 14% of transcription units [44].

Many regulators are highly conserved across different phyla, indicating central roles and deep evolutionary roots [45]. Regulator activities are typically extrapolated from well-studied organisms, particularly *E. coli* for which high quality curated resources are available [46]. However, the targets of specific regulators, and how they function within overall regulation networks, can vary substantially between species and even strains of the same species, as shown in both regulator-specific and global studies of various Enterobacteriaceae family bacteria [47–51]. An additional layer of regulatory complexity that is particularly relevant to *K. pneumoniae* is provided by mobile genetic elements; the accessory genome of this pathogen is crucial to both hypervirulence and multidrug resistance (MDR), and these elements can be tightly integrated into cellular regulation networks. Plasmid-encoded genes can be subject to complex regulation by core regulators, while accessory genome-encoded regulators are known to provide an important, infection-relevant layer of regulation in hvKp.

Regulation of specific virulence factors

Capsule

K. pneumoniae cells are enveloped in a coating of complex acidic polysaccharides which form the capsule [5]. *K. pneumoniae* produces Group I (wzy-dependent) capsules, and the biosynthesis of these capsules is determined by a chromosomal locus of three operons containing both conserved and variable genes [52,53]. Over 180 distinct capsule loci have been identified in *K. pneumoniae* [54,55]. Encapsulation is a strong determinant of *K. pneumoniae* virulence, with

acapsular strains less virulent, and hypercapsular hvKp (hypermucoid and usually K1/K2 serotype) strains significantly more virulent [56]. The capsule primarily mediates virulence by protecting cells from opsonization and phagocytosis by the host immune system [5]. Capsule can also influence attachment and biofilm formation in *K. pneumoniae* by preventing attachment through masking of fimbriae [57], though some capsule types are apparently themselves involved in attachment [58]. hvKp strains are hypermucoid, and may also have capsule qualities that promote immune evasion, such as the absence of mannose residues in the K1 capsule type, thereby avoiding activation of the complement pathway by mannose binding lectins [59]. Note that while capsule is almost universally considered a host fitness factor, several intriguing studies have reported evolution of acapsular *K. pneumoniae* variants during infection, which can have increased fitness in specific host niches [60–63].

Transcriptional regulation by core genome-encoded global regulators. Capsule is constitutively expressed, but can be upregulated or repressed in response to various environmental cues. Capsule synthesis is controlled at the level of transcription initiation by a network of chromosome-encoded global regulators [64,65]. The Rcs phosphorelay system is a membrane stress–response system conserved across the *Enterobacteriaceae*, which regulates many genes, including colanic acid in *E. coli* and capsule production in *K. pneumoniae* [66]. RcsAB positively regulates capsule expression [67,68] and binds to the promoters of the capsular polysaccharide biosynthesis genes *galF* and *manC* (Table 1 and Fig 1) [69]. Capsule production is also regulated in response to glucose levels; when cyclic AMP levels are high (indicating low exogenous glucose), capsule production decreases through the action of catabolite repressor protein (CRP), which binds directly to promoters within the capsule locus and also regulates expression of *rcsA* [70]. Iron levels influence capsule expression through repression of *rcsA* transcription by the iron-dependent regulator, Fur, and the small RNA, RyhB [71,72], while an additional iron-responsive transcriptional activator, IscR, promotes capsule production by directly binding to capsule locus promoters (Fig 1) [73].

The abundant nucleoid-associated protein H-NS represses capsule production [74], and its activity is thought to be counteracted by the regulator SlyA (called KvrA in *K. pneumoniae*) at high temperatures based on work in *E. coli* [75]. SlyA/KvrA is known to regulate capsule in both hvKp and cKp, though its mechanism of action has not been characterized in depth [64,76].

Accessory genes and regulation of hypermucoidy. Capsule production is also subject to regulation by components of the *K. pneumoniae* accessory genome, and this was recognized as early as the 1980s with the identification of RmpA (for Regulator of mucoid phenotype) as a plasmid-encoded mucoidy regulator [23]. RmpA and RmpA2 are homologous regulators usually encoded on hypervirulence plasmids of *K. pneumoniae* [16], though in many strains one of the genes is truncated [77,78]. The presence of RmpA was shown to increase capsule production in early functional studies, which also revealed that this increase required a functional RcsAB system [77]. RmpA and RmpA2 promote the hypermucoid phenotype that marks hvKp. Recent work in KPPR1S has revealed the details of how hypermucoidy and capsule production are connected. The *rmpA* gene is encoded in an autoregulated operon with two additional genes, *rmpD* and *rmpC*, encoding a small protein and a transcriptional regulator, respectively [53,79]. RcsB is required for full expression of this operon [77,79]. RmpC promotes transcription of capsule genes (Fig 2), and is likely responsible for the increase in capsule expression previously attributed to RmpA [79]. The RmpD protein does not affect capsule gene transcription, but promotes synthesis of longer and more uniform capsule polysaccharide chains through direct interaction with the capsule export machinery [53,80]. This change in capsule architecture underpins the hypermucoid phenotype [80], and similar changes in capsule structure leading to hypermucoidy have also been observed in *K. pneumoniae* strains carrying certain spontaneous mutations in the capsule export protein, Wzc [81–83]. RmpA2 has been studied in the context of the hypervirulence plasmids pK2044 and pLVPK, where it is encoded in an operon with a *rmpD* homologue (RmpD2) and a truncated *rmpC* gene. Like *rmpADC*, this locus was shown to increase hypermucoidy and capsule production even though it does not encode a functional copy of RmpC [84], and an additional study confirmed the function of multiple *rmpA* locus variants in KPPR1S [16]. The effect of both *rmp* loci can vary depending on strain background and capsule

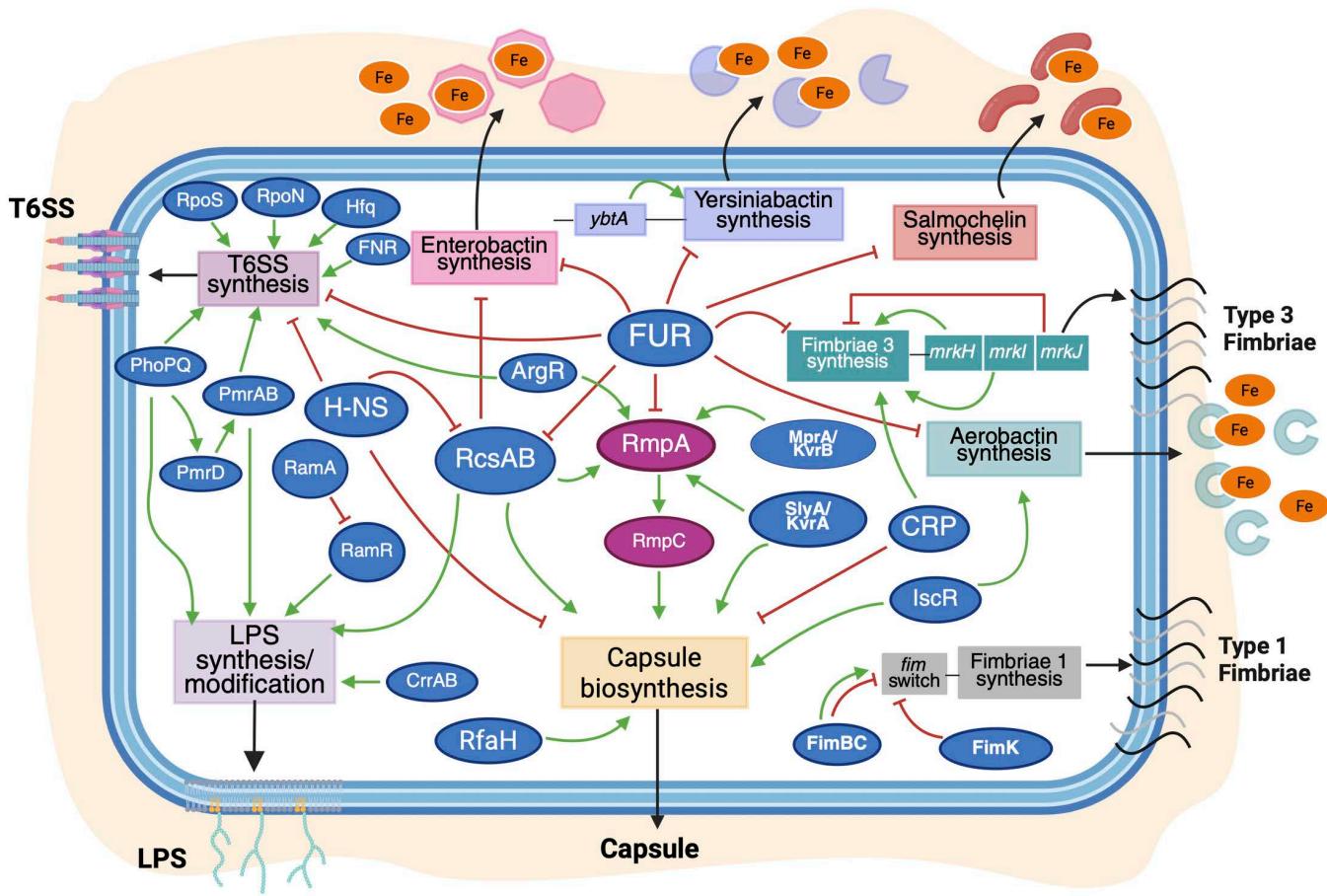
Table 1. Summary of regulators referenced in the manuscript.

Regulator	Description	Kp strain	Reference
Capsule and hypermucoviscosity			
RcsAB	Positive regulator of capsular polysaccharide biosynthesis, <i>galF</i> and <i>manC</i> promoters	NTUH-K2044; 889/50 (O1:K20); KPPR1S	[67–69,79]
Fur	Negative regulator of <i>rcsA</i> in iron rich conditions, negative regulator of <i>rmpA</i>	CG43 (clinical isolate of K2 serotype)	[72]
IscR	Positive regulator of cps locus expression	CG43S3	[73]
CRP	Binds to promoters within capsule locus and regulates <i>rcsA</i> expression, negative regulator of capsule expression	CG43S3; NTUH-K2044	[70,94]
H-NS	Represses capsule gene transcription	Kpn 123/01 (serotype K39); NTUH-K2044	[64,74]
KvrA/SlyA	Positive regulator of capsule gene expression through RmpA	KPPR1S; NTUH-K2044; classical Kp strain MKP103	[64,76,79]
KvrB	Positive regulator of capsule gene expression through RmpA	KPPR1S; classical Kp strain MKP103	[76,79]
RmpA	Reported positive regulator of CPS production, requires RcsB for expression	CG43; NTUH-K2044; KPPR1S	[23,77,79,95]
RmpA2	Positive regulator of CPS production	CG43	[78,96]
RmpC	Promotes capsule expression, encoded downstream of <i>rmpA</i>	KPPR1S	[53,79]
ArgR	Positive regulator of hypermucoidy through control of <i>rmpADC</i> expression	KPPR1S	[86]
OmpR/EnvZ	Two component system, deletion reduces hypermucoidy	NTUH-K2044; ATCC43816	[64,88]
ArcAB	Two component system, deletion reduces capsule production	NTUH-K2044; ATCC43816	[64]
KbvR	Positive regulator of capsule biosynthesis	NTUH-K2044	[89]
KvhA/KvhR	Positive regulator of capsule biosynthesis	CG43S3	[90]
RfaH	Positive regulator of capsule expression through interactions with RNA polymerase, prevents early termination of capsule transcripts	TOP52	[91]
OmrB	sRNA, negative regulator of capsule biosynthesis. Base-pairs to the transcript of <i>kvrA/slyA</i>	SGH10	[93]
ArcZ	sRNA, negative regulator of hypermucoviscosity. Binds to transcripts of <i>mlaA</i> and <i>fbp</i>	ATCC43816	[92]
RyhB	Small RNA, positive regulator of capsule (via activating orf1 and orf6 of K2)	CG43S3 (streptomycin resistant CG43)	[71]
Lipopolysaccharide synthesis and modification			
PhoP/Q	Two component system, regulates Lipid A modification genes	CG43; clinical colistin resistant isolates	[40,97,98]
RcsA/B	Two component system	NTUH-K2044; CG43	[99]
RfaH	Enhances transcriptional elongation of <i>waaQ</i> and <i>rfb</i> operons	NTUH-K2044	[91]
PmrA/B	Two component system	Clinical isolates (KKBO-1 and KKBO-4)	[100]
CrrA/B	Two component system	Clinical colistin-resistant isolates	[101]
RamA	Activator of <i>lpxC</i> , <i>lpxL-2</i> , and <i>lpxO</i>	Ecl8	[102]
Siderophores			
Fur	Global regulator of siderophore synthesis, represses siderophore production in iron rich conditions	CG43; SGH10; NTUH-K2044	[72,87,103,104]
RcsAB	Two component system, represses expression of <i>entC</i>	NTUH-K2044	[104]
RyhB	sRNA, can promote expression of aerobactin and enterobactin	CG43S3	[71]
IscR	Transcription factor, can promote aerobactin production in response to low iron	CG43	[73]

(Continued)

Table 1. (Continued)

Regulator	Description	Kp strain	Reference
Fimbriae			
SimK	Binds inverted repeats flanking <i>fimA</i> , affects phase variation. Direction of regulation may be context-dependent as the two studies suggest opposite effects.	TOP52 (cystitis isolate); CG43S3	[105,106]
MrkH	Local activator of type 3 fimbriae <i>mrk</i> cluster, c-di-GMP dependent	AJ218 (K54 clinical isolate)	[107]
Fur	Promotes <i>mrkH</i> expression in response to low iron	CG43	[108]
IscR	Repressor of <i>mrkH</i> expression	CG43S3	[109]
IroP	Virulence plasmid encoded suppressor of type 3 fimbriae expression	SGH10; tested in some other hvkp strains	[87]
H-NS	Represses <i>mrkA</i> transcription	Kpn 123/01 (serotype K39)	[74]
KfpR	Transcriptional repressor of <i>kpf</i> fimbriae expression	UKP8 (UTI isolate)	[110]
Type 6 secretion			
PhoPQ	Two component system, Positive regulator of T6SS	CIP52.145 (hereafter Kp52145)	[111]
PmrAB	Two component system, Positive regulator of T6SS	CIP52.145	[111]
Hfq	Positive regulator of T6SS	CIP52.145	[111]
Fur	Negative regulator of T6SS in low iron	CIP52.145; KPPR1S	[111,112]
RpoS	Sigma factor, Positive regulator of T6SS	CIP52.145	[111]
RpoN	Sigma factor, Positive regulator of T6SS	CIP52.145	[111]
H-NS	Negative regulator of T6SS	CIP52.145	[111]
MgrB	Negative regulator of T6SS	CIP52.145	[111]
RcsB	Negative regulator of T6SS	CIP52.145	[111]
ArgR	Positive regulator of T6SS in response to arginine	KPPR1S	[112]
FNR	Positive regulator of T6SS in response to low oxygen	KPPR1S	[112]


Regulators referenced in the manuscript, including identifiers, descriptions, strains in which experimentation was done and cited literature.

<https://doi.org/10.1371/journal.ppat.1013499.t001>

type [84]. Though the underlying reasons for strain specificity are not completely understood, *rmpA* promoter mutations that abrogate hypermucoviscosity have been observed in some hypervirulent carbapenem-resistant *K. pneumoniae* (hv-CRKP) strains [85].

The discovery of the molecular basis for the hypermucoid phenotype opened the way for studies specifically addressing regulation of this phenomenon, and the conserved regulator ArgR was recently identified as an arginine-dependent activator of hypermucoid that works through promoting expression of *rmpADC* [86]. In another example of tight regulatory integration between core and accessory genome components, both RmpA and RmpA2 are also controlled by the global regulator Fur [72,87].

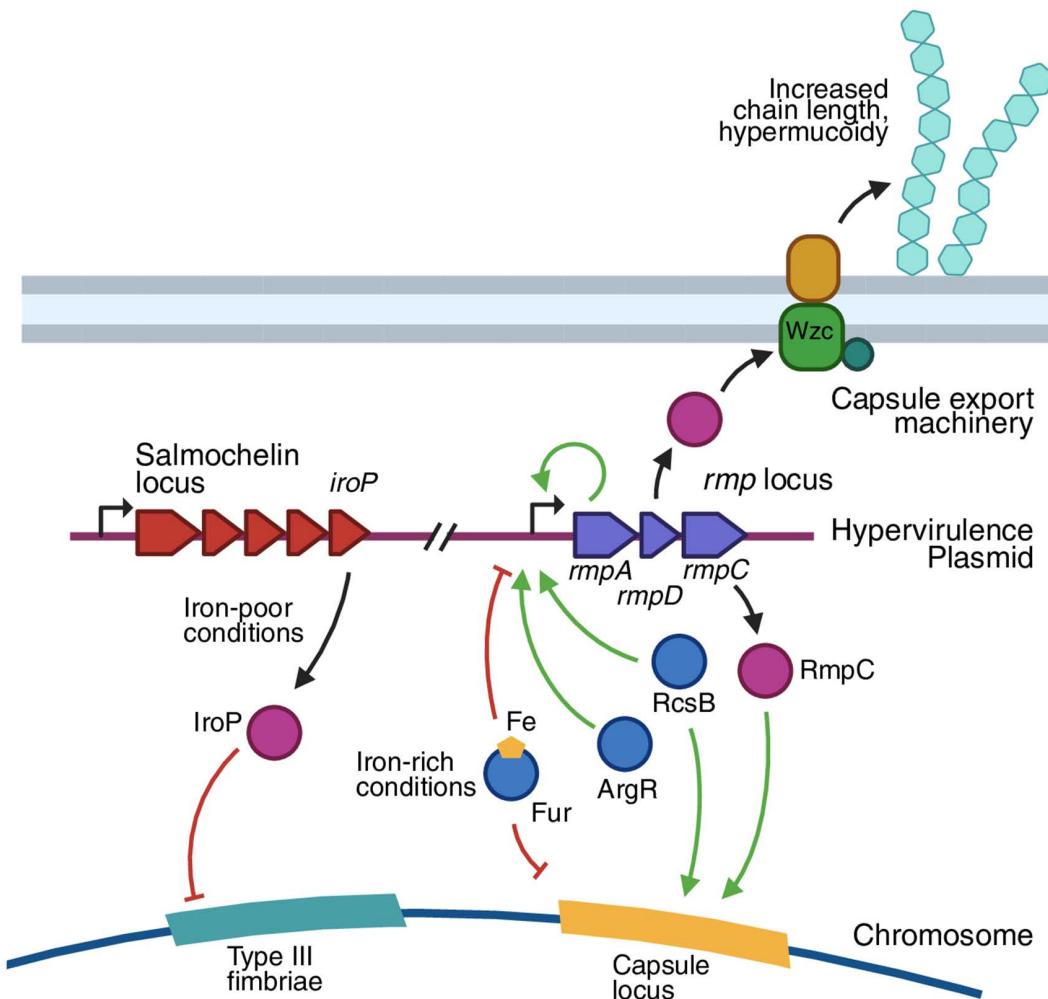

Further transcriptional regulation. Additional regulators of capsule or hypermucoid have been identified through high-throughput screens [64,65] and targeted genetic studies, including the global two-component regulatory systems ArcAB (linked to aerobic/anaerobic transitions) and OmpR-EnvZ (osmotic stress response) [88], and presumed specific regulators KvrB [76,79], KbvR [89], and KvgSA [90] (Table 1). These studies highlight how tightly tuned capsule production is to the environment, as well as the various metabolic and structural components needed for maximum capsule production. Note that the regulators mentioned in this section can increase or decrease capsule but are not known to suppress capsule completely. In long-term host infections, particularly UTIs, acapsular isolates arise through mutation relatively frequently and appear to have a fitness advantage [60–62], illustrating how relevant phenotypes *in vivo* can be achieved through mutation as well as genetic regulation.

Fig 1. Overview of global and specific regulators controlling virulence factor expression in *K. pneumoniae*. Major virulence factor loci are indicated by boxes, and transcriptional regulatory proteins shown as blue ovals for core genome-encoded regulators, and purple ovals for accessory genome-encoded regulatory proteins. Green or red arrows indicate transcriptional activation or repression, respectively. A subset of global regulators including H-NS, the Rcs system, and Fur are involved in regulation of multiple factors. Created in Biorender.

<https://doi.org/10.1371/journal.ppat.1013499.g001>

Post-transcriptional regulation. Capsule production is also regulated after transcription initiation. For instance, the transcription elongation factor, RfaH, is required for efficient capsule gene expression [64,91]. Global RNA interaction profiling in hvKp has revealed capsule and hypermucoidy as hubs for post-transcriptional regulation by small RNAs; one study identified 18 different sRNAs that influence mucoviscosity when overexpressed [92], while another study showed the same for 5 of 8 tested sRNAs [93]. Two newly-characterized, capsule-regulating sRNAs of *K. pneumoniae*, OmrB and ArcZ, have been investigated in depth and their molecular targets identified. OmrB suppresses both capsule production and hypermucoidy, and base-pairs to the transcript of the KvrA/SlyA regulator (Fig 1) [93]. ArcZ suppresses hypermucoidy when overexpressed by targeting transcripts of the phospholipid trafficking protein, MlaA, and the gluconeogenesis enzyme, Fbp [92]. Note that MlaA was previously linked to hypermucoidy through high-throughput genetic screening [64]. ArcZ expression is itself regulated by carbon source availability through CRP [92]. Notably, these global studies of *K. pneumoniae* sRNA regulation identified both novel potential species-specific sRNAs, as well as new regulatory circuits involving conserved RNAs, which highlights the need for direct studies of pathogens of interest, even when regulators are well-characterized in other species.

Fig 2. Plasmid–chromosome cross talk in regulating virulence factor expression in hypervirulent *K. pneumoniae*. The canonical hypervirulence plasmid contains both the Salmochelin and *rmp* loci. IroP is expressed from downstream of the salmochelin synthesis genes, and suppresses expression of the chromosomal Type 3 fimbrial genes when iron levels are low. The *rmp* locus encodes three proteins that collectively act to increase capsule transcription and promote a change in capsule structure. Both *rmp* and the capsule loci are repressed by Fur in high iron conditions, and are regulated by the Rcs system. In addition, the *rmpA* promoter is activated by the core genome-encoded regulator ArgR. Created in Biorender.

<https://doi.org/10.1371/journal.ppat.1013499.g002>

Though by far the best-studied of the *K. pneumoniae* virulence factors, there are important limitations to our current understanding of capsule regulation. The majority of studies do not differentiate between regulation of hypermucoidy and regulation of capsule gene expression, with this distinction being recognized relatively recently [79]. Direct comparisons between studies are hindered by the variety of growth conditions and media used, and shared regulators can have strain-specific impacts [64,65,84]. Further work will be needed to understand which regulatory circuits hold across the entire *K. pneumoniae* species or are specific to hvKp or *rmpA*-containing strains, and how their activity plays out in varied and changing environmental conditions.

Lipopolysaccharide

As a gram-negative bacterium, *K. pneumoniae* possesses an asymmetric outer membrane with the outermost face containing lipopolysaccharides (LPS), which are comprised of a hydrophobic membrane-anchored lipid A

component (encoded by the *lpx* gene cluster), a core oligosaccharide component (encoded by the *waa* cluster), and a terminal, strain-variable O-antigen (encoded by the *wb/rfb* cluster) [113]. LPS is strongly immunogenic, and *K. pneumoniae* can evade the immune response through covalent modifications of the lipid A moiety [114,115], or variations of the O-antigen [25,116]. Like capsule, LPS is constitutively expressed, but is also specifically regulated – or modified – in order to remodel the cell envelope for immune evasion or environmental survival. Very few regulators of LPS transcription have been specifically confirmed in *K. pneumoniae*. Fur binds to the promoter of the core LPS gene *uge* to repress transcription in iron-rich conditions [117], while the antiterminator RfaH is required for full transcription of the O-antigen genes [91]. Note that in *E. coli*, LPS and O-antigen expression is controlled by many regulators [118], so it seems likely that additional pathways active in *K. pneumoniae* will be uncovered with more research.

Regulation of lipid A modification has been studied in more depth. Several two-component systems (PhoP/PhoQ, PmrA/PmrB, CrrA/CrrB) have been shown to have direct or indirect involvement in LPS modifications that lead to resistance to colistin [98–100]. The Rcs system has also been described as mediating these colistin-induced transcriptional changes together with PhoPQ, where the Rcs system downregulates *phoP* transcription and the PhoPQ system promotes the expression of *rcsD* and *rcsC* (and presumably the operonic *rcsB*) [119]. An additional important regulator identified in *K. pneumoniae* is RamA, which can bind to and activate the promoters of the *lpxC*, *lpxL-2*, and *lpxO* genes – all of which encode proteins involved in Lipid A modifications [102]. RamA-overexpressing mutants have increased dissemination through the host [102].

Siderophores

In the host environment, iron is limited. Therefore, microbes compete for iron by producing siderophores that bind Fe³⁺ [120]. *K. pneumoniae* can produce up to four different siderophores – enterobactin, yersiniabactin, aerobactin and salmochelin [5]. Enterobactin is encoded on the core *K. pneumoniae* genome [19,21] on two operons comprising biosynthetic and transport genes [120]. It has very high iron affinity but is sequestered by host lipocalin-2 during infection [121]. Therefore, production of additional accessory genome-encoded siderophores that are not recognized by lipocalin-2 increases virulence, in a manner that strongly depends on host niche [10,26,122–127]. Additional siderophores include salmochelin, which is a glycosylated derivative of enterobactin [128], and yersiniabactin and aerobactin which are the chemically distinct phenolate and hydroxamate siderophore types, respectively [120]. Yersiniabactin is usually present on a virulence-associated integrative conjugative element, ICEKp, and is present in 90% of hvKp and approximately 45% of cKp [14,129,130]. Aerobactin and salmochelin are usually co-localized on the hypervirulence plasmid, and are present in 90% of hvKp but rare in cKp [14,130]. The loci for all four siderophores include more than one transcriptional unit. Unlike capsule and LPS, siderophores are not constitutively expressed [72].

Siderophore synthesis is controlled by both global and local regulators (Table 1). All four *K. pneumoniae* siderophore genes are repressed by Fur under conditions of high iron [72,87,103]. Enterobactin production is additionally regulated by the RcsAB two-component system, which has been shown to directly target the promoter of the first biosynthetic gene of the locus, *entC* [104]. Fur also represses *rcsA* transcription, thereby regulating enterobactin gene transcription directly and indirectly. The Fur-regulated small RNA, RyhB, participates in activation of some Fur-regulated gene transcripts, as well as capsule transcripts [71,87]. In addition, the Fe-S cluster-containing transcription factor, IscR, has been reported to regulate aerobactin production in its apo form [73].

Siderophore production has been shown to be controlled by additional regulatory systems in other *Enterobacteriaceae* species, such as the yersiniabactin-specific feedforward regulator YbtA [131], the anaerobiosis/redox-sensitive regulatory system ArcAB [132], and the osmolarity-sensing system OmpR-EnvZ [133]. While it is likely that some of these regulators also control siderophore expression in *K. pneumoniae*, this has not yet been tested. Overall, there is a lack of systematic information, as current studies have been performed in various *K. pneumoniae* strains with different siderophore

complements. Regulation differences may contribute to the variation in the virulence contributions of individual siderophores across strain backgrounds, or the dominance of aerobactin in the secreted siderophore pool of at least one hvKp strain [124,125]. Another interesting feature of siderophore regulation is the degree of involvement of regulators also known to target capsule production, such as Fur, IcsR, and RcsAB (Fig 1).

Fimbriae

Fimbriae (pili) are thin polymers on bacterial surfaces that mediate adhesion to biotic and abiotic surfaces [134], and contribute to both pathogenesis and environmental persistence through the initiation of biofilm formation [134–136]. In *K. pneumoniae*, most strains can express both type 1 and type 3 fimbriae [137]. Type 1 fimbriae are hair-like fibers (width approximately 7 nm, length 0.2–2 μm [138]) essential for pathogenesis in *K. pneumoniae* urinary tract infections [137], and are encoded by the *fim* cluster (structured *fimBEA/CDFGHK* in *K. pneumoniae*). These adhesins are composed of FimA polymers capped with the mannose binding FimH [136]. Type 1 fimbriae expression is phase variable and controlled by the inversion of the *fimA* promoter region [105,136]. This region is termed the *fim* switch – in *E. coli*, inversion is controlled by the FimB and FimE recombinases [136,138] and this activity is presumed to be the same in *K. pneumoniae*. *K. pneumoniae* contains an additional gene, *fimK* [136], which is not found in other Enterobacteriaceae, and encodes a protein that promotes inversion of the *fim* switch to the OFF position [105], and has also been reported to directly bind to the promoter of *fimA* to promote its transcription [106]. In *E. coli* the *fim* switch is also regulated by the global regulators H-NS and Fis [139,140].

Type 3 fimbriae are thinner (4–5 nm width) than type 1 fimbriae, and are important for adhesion and biofilm initiation [137]. Type 3 fimbriae are encoded by the *mrk* cluster, where within the cluster, *mrkA* encodes the fimbrial subunit and *mrkD* encodes the adhesin. Expression of the *mrkABCDF* cluster is regulated by the products of the downstream genes, *mrkHIJ*, and both operons are subject to control by global regulators linked to nutrient levels. The *mrkH* gene encodes an activator that requires the biofilm-related second messenger cyclic-di-GMP for activity [107]; c-di-GMP levels are themselves related to carbon availability via the cAMP-CRP system [141]. Type 3 fimbriae production is also regulated in response to iron, where expression of *mrkH* is activated by Fur [108] and repressed by IscR [109]. In addition to the aforementioned nutrient-responsive regulators, the nucleoid protein H-NS has also been shown to control Type 3 fimbriae by repressing *mrkA* transcription [74]. In hvKp, Type 3 fimbriae synthesis is also regulated through plasmid–chromosome cross talk involving the protein IroP [87]. This small protein is encoded within the salmochelin biosynthesis operon and is therefore induced in iron-limited conditions. IroP suppresses expression of Type 3 fimbriae, thereby strengthening the inverse regulation of Type 3 fimbriae and hypermucoid capsule production in response to iron availability. This regulatory circuit is conserved in some, but not all hvKp strains [87].

In addition to the *fim* and *mrk* clusters, there are a range of fimbriae gene clusters in *K. pneumoniae* that are less well characterized [142,143] including the *kpf* cluster, which encodes a less common type 1-like fimbriae [144] together with its own transcriptional repressor gene *kpfR* [110].

Colibactin

Colibactin is a genotoxin produced by some *K. pneumoniae* isolates as well as other members of the Enterobacteriaceae, that cross-links host DNA and induces double stranded DNA breaks [145]. The presence of colibactin-encoding *K. pneumoniae* has been suggested as a colorectal cancer biomarker [145]. Colibactin is encoded on an integrative conjugative element – ICEKp10 [14] – that is strongly associated with hvKp clonal group 23 [28], and can contribute to *K. pneumoniae* hypervirulence [146]. Regulation of colibactin production in *K. pneumoniae* has not been studied specifically. In *E. coli*, colibactin expression is controlled by a local transcriptional regulator, ClbR [147], and is also regulated in response to iron availability through the activity of Fur and RhyB [148,149]. The ClbR regulator is also present in *K. pneumoniae* [145].

Type VI secretion system

The type VI secretion system (T6SS) is a bacterial nanomachine that translocates effector substrates into host cells [150]. In *K. pneumoniae*, T6SS contributes to attachment to host cells and plays a role in competition with other microbes, particularly in the highly competitive environment of the gut [112,151,152]. There is significant variability in T6SS amongst *K. pneumoniae* strains, with strains carrying between 0 and 4 T6SS gene clusters, as well as 'orphan' T6SS genes that lie outside these clusters – this underscores the importance of coordinated regulation of multiple loci [150,153]. T6SS are associated with hvKp [154,155] and have been investigated as a biomarker for progression from colonization to blood-stream infection [155]. Regulation of *K. pneumoniae* T6SS has been studied in Kp52145 [111] and KPPR1 [112]. The first study investigated one of the T6SS loci present in Kp52145 in detail and found various environmental conditions that promoted its expression including low oxygen, high ionic strength, iron starvation and 37 °C temperature; the two other T6SS of this strain did not share all of these transcriptional responses. T6SS expression was positively regulated by the RNA chaperone Hfq, the two-component systems PhoPQ and PmrAB, and the RpoS and RpoN sigma factors, and negatively regulated by H-NS, MgrB, Fur, and RcsB (Table 1). This study did not determine which regulators acted directly or indirectly, PhoPQ was demonstrated to act downstream of MgrB and RcsB and to activate T6SS expression in response to antimicrobial peptides [111]. A second study, of KPPR1, investigated the regulators ArgR, FNR, and Fur [112]. Each of these regulators was shown to control T6SS transcription in response to environmental signals relevant to the gut; ArgR mediated induction by arginine, FNR was required for induction in response to low oxygen, and Fur mediated T6SS induction in low-iron conditions, and in each case direct transcription factor-promoter binding was shown [112]. Presumably, the response to several individual cues ensures robust upregulation of T6SS transcription in the gastrointestinal tract.

Plasmid–chromosome cross talk in *K. pneumoniae* regulation

K. pneumoniae is notable for its acquisition and carriage of plasmids, and these elements can be strongly embedded into cellular regulatory networks. Some *K. pneumoniae* plasmids, particularly the hypervirulence plasmids [11,19], have a very long history of association in specific lineages, while others are recently acquired and have had less time for host adaptation [156]. Plasmids can influence cellular regulation by providing regulators directly, or through general downstream effects of their encoded gene functions or the metabolic cost of their carriage. The impact of plasmids on regulation is best illustrated by hvKp. Various horizontally-acquired factors, including the regulators RmpA and RmpA2, siderophores aerobactin, yersiniabactin and salmochelin, and metabolic transporter *peg-344*, contribute to the hvKp pathotype to different extents, with RmpA, followed by aerobactin, having the strongest individual effect [124]. With the exception of yersiniabactin, all of these hypervirulence-associated factors are encoded on the canonical hypervirulence plasmid, pLVPK (Fig 2) [11], though note that RmpA/RmpA2 can also be located on integrative conjugative elements [16].

Plasmid pLVPK is highly integrated into the regulatory network of major hvKp lineages through the plasmid-encoded regulators discussed above with reference to capsule and fimbriae; RmpA controls both capsule biosynthesis (via the chromosomal capsule biosynthesis genes) and hypermucoidy (through the operonic *rmpD* gene) [53,157], while IroP suppresses transcription of Type 3 fimbriae genes in iron-poor conditions [87] (Fig 2). These regulators provide a striking example of how mobile genetic elements can confer clinically important phenotypes through regulation, rather than provision of virulence factors *per se*.

Questions of chromosome–plasmid cross talk are particularly relevant to convergent *Klebsiella pneumoniae* – those strains possessing genes for both hypervirulence and resistance to last-line antibiotics. Convergent *K. pneumoniae* strains can be hypervirulent lineages that have acquired drug resistance [158], or drug-resistant lineages with acquired virulence genes [159], and have been widely identified. Many convergent isolates have lower virulence than expected given their complement of virulence factors [160–163], suggesting there is some important lineage-specific activity or regulation that limits the amount or effect of these factors during infection. A few studies have examined this phenomenon in detail in specific strains and lineages.

In a large collection of *K. pneumoniae* ST11 (an MDR lineage), many isolates contained plasmids derived from the hypervirulence plasmid pK2044, though the virulence of these isolates was variable [162]. Further investigations found that the plasmid had a deletion of three complete genes of unknown function (named *hp2*, *hp3*, and *hp4*), and this deletion resulted in increased oxidative stress resistance through upregulation of several chromosomal genes, which in turn led to increased proliferation in macrophages [164]. hvKp strains are typically poorly internalized by macrophages due to their capsule size, so this finding may reflect an adaptation of an hvKp plasmid to suit the pathogenesis mechanisms of a different lineage.

The effects of some MDR plasmids have also been assessed. One study showed that in a hvKp strain, laboratory acquisition of a carbapenemase containing MDR plasmid resulted in reduced capsule, hypermucoidy and serum resistance *in vitro*, and elicited large transcriptional changes that may reflect a fitness cost [165]. Another found that acquisition of large AMR plasmids in two cKp representatives resulted in transcriptional changes to counter fitness costs, rather than mutations [166]. Finally, the epistatic interactions of the widespread carbapenem resistance plasmid, pOXA-48, have been examined in depth across various Enterobacteriaceae including *K. pneumoniae* [167–169]. Carriage of this plasmid is usually fitness-neutral [168], and interestingly, transcriptional changes associated with plasmid carriage are variable and not directly associated with fitness cost [169]. In *K. pneumoniae* specifically, a pOXA-48-encoded regulator was shown to induce expression of a small chromosomal operon and result in increased fitness, though the precise role of the regulated operon during infection is not known [169].

Overall, studies so far demonstrate that plasmid–chromosome regulatory interactions are frequent and have important effects, but are very difficult to predict even with well-characterized plasmids. This highlights the need for studies of regulatory networks in a diverse collection of strains, as well as functional assessments of plasmid encoded transcription regulators.

New methods for untangling regulatory networks

Single gene molecular approaches, usually examining the effect of genetic deletion of a regulator-encoding gene combined with experiments showing direct regulator-target interactions, are the gold standard for understanding regulation. Genome-scale approaches to examine gene expression (RNAseq) and transcription factor binding (chromatin immunoprecipitation coupled sequencing or ChIP-seq) have been applied effectively to understand the targets of specific regulators, and advanced transcriptomics methods also offer the opportunity to profile operon structure at high resolution [170], including unusual configurations such as non-contiguous operons [171]. These approaches cannot scale sufficiently to reveal how regulatory networks operate across the phylogenetic diversity of *K. pneumoniae*. In general, approaches to define the activity and targets of a specific regulator are more developed than “target first” approaches to agnostically identify what controls a gene of interest. However, there have been promising advances in regulator screening methods that may accelerate this discovery in future. Here we will briefly discuss advances in this area with reference to methods aimed at identifying transcriptional regulators.

Transposon insertion sequencing is a well-established method for massively parallel mutagenesis and fitness assessment of bacteria, and has been used to identify regulators by selecting based on a phenotypic readout rather than growth. This technique has been applied to *K. pneumoniae* capsule [64] as well as phenotypes such as motility or dye efflux in other bacteria [172]. Transposon directed insertion-site sequencing (TraDIS) can be expanded to define regulators of phenotypes that cannot be directly selected by using transcriptional reporter activity, while an approach known as SorTnSeq was originally applied to *Serratia* [173]. CRISPR knockdown-based screening methods operate on similar principles but offer advantages in the ability to examine essential gene activities and to assay multiple reporters simultaneously. In one elegant design deployed in *E. coli* named PPTP-seq (pooled promoter responses to TF perturbation sequencing), CRISPRi guided RNAs to knock down various transcription factors were paired with transcriptional reporter fusions on the same plasmid, allowing regulator suppression to be linked to expression changes for a library of promoters at a global scale

[174]. This method was used to identify new regulatory circuits in *E. coli* and recapitulated the bulk of known interactions. A limitation of SorTnSeq, PPTP-Seq and related methods is that they cannot show if a regulator effect is elicited by direct or indirect promoter binding. Other methods incorporate cross-linking and mass spectrometry (with or without parallel reporter assays) to assign transcription factor-promoter interactions *en masse* [175,176]. Finally, building on dramatic advances in protein fold prediction, *in silico* methods to predict protein–protein or protein–DNA binding have been developed (e.g., [177–179]) and may prove highly valuable for accelerating or streamlining identification of regulator interactions in *K. pneumoniae*, and predicting how these operate in diverse strains.

In addition to methods aimed at defining regulatory proteins, there have also been dramatic advances in global methods to identify small regulatory RNAs and their targets, such as the RIL-seq and CLASH (both based on sequencing of ligated sRNA-target molecules) techniques used to identify the capsule or hypermucoidy-regulating sRNAs described above [92,93]. An additional RIL-seq study found a *K. pneumoniae*-specific small RNA regulator of cell division [180], further highlighting that extrapolation from other *Enterobacteriaceae* is not sufficient to understand behavior control in this pathogen.

The availability of genuinely high-throughput methods to profile regulation networks in terms of both expression and transcription factor binding is an exciting development likely to reveal new aspects of *K. pneumoniae* biology in coming years. However, challenges remain in applying these methods. Functional genomic approaches are rarely one-size-fits-all so it is difficult for researchers to integrate and interpret findings across studies, with significant further experimentation needed to define which interactions are biologically important.

Concluding remarks

K. pneumoniae is a complex bacterium notable for its genomic and phenotypic flexibility. These properties underscore the devastating impact of *K. pneumoniae* as a pathogen. As our understanding of *K. pneumoniae* genomics, epidemiology and molecular pathogenesis comes of age, our understanding of regulation has also increased. Regulation of virulence factors in *K. pneumoniae* is now known to involve multiple conserved regulators working in concert with horizontally-acquired factors that can dramatically influence pathogenesis. Regulators with conserved activity can have strain-specific impacts, as illustrated by the unpredictable virulence of convergent *K. pneumoniae* strains. Analyzing the similarities and differences in the regulation of virulence factors can provide hints as to their roles and interactions during infection, as illustrated by the reciprocal regulation of capsule and fimbriae production. Untangling the regulatory networks that control *K. pneumoniae* pathogenesis, as well as how these operate across diverse strain backgrounds, represents a major research challenge that will greatly help with efforts to predict *K. pneumoniae* phenotype from genotype in future.

Acknowledgments

We thank members of the Short and Peleg lab for helpful discussions, and Dr Jackie Cheung and Dr James Connolly for their critical review of the manuscript.

References

1. WHO Bacterial Priority Pathogens List 2024: Bacterial Pathogens of Public Health Importance, to Guide Research, Development, and Strategies to Prevent and Control Antimicrobial Resistance. 1st ed. Geneva: World Health Organization. 2024.
2. Naghavi M, Mestrovic T, Gray A, Gershberg HA, Swetschinski LR, Robles AG, et al. Global burden associated with 85 pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Infect Dis. 2024;24(8):868–95. [https://doi.org/10.1016/S1473-3099\(24\)00158-0](https://doi.org/10.1016/S1473-3099(24)00158-0) PMID: 38640940
3. Bagley ST. Habitat association of *Klebsiella* species. Infect Control. 1985;6(2):52–8. <https://doi.org/10.1017/s0195941700062603> PMID: 3882590
4. Wyres KL, Holt KE. *Klebsiella pneumoniae* as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol. 2018;45:131–9. <https://doi.org/10.1016/j.mib.2018.04.004> PMID: 29723841

5. Paczosa MK, Mecsas J. *Klebsiella pneumoniae*: going on the offense with a strong defense. *Microbiol Mol Biol Rev*. 2016;80(3):629–61. <https://doi.org/10.1128/MMBR.00078-15> PMID: 27307579
6. Ahmadi M, Ranjbar R, Behzadi P, Mohammadian T. Virulence factors, antibiotic resistance patterns, and molecular types of clinical isolates of *Klebsiella pneumoniae*. *Expert Rev Anti Infect Ther*. 2022;20(3):463–72. <https://doi.org/10.1080/14787210.2022.1990040> PMID: 34612762
7. Zhu J, Wang T, Chen L, Du H. Virulence factors in hypervirulent *Klebsiella pneumoniae*. *Front Microbiol*. 2021;12:642484. <https://doi.org/10.3389/fmicb.2021.642484> PMID: 33897652
8. Wang G, Zhao G, Chao X, Xie L, Wang H. The characteristic of virulence, biofilm and antibiotic resistance of *Klebsiella pneumoniae*. *Int J Environ Res Public Health*. 2020;17(17):6278. <https://doi.org/10.3390/ijerph17176278> PMID: 32872324
9. Bengoechea JA, Sa Pessoa J. *Klebsiella pneumoniae* infection biology: living to counteract host defences. *FEMS Microbiol Rev*. 2019;43(2):123–44. <https://doi.org/10.1093/femsre/fuy043> PMID: 30452654
10. Martin RM, Bachman MA. Colonization, infection, and the accessory genome of *Klebsiella pneumoniae*. *Front Cell Infect Microbiol*. 2018;8:4. <https://doi.org/10.3389/fcimb.2018.00004> PMID: 29404282
11. Chen Y-T, Chang H-Y, Lai Y-C, Pan C-C, Tsai S-F, Peng H-L. Sequencing and analysis of the large virulence plasmid pLVPK of *Klebsiella pneumoniae* CG43. *Gene*. 2004;337:189–98. <https://doi.org/10.1016/j.gene.2004.05.008> PMID: 15276215
12. Russo TA, Olson R, Fang C-T, Stoesser N, Miller M, MacDonald U, et al. Identification of biomarkers for differentiation of hypervirulent *Klebsiella pneumoniae* from classical *K. pneumoniae*. *J Clin Microbiol*. 2018;56(9):e00776-18. <https://doi.org/10.1128/JCM.00776-18> PMID: 29925642
13. Russo TA, Marr CM. Hypervirulent *Klebsiella pneumoniae*. *Clin Microbiol Rev*. 2019;32(3):e00001-19. <https://doi.org/10.1128/CMR.00001-19> PMID: 31092506
14. Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM, Jenney AWJ, et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in *Klebsiella pneumoniae* populations. *Microb Genom*. 2018;4(9):e000196. <https://doi.org/10.1099/mgen.0.000196> PMID: 29985125
15. Lam MMC, Wyres KL, Judd LM, Wick RR, Jenney A, Brisse S, et al. Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in *Klebsiella pneumoniae*. *Genome Med*. 2018;10(1):77. <https://doi.org/10.1186/s13073-018-0587-5> PMID: 30371343
16. Lam MMC, Salisbury SM, Treat LP, Wick RR, Judd LM, Wyres KL, et al. Genomic and functional analysis of rmp locus variants in *Klebsiella pneumoniae*. *Genome Med*. 2025;17(1):36. <https://doi.org/10.1186/s13073-025-01461-5> PMID: 40205597
17. Zhao J, Liu C, Liu Y, Zhang Y, Xiong Z, Fan Y, et al. Genomic characteristics of clinically important ST11 *Klebsiella pneumoniae* strains worldwide. *J Glob Antimicrob Resist*. 2020;22:519–26. <https://doi.org/10.1016/j.jgar.2020.03.023> PMID: 32278068
18. Kopotsa K, Mbelle NM, Osei Sekyere J. Epigenomics, genomics, resistome, mobilome, virulome and evolutionary phylogenomics of carbapenem-resistant *Klebsiella pneumoniae* clinical strains. *Microb Genom*. 2020;6(12):mgen000474. <https://doi.org/10.1099/mgen.0.000474> PMID: 33170117
19. Wyres KL, Lam MMC, Holt KE. Population genomics of *Klebsiella pneumoniae*. *Nat Rev Microbiol*. 2020;18(6):344–59. <https://doi.org/10.1038/s41579-019-0315-1> PMID: 32055025
20. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in *Klebsiella pneumoniae*, an urgent threat to public health. *Proc Natl Acad Sci U S A*. 2015;112(27):E3574–81. <https://doi.org/10.1073/pnas.1501049112> PMID: 26100894
21. Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L, Delannoy-Vieillard A-S, et al. Genomic definition of hypervirulent and multidrug-resistant *Klebsiella pneumoniae* clonal groups. *Emerg Infect Dis*. 2014;20(11):1812–20. <https://doi.org/10.3201/eid2011.140206> PMID: 25341126
22. Broberg CA, Wu W, Cavalcoli JD, Miller VL, Bachman MA. Complete genome sequence of *Klebsiella pneumoniae* strain ATCC 43816 KPPR1, a rifampin-resistant mutant commonly used in animal, genetic, and molecular biology studies. *Genome Announc*. 2014;2(5):e00924-14. <https://doi.org/10.1128/genomeA.00924-14> PMID: 25291761
23. Nassif X, Fournier JM, Arondel J, Sansonetti PJ. Mucoid phenotype of *Klebsiella pneumoniae* is a plasmid-encoded virulence factor. *Infect Immun*. 1989;57(2):546–52. <https://doi.org/10.1128/iai.57.2.546-552.1989> PMID: 2643575
24. Nassif X, Sansonetti PJ. Correlation of the virulence of *Klebsiella pneumoniae* K1 and K2 with the presence of a plasmid encoding aerobactin. *Infect Immun*. 1986;54(3):603–8. <https://doi.org/10.1128/iai.54.3.603-608.1986> PMID: 2946641
25. Tomás JM, Benedí VJ, Ciurana B, Jofre J. Role of capsule and O antigen in resistance of *Klebsiella pneumoniae* to serum bactericidal activity. *Infect Immun*. 1986;54(1):85–9. <https://doi.org/10.1128/iai.54.1.85-89.1986> PMID: 3531020
26. Lawlor MS, O'connor C, Miller VL. Yersiniabactin is a virulence factor for *Klebsiella pneumoniae* during pulmonary infection. *Infect Immun*. 2007;75(3):1463–72. <https://doi.org/10.1128/IAI.00372-06> PMID: 17220312
27. Wu K-M, Li L-H, Yan J-J, Tsao N, Liao T-L, Tsai H-C, et al. Genome sequencing and comparative analysis of *Klebsiella pneumoniae* NTUH-K2044, a strain causing liver abscess and meningitis. *J Bacteriol*. 2009;191(14):4492–501. <https://doi.org/10.1128/JB.00315-09> PMID: 19447910
28. Lam MMC, Wyres KL, Duchêne S, Wick RR, Judd LM, Gan Y-H, et al. Population genomics of hypervirulent *Klebsiella pneumoniae* clonal-group 23 reveals early emergence and rapid global dissemination. *Nat Commun*. 2018;9(1):2703. <https://doi.org/10.1038/s41467-018-05114-7> PMID: 30006589

29. Dao TT, Liebenthal D, Tran TK, Ngoc Thi Vu B, Ngoc Thi Nguyen D, Thi Tran HK, et al. *Klebsiella pneumoniae* oropharyngeal carriage in rural and urban Vietnam and the effect of alcohol consumption. *PLoS One*. 2014;9(3):e91999. <https://doi.org/10.1371/journal.pone.0091999> PMID: 24667800
30. Wong Fok Lung T, Charytonowicz D, Beaumont KG, Shah SS, Sridhar SH, Gorrie CL, et al. *Klebsiella pneumoniae* induces host metabolic stress that promotes tolerance to pulmonary infection. *Cell Metab*. 2022;34(5):761-774.e9. <https://doi.org/10.1016/j.cmet.2022.03.009> PMID: 35413274
31. Ben-David D, Kordevani R, Keller N, Tal I, Marzel A, Gal-Mor O, et al. Outcome of carbapenem resistant *Klebsiella pneumoniae* bloodstream infections. *Clin Microbiol Infect*. 2012;18(1):54–60. <https://doi.org/10.1111/j.1469-0691.2011.03478.x> PMID: 21722257
32. Gorrie CL, Mirceta M, Wick RR, Edwards DJ, Thomson NR, Strugnell RA, et al. Gastrointestinal carriage is a major reservoir of *Klebsiella pneumoniae* infection in intensive care patients. *Clin Infect Dis*. 2017;65(2):208–15. <https://doi.org/10.1093/cid/cix270> PMID: 28369261
33. Rao K, Patel A, Sun Y, Vornhagen J, Motyka J, Collingwood A, et al. Risk factors for *Klebsiella* infections among hospitalized patients with preexisting colonization. *mSphere*. 2021;6(3):e0013221. <https://doi.org/10.1128/mSphere.00132-21> PMID: 34160237
34. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. *Nat Rev Immunol*. 2013;13(11):790–801. <https://doi.org/10.1038/nri3535> PMID: 24096337
35. Doorduijn DJ, Rooijakkers SHM, van Schaik W, Bardoel BW. Complement resistance mechanisms of *Klebsiella pneumoniae*. *Immunobiology*. 2016;221(10):1102–9. <https://doi.org/10.1016/j.imbio.2016.06.014> PMID: 27364766
36. Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. *FEMS Microbiol Rev*. 2019;43(3):304–39. <https://doi.org/10.1093/femsre/fuz001> PMID: 30721976
37. Paget MS. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. *Biomolecules*. 2015;5(3):1245–65. <https://doi.org/10.3390/biom5031245> PMID: 26131973
38. Browning DF, Busby SJW. Local and global regulation of transcription initiation in bacteria. *Nat Rev Microbiol*. 2016;14(10):638–50. <https://doi.org/10.1038/nrmicro.2016.103> PMID: 27498839
39. Lee DJ, Minchin SD, Busby SJW. Activating transcription in bacteria. *Annu Rev Microbiol*. 2012;66:125–52. <https://doi.org/10.1146/annurev-micro-092611-150012> PMID: 22726217
40. Li L, Ma J, Cheng P, Li M, Yu Z, Song X, et al. Roles of two-component regulatory systems in *Klebsiella pneumoniae*: regulation of virulence, antibiotic resistance, and stress responses. *Microbiol Res*. 2023;272:127374. <https://doi.org/10.1016/j.micres.2023.127374> PMID: 37031567
41. Barnard A, Wolfe A, Busby S. Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. *Curr Opin Microbiol*. 2004;7(2):102–8. <https://doi.org/10.1016/j.mib.2004.02.011> PMID: 15063844
42. Dillon SC, Dorman CJ. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. *Nat Rev Microbiol*. 2010;8(3):185–95. <https://doi.org/10.1038/nrmicro2261> PMID: 20140026
43. Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. *Mol Cell*. 2011;43(6):880–91. <https://doi.org/10.1016/j.molcel.2011.08.022> PMID: 21925377
44. Fang X, Sastry A, Mih N, Kim D, Tan J, Yurkovich JT, et al. Global transcriptional regulatory network for *Escherichia coli* robustly connects gene expression to transcription factor activities. *Proc Natl Acad Sci U S A*. 2017;114(38):10286–91. <https://doi.org/10.1073/pnas.1702581114> PMID: 28874552
45. Barreto LAF, Van P-KT, Fowler CC. Conserved patterns of sequence diversification provide insight into the evolution of two-component systems in *Enterobacteriaceae*. *Microb Genom*. 2024;10(3):e001215. <https://doi.org/10.1099/mgen.0.001215> PMID: 38502064
46. Tierrafría VH, Rioualen C, Salgado H, Lara P, Gama-Castro S, Lally P, et al. RegulonDB 11.0: comprehensive high-throughput datasets on transcriptional regulation in *Escherichia coli* K-12. *Microb Genom*. 2022;8(5):mgen000833. <https://doi.org/10.1099/mgen.0.000833> PMID: 35584008
47. Quinn HJ, Cameron ADS, Dorman CJ. Bacterial regulon evolution: distinct responses and roles for the identical OmpR proteins of *Salmonella typhimurium* and *Escherichia coli* in the acid stress response. *PLoS Genet*. 2014;10(3):e1004215. <https://doi.org/10.1371/journal.pgen.1004215> PMID: 24603618
48. Connolly JPR, O'Boyle N, Roe AJ. Widespread strain-specific distinctions in chromosomal binding dynamics of a highly conserved *Escherichia coli* transcription factor. *mBio*. 2020;11(3):e01058-20. <https://doi.org/10.1128/mBio.01058-20> PMID: 32576674
49. Yuan Y, Seif Y, Rychel K, Yoo R, Chauhan S, Poudel S, et al. Pan-genome analysis of transcriptional regulation in six *Salmonella enterica* serovar Typhimurium strains reveals their different regulatory structures. *mSystems*. 2022;7(6):e0046722. <https://doi.org/10.1128/msystems.00467-22> PMID: 36317888
50. Sastry AV, Gao Y, Szubin R, Hefner Y, Xu S, Kim D, et al. The *Escherichia coli* transcriptome mostly consists of independently regulated modules. *Nat Commun*. 2019;10(1):5536. <https://doi.org/10.1038/s41467-019-13483-w> PMID: 31797920
51. Monk JM, Koza A, Campodonico MA, Machado D, Seoane JM, Palsson BO, et al. Multi-omics quantification of species variation of *Escherichia coli* links molecular features with strain phenotypes. *Cell Syst*. 2016;3(3):238–251.e12. <https://doi.org/10.1016/j.cels.2016.08.013> PMID: 27667363
52. Whitfield C. Biosynthesis and assembly of capsular polysaccharides in *Escherichia coli*. *Annu Rev Biochem*. 2006;75:39–68. <https://doi.org/10.1146/annurev.biochem.75.103004.142545> PMID: 16756484
53. Walker KA, Treat LP, Sepúlveda VE, Miller VL. The small protein RmpD drives hypermucoviscosity in *Klebsiella pneumoniae*. *mBio*. 2020;11(5):e01750-20. <https://doi.org/10.1128/mBio.01750-20> PMID: 32963003

54. Lam MMC, Wick RR, Judd LM, Holt KE, Wyres KL. Kaptive 2.0: updated capsule and lipopolysaccharide locus typing for the *Klebsiella pneumoniae* species complex. *Microb Genom*. 2022;8(3):000800. <https://doi.org/10.1099/mgen.0.000800> PMID: 35311639
55. Pan Y-J, Lin T-L, Chen C-T, Chen Y-Y, Hsieh P-F, Hsu C-R, et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of *Klebsiella* spp. *Sci Rep*. 2015;5:15573. <https://doi.org/10.1038/srep15573> PMID: 26493302
56. Yu W-L, Ko W-C, Cheng K-C, Lee C-C, Lai C-C, Chuang Y-C. Comparison of prevalence of virulence factors for *Klebsiella pneumoniae* liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. *Diagn Microbiol Infect Dis*. 2008;62(1):1–6. <https://doi.org/10.1016/j.diagmicrobio.2008.04.007> PMID: 18486404
57. Schembri MA, Blom J, Krogfelt KA, Klemm P. Capsule and fimbria interaction in *Klebsiella pneumoniae*. *Infect Immun*. 2005;73(8):4626–33. <https://doi.org/10.1128/IAI.73.8.4626-4633.2005> PMID: 16040975
58. Buffet A, Rocha EPC, Rendueles O. Nutrient conditions are primary drivers of bacterial capsule maintenance in *Klebsiella*. *Proc Biol Sci*. 2021;288(1946):20202876. <https://doi.org/10.1098/rspb.2020.2876> PMID: 33653142
59. Sahly H, Keisari Y, Crouch E, Sharon N, Ofek I. Recognition of bacterial surface polysaccharides by lectins of the innate immune system and its contribution to defense against infection: the case of pulmonary pathogens. *Infect Immun*. 2008;76(4):1322–32. <https://doi.org/10.1128/IAI.00910-07> PMID: 18086817
60. Bain W, Ahn B, Peñaloza HF, McElheny CL, Tolman N, van der Geest R, et al. In vivo evolution of a *Klebsiella pneumoniae* capsule defect with wcaJ mutation promotes complement-mediated opsonophagocytosis during recurrent infection. *J Infect Dis*. 2024;230(1):209–20. <https://doi.org/10.1093/infdis/jiae003> PMID: 39052750
61. Ernst CM, Braxton JR, Rodriguez-Osorio CA, Zagleboyo AP, Li L, Pironti A, et al. Adaptive evolution of virulence and persistence in carbapenem-resistant *Klebsiella pneumoniae*. *Nat Med*. 2020;26(5):705–11. <https://doi.org/10.1038/s41591-020-0825-4> PMID: 32284589
62. Song S, Yang S, Zheng R, Yin D, Cao Y, Wang Y, et al. Adaptive evolution of carbapenem-resistant hypervirulent *Klebsiella pneumoniae* in the urinary tract of a single patient. *Proc Natl Acad Sci U S A*. 2024;121(35):e2400446121. <https://doi.org/10.1073/pnas.2400446121> PMID: 39150777
63. Unverdorben LV, Pirani A, Gontjes K, Moricz B, Holmes CL, Snitkin ES, et al. *Klebsiella pneumoniae* evolution in the gut leads to spontaneous capsule loss and decreased virulence potential. *mBio*. 2025;16(5):e0236224. <https://doi.org/10.1128/mbio.02362-24> PMID: 40162782
64. Dorman MJ, Feltwell T, Goulding DA, Parkhill J, Short FL. The capsule regulatory network of *Klebsiella pneumoniae* defined by density-TraDISort. *mBio*. 2018;9(6):e01863-18. <https://doi.org/10.1128/mBio.01863-18> PMID: 30459193
65. Mike LA, Stark AJ, Forsyth VS, Vornhagen J, Smith SN, Bachman MA, et al. A systematic analysis of hypermucoviscosity and capsule reveals distinct and overlapping genes that impact *Klebsiella pneumoniae* fitness. *PLoS Pathog*. 2021;17(3):e1009376. <https://doi.org/10.1371/journal.ppat.1009376> PMID: 33720976
66. Wall E, Majdalani N, Gottesman S. The complex Rcs regulatory cascade. *Annu Rev Microbiol*. 2018;72:111–39. <https://doi.org/10.1146/annurev-micro-090817-062640> PMID: 29897834
67. Wacharotayankun R, Arakawa Y, Ohta M, Hasegawa T, Mori M, Horii T, et al. Involvement of rcsB in *Klebsiella* K2 capsule synthesis in *Escherichia coli* K-12. *J Bacteriol*. 1992;174(3):1063–7. <https://doi.org/10.1128/jb.174.3.1063-1067.1992> PMID: 1732199
68. McCallum KL, Whitfield C. The rcsA gene of *Klebsiella pneumoniae* O1:K20 is involved in expression of the serotype-specific K (capsular) antigen. *Infect Immun*. 1991;59(2):494–502. <https://doi.org/10.1128/iai.59.2.494-502.1991> PMID: 1987069
69. Peng D, Li X, Liu P, Zhou X, Luo M, Su K, et al. Transcriptional regulation of galF by RcsAB affects capsular polysaccharide formation in *Klebsiella pneumoniae* NTUH-K2044. *Microbiol Res*. 2018;216:70–8. <https://doi.org/10.1016/j.micres.2018.08.010> PMID: 30269858
70. Lin C-T, Chen Y-C, Jinn T-R, Wu C-C, Hong Y-M, Wu W-H. Role of the cAMP-dependent carbon catabolite repression in capsular polysaccharide biosynthesis in *Klebsiella pneumoniae*. *PLoS One*. 2013;8(2):e54430. <https://doi.org/10.1371/journal.pone.0054430> PMID: 23408939
71. Huang S-H, Wang C-K, Peng H-L, Wu C-C, Chen Y-T, Hong Y-M, et al. Role of the small RNA RyhB in the Fur regulon in mediating the capsular polysaccharide biosynthesis and iron acquisition systems in *Klebsiella pneumoniae*. *BMC Microbiol*. 2012;12:148. <https://doi.org/10.1186/1471-2200-12-148> PMID: 22827802
72. Lin C-T, Wu C-C, Chen Y-S, Lai Y-C, Chi C, Lin J-C, et al. Fur regulation of the capsular polysaccharide biosynthesis and iron-acquisition systems in *Klebsiella pneumoniae* CG43. *Microbiology (Reading)*. 2011;157(Pt 2):419–29. <https://doi.org/10.1099/mic.0.044065-0> PMID: 21071493
73. Wu C-C, Wang C-K, Chen Y-C, Lin T-H, Jinn T-R, Lin C-T. IscR regulation of capsular polysaccharide biosynthesis and iron-acquisition systems in *Klebsiella pneumoniae* CG43. *PLoS One*. 2014;9(9):e107812. <https://doi.org/10.1371/journal.pone.0107812> PMID: 25237815
74. Ares MA, Fernández-Vázquez JL, Rosales-Reyes R, Jarillo-Quijada MD, von Bargen K, Torres J, et al. H-NS nucleoid protein controls virulence features of *Klebsiella pneumoniae* by regulating the expression of type 3 pili and the capsule polysaccharide. *Front Cell Infect Microbiol*. 2016;6:13. <https://doi.org/10.3389/fcimb.2016.00013> PMID: 26904512
75. Corbett D, Bennett HJ, Askar H, Green J, Roberts IS. SlyA and H-NS regulate transcription of the *Escherichia coli* K5 capsule gene cluster, and expression of slyA in *Escherichia coli* is temperature-dependent, positively autoregulated, and independent of H-NS. *J Biol Chem*. 2007;282(46):33326–35. <https://doi.org/10.1074/jbc.M703465200> PMID: 17827501
76. Palacios M, Miner TA, Frederick DR, Sepulveda VE, Quinn JD, Walker KA, et al. Identification of two regulators of virulence that are conserved in *Klebsiella pneumoniae* classical and hypervirulent strains. *mBio*. 2018;9(4):e01443-18. <https://doi.org/10.1128/mBio.01443-18> PMID: 30087173

77. Cheng HY, Chen YS, Wu CY, Chang HY, Lai YC, Peng HL. RmpA regulation of capsular polysaccharide biosynthesis in *Klebsiella pneumoniae* CG43. *J Bacteriol*. 2010;192(12):3144–58. <https://doi.org/10.1128/JB.00031-10> PMID: 20382770
78. Lai Y-C, Peng H-L, Chang H-Y. RmpA2, an activator of capsule biosynthesis in *Klebsiella pneumoniae* CG43, regulates K2 cps gene expression at the transcriptional level. *J Bacteriol*. 2003;185(3):788–800. <https://doi.org/10.1128/JB.185.3.788-800.2003> PMID: 12533454
79. Walker KA, Miner TA, Palacios M, Trzilova D, Frederick DR, Broberg CA, et al. A *Klebsiella pneumoniae* regulatory mutant has reduced capsule expression but retains hypermucoviscosity. *mBio*. 2019;10(2):e00089-19. <https://doi.org/10.1128/mBio.00089-19> PMID: 30914502
80. Ovchinnikova OG, Treat LP, Teelucksingh T, Clarke BR, Miner TA, Whitfield C, et al. Hypermucoviscosity regulator RmpD interacts with Wzc and controls capsular polysaccharide chain length. *mBio*. 2023;14(3):e0080023. <https://doi.org/10.1128/mBio.00800-23> PMID: 37140436
81. Khadka S, Ring BE, Walker RS, Krzeminski LR, Pariseau DA, Hathaway M, et al. Urine-mediated suppression of *Klebsiella pneumoniae* mucoidy is countered by spontaneous Wzc variants altering capsule chain length. *mSphere*. 2023;8(5):e0028823. <https://doi.org/10.1128/mSphere.00288-23> PMID: 37610214
82. Dai Y, Zhao Q, Yan H, Ye K, Wang L, Guo L, et al. Adaptive attenuation of virulence mediated by Wzc mutation in ST11-KL47 carbapenem-resistant *Klebsiella pneumonia*. *Front Cell Infect Microbiol*. 2025;15:1561631. <https://doi.org/10.3389/fcimb.2025.1561631> PMID: 40134783
83. Capitani V, Arcari G, Ambrosi C, Scribano D, Ceparano M, Polani R, et al. In vivo evolution to hypermucoviscosity and ceftazidime/avibactam resistance in a liver abscess caused by *Klebsiella pneumoniae* sequence type 512. *mSphere*. 2024;9(9):e0042324. <https://doi.org/10.1128/mSphere.00423-24> PMID: 39171923
84. Yang X, Liu X, Chan EW-C, Zhang R, Chen S. Functional characterization of plasmid-borne rmpADC homologues in *Klebsiella pneumoniae*. *Microbiol Spectr*. 2023;11(3):e0308122. <https://doi.org/10.1128/spectrum.03081-22> PMID: 37092989
85. Teng G, Zhang M, Fu Y, Yang X, Kang Y, Qin Q, et al. Adaptive attenuation of virulence in hypervirulent carbapenem-resistant *Klebsiella pneumoniae*. *mSystems*. 2024;9(6):e0136323. <https://doi.org/10.1128/msystems.01363-23> PMID: 38752758
86. Ryan BE, Holmes CL, Stark DJ, Shepard GE, Mills EG, Khadka S, et al. Arginine regulates the mucoid phenotype of hypervirulent *Klebsiella pneumoniae*. *Nat Commun*. 2025;16(1):5875. <https://doi.org/10.1038/s41467-025-61047-y> PMID: 40595687
87. Chu WHW, Tan YH, Tan SY, Chen Y, Yong M, Lye DC, et al. Acquisition of regulator on virulence plasmid of hypervirulent *Klebsiella* allows bacterial lifestyle switch in response to iron. *mBio*. 2023;14(4):e0129723. <https://doi.org/10.1128/mbio.01297-23> PMID: 37530523
88. Wang L, Huang X, Jin Q, Tang J, Zhang H, Zhang J-R, et al. Two-component response regulator OmpR regulates mucoviscosity through energy metabolism in *Klebsiella pneumoniae*. *Microbiol Spectr*. 2023;11(3):e0054423. <https://doi.org/10.1128/spectrum.00544-23> PMID: 37097167
89. Xu L, Wang M, Yuan J, Wang H, Li M, Zhang F, et al. The KbvR regulator contributes to capsule production, outer membrane protein biosynthesis, antiphagocytosis, and virulence in *Klebsiella pneumoniae*. *Infect Immun*. 2021;89(5):e00016-21. <https://doi.org/10.1128/IAI.00016-21> PMID: 33593891
90. Lin C-T, Huang T-Y, Liang W-C, Peng H-L. Homologous response regulators KvgA, KvhA and KvhR regulate the synthesis of capsular polysaccharide in *Klebsiella pneumoniae* CG43 in a coordinated manner. *J Biochem*. 2006;140(3):429–38. <https://doi.org/10.1093/jb/mvj168> PMID: 16877448
91. Qiu Y, Xiang L, Yin M, Fang C, Dai X, Zhang L, et al. RfaH contributes to maximal colonization and full virulence of hypervirulent *Klebsiella pneumoniae*. *Front Cell Infect Microbiol*. 2024;14:1454373. <https://doi.org/10.3389/fcimb.2024.1454373> PMID: 39364146
92. Wu K, Lin X, Lu Y, Dong R, Jiang H, Svensson SL, et al. RNA interactome of hypervirulent *Klebsiella pneumoniae* reveals a small RNA inhibitor of capsular mucoviscosity and virulence. *Nat Commun*. 2024;15(1):6946. <https://doi.org/10.1038/s41467-024-51213-z> PMID: 39138169
93. Goh KJ, Altuvia Y, Argaman L, Raz Y, Bar A, Lithgow T, et al. RIL-seq reveals extensive involvement of small RNAs in virulence and capsule regulation in hypervirulent *Klebsiella pneumoniae*. *Nucleic Acids Res*. 2024;52(15):9119–38. <https://doi.org/10.1093/nar/gkae440> PMID: 38804271
94. Ou Q, Fan J, Duan D, Xu L, Wang J, Zhou D, et al. Involvement of cAMP receptor protein in biofilm formation, fimbria production, capsular polysaccharide biosynthesis and lethality in mouse of *Klebsiella pneumoniae* serotype K1 causing pyogenic liver abscess. *J Med Microbiol*. 2017;66(1):1–7. <https://doi.org/10.1099/jmm.0.000391> PMID: 27902401
95. Hsu C-R, Lin T-L, Chen Y-C, Chou H-C, Wang J-T. The role of *Klebsiella pneumoniae* rmpA in capsular polysaccharide synthesis and virulence revisited. *Microbiology (Reading)*. 2011;157(Pt 12):3446–57. <https://doi.org/10.1099/mic.0.050336-0> PMID: 21964731
96. Wacharotayankun R, Arakawa Y, Ohta M, Tanaka K, Akashi T, Mori M, et al. Enhancement of extracapsular polysaccharide synthesis in *Klebsiella pneumoniae* by RmpA2, which shows homology to NtrC and FixJ. *Infect Immun*. 1993;61(8):3164–74. <https://doi.org/10.1128/iai.61.8.3164-3174.1993> PMID: 8335346
97. Jayol A, Nordmann P, Brink A, Poirel L. Heteroresistance to colistin in *Klebsiella pneumoniae* associated with alterations in the PhoPQ regulatory system. *Antimicrob Agents Chemother*. 2015;59(5):2780–4. <https://doi.org/10.1128/AAC.05055-14> PMID: 25733503
98. Cannatelli A, D'Andrea MM, Giani T, Di Pilato V, Arena F, Ambretti S, et al. In vivo emergence of colistin resistance in *Klebsiella pneumoniae* producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. *Antimicrob Agents Chemother*. 2013;57(11):5521–6. <https://doi.org/10.1128/AAC.01480-13> PMID: 23979739
99. Su K, Zhou X, Luo M, Xu X, Liu P, Li X, et al. Genome-wide identification of genes regulated by RcsA, RcsB, and RcsAB phosphorelay regulators in *Klebsiella pneumoniae* NTUH-K2044. *Microb Pathog*. 2018;123:36–41. <https://doi.org/10.1016/j.micpath.2018.06.036> PMID: 29944890

100. Cannatelli A, Di Pilato V, Giani T, Arena F, Ambretti S, Gaibani P, et al. In vivo evolution to colistin resistance by PmrB sensor kinase mutation in KPC-producing *Klebsiella pneumoniae* is associated with low-dosage colistin treatment. *Antimicrob Agents Chemother*. 2014;58(8):4399–403. <https://doi.org/10.1128/AAC.02555-14> PMID: 24841267
101. Cheng Y-H, Lin T-L, Lin Y-T, Wang J-T. Amino acid substitutions of CrrB responsible for resistance to colistin through CrrC in *Klebsiella pneumoniae*. *Antimicrob Agents Chemother*. 2016;60(6):3709–16. <https://doi.org/10.1128/AAC.00009-16> PMID: 27067316
102. De Majumdar S, Yu J, Fookes M, McAteer SP, Llobet E, Finn S, et al. Elucidation of the RamA regulon in *Klebsiella pneumoniae* reveals a role in LPS regulation. *PLoS Pathog*. 2015;11(1):e1004627. <https://doi.org/10.1371/journal.ppat.1004627> PMID: 25633080
103. Yu Q, Li H, Du L, Shen L, Zhang J, Yuan L, et al. Transcriptional regulation of the yersiniabactin receptor fyuA gene by the ferric uptake regulator in *Klebsiella pneumoniae* NTUH-K2044. *J Basic Microbiol*. 2024;64(8):e2400001. <https://doi.org/10.1002/jobm.202400001> PMID: 38679904
104. Yuan L, Li X, Du L, Su K, Zhang J, Liu P, et al. RcsAB and fur coregulate the Iron-acquisition system via entC in *Klebsiella pneumoniae* NTUH-K2044 in response to iron availability. *Front Cell Infect Microbiol*. 2020;10:282. <https://doi.org/10.3389/fcimb.2020.00282> PMID: 32587833
105. Rosen DA, Pinkner JS, Jones JM, Walker JN, Clegg S, Hultgren SJ. Utilization of an intracellular bacterial community pathway in *Klebsiella pneumoniae* urinary tract infection and the effects of FimK on type 1 pilus expression. *Infect Immun*. 2008;76(7):3337–45. <https://doi.org/10.1128/IAI.00090-08> PMID: 18411285
106. Wang Z-C, Huang C-J, Huang Y-J, Wu C-C, Peng H-L. FimK regulation on the expression of type 1 fimbriae in *Klebsiella pneumoniae* CG43S3. *Microbiology (Reading)*. 2013;159(Pt 7):1402–15. <https://doi.org/10.1099/mic.0.067793-0> PMID: 23704787
107. Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR, Cao H, et al. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls *Klebsiella pneumoniae* biofilm formation by regulating type 3 fimbriae expression. *PLoS Pathog*. 2011;7(8):e1002204. <https://doi.org/10.1371/journal.ppat.1002204> PMID: 21901098
108. Wu C-C, Lin C-T, Cheng W-Y, Huang C-J, Wang Z-C, Peng H-L. Fur-dependent MrkH1 regulation of type 3 fimbriae in *Klebsiella pneumoniae* CG43. *Microbiology (Reading)*. 2012;158(Pt 4):1045–56. <https://doi.org/10.1099/mic.0.053801-0> PMID: 22262101
109. Lin T-H, Tseng C-Y, Lai Y-C, Wu C-C, Huang C-F, Lin C-T. IscR regulation of type 3 fimbriae expression in *Klebsiella pneumoniae* CG43. *Front Microbiol*. 2017;8:1984. <https://doi.org/10.3389/fmicb.2017.01984> PMID: 29085346
110. Gomes AÉI, Pacheco T, Dos Santos C da S, Pereira JA, Ribeiro ML, Darrieux M, et al. Functional insights from KpfR, a new transcriptional regulator of fimbrial expression that is crucial for *Klebsiella pneumoniae* pathogenicity. *Front Microbiol*. 2021;11:601921. <https://doi.org/10.3389/fmicb.2020.601921> PMID: 33552015
111. Storey D, McNally A, Åstrand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, et al. *Klebsiella pneumoniae* type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. *PLoS Pathog*. 2020;16(3):e1007969. <https://doi.org/10.1371/journal.ppat.1007969> PMID: 32191774
112. Bray AS, Broberg CA, Hudson AW, Wu W, Nagpal RK, Islam M, et al. *Klebsiella pneumoniae* employs a type VI secretion system to overcome microbiota-mediated colonization resistance. *Nat Commun*. 2025;16(1):940. <https://doi.org/10.1038/s41467-025-56309-8> PMID: 39843522
113. Opoku-Temeng C, Kobayashi SD, DeLeo FR. *Klebsiella pneumoniae* capsule polysaccharide as a target for therapeutics and vaccines. *Comput Struct Biotechnol J*. 2019;17:1360–6. <https://doi.org/10.1016/j.csbj.2019.09.011> PMID: 31762959
114. Llobet E, Martínez-Moliner V, Moranta D, Dahlström KM, Regueiro V, Tomás A, et al. Deciphering tissue-induced *Klebsiella pneumoniae* lipid A structure. *Proc Natl Acad Sci U S A*. 2015;112(46):E6369–78. <https://doi.org/10.1073/pnas.1508820112> PMID: 26578797
115. Clements A, Tull D, Jenney AW, Farn JL, Kim S-H, Bishop RE, et al. Secondary acylation of *Klebsiella pneumoniae* lipopolysaccharide contributes to sensitivity to antibacterial peptides. *J Biol Chem*. 2007;282(21):15569–77. <https://doi.org/10.1074/jbc.M701454200> PMID: 17371870
116. Whitfield C. Biosynthesis of lipopolysaccharide O antigens. *Trends Microbiol*. 1995;3(5):178–85. [https://doi.org/10.1016/s0966-842x\(00\)88917-9](https://doi.org/10.1016/s0966-842x(00)88917-9) PMID: 7542987
117. Muner JJ, de Oliveira PAA, Baboglian J, Moura SC, de Andrade AG, de Oliveira MM, et al. The transcriptional regulator Fur modulates the expression of uge, a gene essential for the core lipopolysaccharide biosynthesis in *Klebsiella pneumoniae*. *BMC Microbiol*. 2024;24(1):279. <https://doi.org/10.1186/s12866-024-03418-x> PMID: 39061004
118. Klein G, Raina S. Regulated assembly of LPS, its structural alterations and cellular response to LPS defects. *Int J Mol Sci*. 2019;20(2):356. <https://doi.org/10.3390/ijms20020356> PMID: 30654491
119. Llobet E, Campos MA, Giménez P, Moranta D, Bengoechea JA. Analysis of the networks controlling the antimicrobial-peptide-dependent induction of *Klebsiella pneumoniae* virulence factors. *Infect Immun*. 2011;79(9):3718–32. <https://doi.org/10.1128/IAI.05226-11> PMID: 21708987
120. Schalk IJ. Bacterial siderophores: diversity, uptake pathways and applications. *Nat Rev Microbiol*. 2025;23(1):24–40. <https://doi.org/10.1038/s41579-024-01090-6> PMID: 39251840
121. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. *Mol Cell*. 2002;10(5):1033–43. [https://doi.org/10.1016/s1097-2765\(02\)00708-6](https://doi.org/10.1016/s1097-2765(02)00708-6) PMID: 12453412
122. Bachman MA, Oyler JE, Burns SH, Caza M, Lépine F, Dozois CM, et al. *Klebsiella pneumoniae* yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. *Infect Immun*. 2011;79(8):3309–16. <https://doi.org/10.1128/IAI.05114-11> PMID: 21576334

123. Lim C, Zhang C-Y, Cheam G, Chu WHW, Chen Y, Yong M, et al. Essentiality of the virulence plasmid-encoded factors in disease pathogenesis of the major lineage of hypervirulent *Klebsiella pneumoniae* varies in different infection niches. *EBioMedicine*. 2025;115:105683. <https://doi.org/10.1016/j.ebiom.2025.105683> PMID: 40184910
124. Russo TA, Carlino-MacDonald U, Drayer ZJ, Davies CJ, Alvarado CL, Hutson A, et al. Deciphering the relative importance of genetic elements in hypervirulent *Klebsiella pneumoniae* to guide countermeasure development. *EBioMedicine*. 2024;107:105302. <https://doi.org/10.1016/j.ebiom.2024.105302> PMID: 39178743
125. Russo TA, Olson R, MacDonald U, Beanan J, Davidson BA. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) *Klebsiella pneumoniae* ex vivo and in vivo. *Infect Immun*. 2015;83(8):3325–33. <https://doi.org/10.1128/IAI.00430-15> PMID: 26056379
126. Hsieh P-F, Lin T-L, Lee C-Z, Tsai S-F, Wang J-T. Serum-induced iron-acquisition systems and TonB contribute to virulence in *Klebsiella pneumoniae* causing primary pyogenic liver abscess. *J Infect Dis*. 2008;197(12):1717–27. <https://doi.org/10.1086/588383> PMID: 18433330
127. Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of *Klebsiella pneumoniae* during pneumonia. *mBio*. 2012;3(6):e00224-11. <https://doi.org/10.1128/mBio.00224-11> PMID: 23169997
128. Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ, Liu DR, et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. *Proc Natl Acad Sci U S A*. 2006;103(44):16502–7. <https://doi.org/10.1073/pnas.0604636103> PMID: 17060628
129. Bach S, de Almeida A, Carniel E. The *Yersinia* high-pathogenicity island is present in different members of the family *Enterobacteriaceae*. *FEMS Microbiol Lett*. 2000;183(2):289–94. <https://doi.org/10.1111/j.1574-6968.2000.tb08973.x> PMID: 10675599
130. Dai P, Hu D. The making of hypervirulent *Klebsiella pneumoniae*. *J Clin Lab Anal*. 2022;36(12):e24743. <https://doi.org/10.1002/jcla.24743> PMID: 36347819
131. Fetherston JD, Bearden SW, Perry RD. YbtA, an AraC-type regulator of the *Yersinia pestis* pesticin/yersiniabactin receptor. *Mol Microbiol*. 1996;22(2):315–25. <https://doi.org/10.1046/j.1365-2958.1996.00118.x> PMID: 8930916
132. Boulette ML, Payne SM. Anaerobic regulation of *Shigella flexneri* virulence: ArcA regulates Fur and iron acquisition genes. *J Bacteriol*. 2007;189(19):6957–67. <https://doi.org/10.1128/JB.00621-07> PMID: 17660284
133. Gerken H, Vuong P, Soparkar K, Misra R. Roles of the EnvZ/OmpR two-component system and porins in iron acquisition in *Escherichia coli*. *mBio*. 2020;11(3):e01192-20. <https://doi.org/10.1128/mBio.01192-20> PMID: 32576675
134. Di Martino P, Cafferini N, Joly B, Darfeuille-Michaud A. *Klebsiella pneumoniae* type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. *Res Microbiol*. 2003;154(1):9–16. [https://doi.org/10.1016/s0923-2508\(02\)00004-9](https://doi.org/10.1016/s0923-2508(02)00004-9) PMID: 12576153
135. Stahlhut SG, Struve C, Krogfelt KA, Reisner A. Biofilm formation of *Klebsiella pneumoniae* on urethral catheters requires either type 1 or type 3 fimbriae. *FEMS Immunol Med Microbiol*. 2012;65(2):350–9. <https://doi.org/10.1111/j.1574-695X.2012.00965.x> PMID: 22448614
136. Struve C, Bojer M, Krogfelt KA. Characterization of *Klebsiella pneumoniae* type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. *Infect Immun*. 2008;76(9):4055–65. <https://doi.org/10.1128/IAI.00494-08> PMID: 18559432
137. Struve C, Bojer M, Krogfelt KA. Identification of a conserved chromosomal region encoding *Klebsiella pneumoniae* type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. *Infect Immun*. 2009;77(11):5016–24. <https://doi.org/10.1128/IAI.00585-09> PMID: 19703972
138. Klemm P, Schembri M. Type 1 fimbriae, curli, and antigen 43: adhesion, colonization, and biofilm formation. *EcoSal Plus*. 2004;1(1):10.1128/ecosalplus.8.3.2.6. <https://doi.org/10.1128/ecosalplus.8.3.2.6> PMID: 26443347
139. Olsen PB, Schembri MA, Gally DL, Klemm P. Differential temperature modulation by H-NS of the fimBandfimErecombinase genes which control the orientation of the type 1 fimbrial phase switch. *FEMS Microbiol Lett*. 1998;162(1):17–23. <https://doi.org/10.1111/j.1574-6968.1998.tb12973.x>
140. Saldaña-Ahuactzi Z, Soria-Bustos J, Martínez-Santos VI, Yañez-Santos JA, Martínez-Laguna Y, Cedillo-Ramírez ML, et al. The Fis nucleoid protein negatively regulates the phase variation fimS switch of the type 1 pilus operon in enteropathogenic *Escherichia coli*. *Front Microbiol*. 2022;13:882563. <https://doi.org/10.3389/fmicb.2022.882563> PMID: 35572706
141. Lin C-T, Lin T-H, Wu C-C, Wan L, Huang C-F, Peng H-L. CRP-cyclic AMP regulates the expression of type 3 fimbriae via cyclic di-GMP in *Klebsiella pneumoniae*. *PLoS One*. 2016;11(9):e0162884. <https://doi.org/10.1371/journal.pone.0162884> PMID: 27631471
142. Alcántar-Curiel MD, Blackburn D, Saldaña Z, Gayoso-Vázquez C, Iovine NM, De la Cruz MA, et al. Multi-functional analysis of *Klebsiella pneumoniae* fimbrial types in adherence and biofilm formation. *Virulence*. 2013;4(2):129–38. <https://doi.org/10.4161/viru.22974> PMID: 23302788
143. Khater F, Balestrino D, Charbonnel N, Dufayard JF, Brisse S, Forestier C. In silico analysis of usher encoding genes in *Klebsiella pneumoniae* and characterization of their role in adhesion and colonization. *PLoS One*. 2015;10(3):e0116215. <https://doi.org/10.1371/journal.pone.0116215> PMID: 25751658
144. Wu C-C, Huang Y-J, Fung C-P, Peng H-L. Regulation of the *Klebsiella pneumoniae* Kpc fimbriae by the site-specific recombinase Kpcl. *Microbiology (Reading)*. 2010;156(Pt 7):1983–92. <https://doi.org/10.1099/mic.0.038158-0> PMID: 20378654
145. Strakova N, Korena K, Karpiskova R. *Klebsiella pneumoniae* producing bacterial toxin colibactin as a risk of colorectal cancer development – A systematic review. *Toxicon*. 2021;197:126–35. <https://doi.org/10.1016/j.toxicon.2021.04.007> PMID: 33901549
146. Lu M-C, Chen Y-T, Chiang M-K, Wang Y-C, Hsiao P-Y, Huang Y-J, et al. Colibactin contributes to the hypervirulence of pks+ K1 CC23 *Klebsiella pneumoniae* in mouse meningitis infections. *Front Cell Infect Microbiol*. 2017;7:103. <https://doi.org/10.3389/fcimb.2017.00103> PMID: 28409125

147. Wallenstein A, Rehm N, Brinkmann M, Selle M, Bossuet-Greif N, Sauer D, et al. Erratum for Wallenstein *et al.*, “CibR Is the key transcriptional activator of colibactin gene expression in *Escherichia coli*”. *mSphere*. 2020;5(4):e00727-20. <https://doi.org/10.1128/mSphere.00727-20> PMID: 32727866
148. Tronnet S, Garcia C, Rehm N, Dobrindt U, Oswald E, Martin P. Iron homeostasis regulates the genotoxicity of *Escherichia coli* that produces colibactin. *Infect Immun*. 2016;84(12):3358–68. <https://doi.org/10.1128/IAI.00659-16> PMID: 27620723
149. Tronnet S, Garcia C, Brachmann AO, Piel J, Oswald E, Martin P. High iron supply inhibits the synthesis of the genotoxin colibactin by pathogenic *Escherichia coli* through a non-canonical Fur/RyhB-mediated pathway. *Pathog Dis*. 2017;75(5):10.1093/femspd/ftx066. <https://doi.org/10.1093/femspd/ftx066> PMID: 28637194
150. Sarris PF, Zoumadakis C, Panopoulos NJ, Scoulica EV. Distribution of the putative type VI secretion system core genes in *Klebsiella* spp. *Infect Genet Evol*. 2011;11(1):157–66. <https://doi.org/10.1016/j.meegid.2010.09.006> PMID: 20932940
151. Hsieh P-F, Lu Y-R, Lin T-L, Lai L-Y, Wang J-T. *Klebsiella pneumoniae* Type VI secretion system contributes to bacterial competition, cell invasion, type-1 fimbriae expression, and in vivo colonization. *J Infect Dis*. 2019;219(4):637–47. <https://doi.org/10.1093/infdis/jiy534> PMID: 30202982
152. Merciecca T, Bornes S, Nakusi L, Theil S, Rendueles O, Forestier C, et al. Role of *Klebsiella pneumoniae* type VI secretion system (T6SS) in long-term gastrointestinal colonization. *Sci Rep*. 2022;12(1):16968. <https://doi.org/10.1038/s41598-022-21396-w> PMID: 36216848
153. Barbosa VAA, Lery LMS. Insights into *Klebsiella pneumoniae* type VI secretion system transcriptional regulation. *BMC Genomics*. 2019;20(1):506. <https://doi.org/10.1186/s12864-019-5885-9> PMID: 31215404
154. Liu P, Yang A, Tang B, Wang Z, Jian Z, Liu Y, et al. Molecular epidemiology and clinical characteristics of the type VI secretion system in *Klebsiella pneumoniae* causing abscesses. *Front Microbiol*. 2023;14:1181701. <https://doi.org/10.3389/fmicb.2023.1181701> PMID: 37266024
155. Zhao C, Liu P, Lin X, Wan C, Liao K, Guo P, et al. The type VI secretion system as a potential predictor of subsequent bloodstream infection of carbapenem-resistant *Klebsiella pneumoniae* strains on intestinal colonization. *Infection*. 2025;53(2):667–78. <https://doi.org/10.1007/s15010-024-02456-x> PMID: 39899211
156. Yang X, Liu X, Xu Y, Yang C, Chan EW-C, Shum H-P, et al. Genetic and functional characterization of a conjugative KpVP-2-type virulence plasmid from a clinical *Klebsiella pneumoniae* strain. *Front Microbiol*. 2022;13:914884. <https://doi.org/10.3389/fmicb.2022.914884> PMID: 35935210
157. Walker KA, Miller VL. The intersection of capsule gene expression, hypermucoviscosity and hypervirulence in *Klebsiella pneumoniae*. *Curr Opin Microbiol*. 2020;54:95–102. <https://doi.org/10.1016/j.mib.2020.01.006> PMID: 32062153
158. Zhang R, Lin D, Chan EW-C, Gu D, Chen G-X, Chen S. Emergence of carbapenem-resistant serotype K1 hypervirulent *Klebsiella pneumoniae* strains in China. *Antimicrob Agents Chemother*. 2015;60(1):709–11. <https://doi.org/10.1128/AAC.02173-15> PMID: 26574010
159. Schaufler K, Echelmeyer T, Schwabe M, Guenther S, Bohnert JA, Becker K, et al. Convergent *Klebsiella pneumoniae* strains belonging to a sequence type 307 outbreak clone combine cefiderocol and carbapenem resistance with hypervirulence. *Emerg Microbes Infect*. 2023;12(2):2271096. <https://doi.org/10.1080/22221751.2023.2271096> PMID: 37842870
160. Martin MJ, Corey BW, Sannio F, Hall LR, MacDonald U, Jones BT, et al. Anatomy of an extensively drug-resistant *Klebsiella pneumoniae* outbreak in Tuscany, Italy. *Proc Natl Acad Sci U S A*. 2021;118(48):e2110227118. <https://doi.org/10.1073/pnas.2110227118> PMID: 34819373
161. Russo TA, Alvarado CL, Davies CJ, Drayer ZJ, Carlino-McDonald U, Hutson A, et al. Differentiation of hypervirulent and classical *Klebsiella pneumoniae* with acquired drug resistance. *mBio*. 2024;15(2):e0286723. <https://doi.org/10.1128/mbio.02867-23> PMID: 38231533
162. Li P, Liang Q, Liu W, Zheng B, Liu L, Wang W, et al. Convergence of carbapenem resistance and hypervirulence in a highly-transmissible ST11 clone of *K. pneumoniae*: An epidemiological, genomic and functional study. *Virulence*. 2021;12(1):377–88. <https://doi.org/10.1080/21505594.2020.1867468> PMID: 33356821
163. Kochan TJ, Nozick SH, Valdes A, Mitra SD, Cheung BH, Lebrun-Corbin M, et al. *Klebsiella pneumoniae* clinical isolates with features of both multidrug-resistance and hypervirulence have unexpectedly low virulence. *Nat Commun*. 2023;14(1):7962. <https://doi.org/10.1038/s41467-023-43802-1> PMID: 38042959
164. Wang R, Zhang A, Sun S, Yin G, Wu X, Ding Q, et al. Increase in antioxidant capacity associated with the successful subclone of hypervirulent carbapenem-resistant *Klebsiella pneumoniae* ST11-KL64. *Nat Commun*. 2024;15(1):67. <https://doi.org/10.1038/s41467-023-44351-3> PMID: 38167298
165. Long D, Zhu L-L, Du F-L, Xiang T-X, Wan L-G, Wei D-D, et al. Phenotypical profile and global transcriptomic profile of hypervirulent *Klebsiella pneumoniae* due to carbapenemase-encoding plasmid acquisition. *BMC Genomics*. 2019;20(1):480. <https://doi.org/10.1186/s12864-019-5705-2> PMID: 31185888
166. Buckner MMC, Saw HTH, Osagie RN, McNally A, Ricci V, Wand ME, et al. Clinically relevant plasmid-host interactions indicate that transcriptional and not genomic modifications ameliorate fitness costs of *Klebsiella pneumoniae* carbapenemase-carrying plasmids. *mBio*. 2018;9(2):e02303-17. <https://doi.org/10.1128/mBio.02303-17> PMID: 29691332
167. Calvo-Villamañán A, Sastre-Dominguez J, Barrera-Martín Á, Costas C, San Millan Á. Dissecting pOXA-48 fitness effects in clinical enterobacteria using plasmid-wide CRISPRi screens. *Cold Spring Harbor Laboratory*. 2025. <https://doi.org/10.1101/2025.01.23.633114>
168. Fernández-Calvet A, Toribio-Celestino L, Alonso-Del Valle A, Sastre-Dominguez J, Valdes-Chiara P, San Millan A, et al. The distribution of fitness effects of plasmid pOXA-48 in clinical enterobacteria. *Microbiology (Reading)*. 2023;169(7):001369. <https://doi.org/10.1099/mic.0.001369> PMID: 37505800

169. Toribio-Celestino L, Calvo-Villamañán A, Herencias C, Alonso-Del Valle A, Sastre-Dominguez J, Quesada S, et al. A plasmid–chromosome cross-talk in multidrug resistant enterobacteria. *Nat Commun.* 2024;15(1):10859. <https://doi.org/10.1038/s41467-024-55169-y> PMID: 39738078

170. Yan B, Boitano M, Clark TA, Ettwiler L. SMRT-Cappable-seq reveals complex operon variants in bacteria. *Nat Commun.* 2018;9(1):3676. <https://doi.org/10.1038/s41467-018-05997-6> PMID: 30201986

171. Iturbe P, Martín AS, Hamamoto H, Marcket-Houben M, Galbaldón T, Solano C, et al. Noncontiguous operon atlas for the *Staphylococcus aureus* genome. *Microlife.* 2024;5:uqae007. <https://doi.org/10.1093/femsml/uqae007> PMID: 38651166

172. Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. A decade of advances in transposon-insertion sequencing. *Nat Rev Genet.* 2020;21(9):526–40. <https://doi.org/10.1038/s41576-020-0244-x> PMID: 32533119

173. Smith LM, Jackson SA, Gardner PP, Fineran PC. SorTn-seq: a high-throughput functional genomics approach to discovering regulators of bacterial gene expression. *Nat Protoc.* 2021;16(9):4382–418. <https://doi.org/10.1038/s41596-021-00582-6> PMID: 34349283

174. Han Y, Li W, Filko A, Li J, Zhang F. Genome-wide promoter responses to CRISPR perturbations of regulators reveal regulatory networks in *Escherichia coli*. *Nat Commun.* 2023;14(1):5757. <https://doi.org/10.1038/s41467-023-41572-4> PMID: 37717013

175. Ireland WT, Beeler SM, Flores-Bautista E, McCarty NS, Röschinger T, Belliveau NM, et al. Deciphering the regulatory genome of *Escherichia coli*, one hundred promoters at a time. *Elife.* 2020;9:e55308. <https://doi.org/10.7554/elife.55308> PMID: 32955440

176. Baumgart LA, Lee JE, Salamov A, Dilworth DJ, Na H, Mingay M, et al. Persistence and plasticity in bacterial gene regulation. *Nat Methods.* 2021;18(12):1499–505. <https://doi.org/10.1038/s41592-021-01312-2> PMID: 34824476

177. Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. *Nature.* 2024;630(8016):493–500. <https://doi.org/10.1038/s41586-024-07487-w> PMID: 38718835

178. Mitra R, Li J, Sagendorf JM, Jiang Y, Cohen AS, Chiu T-P, et al. Geometric deep learning of protein-DNA binding specificity. *Nat Methods.* 2024;21(9):1674–83. <https://doi.org/10.1038/s41592-024-02372-w> PMID: 39103447

179. Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, et al. Structure-based prediction of protein-protein interactions on a genome-wide scale. *Nature.* 2012;490(7421):556–60. <https://doi.org/10.1038/nature11503> PMID: 23023127

180. Ruhland E, Siemers M, Gerst R, Späth F, Vogt LN, Figge MT, et al. The global RNA-RNA interactome of *Klebsiella pneumoniae* unveils a small RNA regulator of cell division. *Proc Natl Acad Sci U S A.* 2024;121(9):e2317322121. <https://doi.org/10.1073/pnas.2317322121> PMID: 38377209