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Abstract

Hepatitis C virus (HCV) exhibits a narrow species tropism, causing robust infec-
tions only in humans and experimentally inoculated chimpanzees. While many host
factors and restriction factors are known, many more likely remain unknown, which
has limited the development of mouse or other small animal models for HCV. One
putative restriction factor, the black flying fox orthologue of receptor transporter
protein 4 (RTP4), was previously shown to potently inhibit viral genome replication
of several ER-replicating RNA viruses. Since the murine but not the human ortho-
log is a potent inhibitor of HCV, we aimed to analyze the potential role for RTP4 in
restricting HCV replication in mice. We demonstrated that mouse RTP4 (mmRTP4)
functions as a dominant inhibitor of HCV infection. Via interspecies domain-mapping,
we identified the zinc-finger domain (ZFD) of murine RTP4 as essential for inhibiting
HCV, consistent with prior work. Introducing mmRTP4 into HCV-infected Huh7 cells
profoundly reduced HCV NS5A protein production and virion release, demonstrating
that mmRTP4 can also disrupt already established HCV replication complexes. This
inhibition of HCV was not driven by induction of interferon-stimulated genes based
on bulk RNA-seq, suggesting that mmRTP4 might directly act on HCV replication.
Indeed, by in situ proximity ligation, we found that mmRTP4 directly associates with
the HCV NS5A protein significantly more than human RTP4 during infection. How-
ever, disrupting RTP4 expression in mice expressing humanized alleles of CD81 and
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occludin (OCLN) — the species specific cellular factors mediating HCV uptake — did
not increase permissiveness irrespective of the immunocompetence of the mice.
Collectively, our work provides detailed insights into the role of RTP4 in contributing
to HCV’s narrow host range and will inform downstream development of a more com-
prehensive small-animal model for this important pathogen.

Author summary

There is a pressing need for a small-animal model that replicates the full course
of HCV infection, both to test HCV vaccine candidates and to gain insights into
the effects of long-term infection. The main roadblock to this goal is an incom-
plete knowledge of factors that inhibit the HCV life cycle in murine cells. In this
work, we delve into a previously identified antiviral protein, RTP4, in the con-
text of HCV infection in mice. We characterize functional domains in mouse

and human orthologs and interrogate HCV infection in an HCV-susceptible,
RTP4-deficient mouse. We conclude by proposing a mechanism for the species-
specific inhibition of HCV in mouse cells.

Introduction

Hepatitis C virus (HCV) is an enveloped (+)-sense single stranded RNA virus of the
Flaviviridae family, genus hepacivirus [1]. HCV is the causative agent of hepatitis C,
a disease of the liver that causes chronic infection in more than 58 million people
worldwide [2,3]. Left untreated, chronic HCV infection leads to bridging fibrosis and
long-term inflammation, leading to cirrhosis and ultimately hepatocellular carcinoma
[4]. Though HCV infection can now be efficiently cured with direct-acting antivirals,
more individuals are (re-)infected than cured annually [5]. Moreover, HCV-induced
liver damage and prolonged T-box expressed in T cells (TOX)-mediated exhaus-
tion of HCV-specific CD8* T cells (or “scarring”) can be irreversible [6], complicating
efforts to alleviate the health burden caused by HCV.

Many key questions regarding HCV infection, including vaccine development, co-
and superinfections, and long-term immune responses, are inhibited by the lack of
a small animal model for HCV infection. Unfortunately, HCV has a very narrow host
tropism; although loosely related hepaciviruses have been reported in a variety of
species [7], it is our current understanding that HCV only robustly replicates in human
and chimpanzee hepatocytes [8]. While chimpanzees have played a critical role
in defining the natural history of HCV and for testing drug and vaccine candidates,
research in chimpanzees is currently banned in the US and most other countries
[9,10]. Laboratory mice are the preferred small-animal model for HCV given the wide
array of genetic tools and isogenic lines available, along with the robust infrastructure
for their usage and husbandry [11].
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The limitations of the HCV reproductive cycle in murine hepatocytes remain incompletely understood, implicating a
combination of incompatible host factors and dominant restriction factors [8]. At the level of entry, murine CD302 (also
known as DCL-1 and CLEC13A) and complement C3b/C4b receptor 1 like (CR1L) competitively bind HCV E2, and murine
CD81 and OCLN do not support HCV E2 glycoprotein-mediated entry, respectively [12,13]. Several additional incompati-
bilities between virally encoded proteins and host factors limit efficient viral replication; for example, murine tripartite motif
containing 26 (TRIM26) is unable to ubiquitinate HCV NS5B [14], and murine cyclophilin A (CypA) is unable to facilitate
HCYV replication to the same extent as the human orthologue [15]. Notably, assembly and release of infectious HCV
virions are supported in mouse cells in vitro [16] and in vivo [17]. The species-specific nature of many of these factors has
only recently been discovered, suggesting a yet-incomplete picture of mouse-HCV incompatibility.

In this work, we sought to explore whether the antiviral protein RTP4 might serve as a species-specific factor restrict-
ing HCV in mouse cells but not human cells. Previously, the host factor RTP4 has been characterized in the black flying
fox Pteropus alecto (paRTP4) as an interferon (IFN)-inducible, broad-acting inhibitor of ER replicating viruses [18]. In the
course of analyzing paRTP4 orthologues across a variety of species, it was shown that murine RTP4 (mmRTP4) exhibited
a strong antiviral effect against HCV compared to a relatively weak phenotype conveyed by the human ortholog (hsRTP4)
[18]. However, the specific mechanisms by which mmRTP4 inhibits HCV infection remained unexplored.

Therefore, we sought to analyze RTP4’s species-specific anti-HCV function. By generating a variety of interspecies
chimeric hssmmRTP4’s, we identified the murine 3CXXC zinc-finger domain (ZFD) as the determining factor of RTP4
HCV inhibition, which is consistent with prior work on paRTP4 [18]. We further concluded that the species specificity of
mmRTP4 HCV inhibition does not reside in the N-terminal-most segment of the ZFD. We additionally found that expres-
sion of mMmRTP4, but not hsRTP4, abrogates an established HCV infection in vitro, preventing the formation of infectious
virions. Expression of mmRTP4 in HCV-infected human cell lines resulted in a distinct transcriptional phenotype at 12
hours post-transduction. Indeed, this response not only lacked hallmark IFN-stimulated genes (ISGs), but also contained a
number of factors that have not been implicated in antiviral responses to HCV; this transcriptional phenotype resolved by
48 hours post-transduction. Given that the frequency of NS5A* cells following mmRTP4-transduction decreases well past
48 hours post-transduction, the data suggest that the extended impact of mMmRTP4 upon HCV infection may be exclu-
sively mediated by the mmRTP4 protein alone. Via an in situ proximity ligation assay leveraging tagged murine/human
RTP4, we found that murine RTP4 associates with the HCV NS5A protein significantly more than does human RTP4.

We further aimed to assess the phenotype of RTP4-deficiency in an in vivo model. We did not observe a significant
increase in HCV viremia between mice expressing humanized alleles of CD81 and OCLN entry factors with and without
RTP4, regardless of the presence of a murine immune response. Nevertheless, these findings provide valuable insight
into the molecular mechanisms of a newly appreciated factor in the intricate story of HCV’s narrow host tropism. This work
will further inform future development of mouse models for HCV infection and pathogenesis.

Results
Murine RTP4 is a dominant inhibitor of HCV infection in vitro

To assess the species-specific effects of RTP4 in HCV infection, we established an in vitro system to study human/mouse
RTP4 chimeras (Fig 1A). Coding sequences for the murine and human orthologues of RTP4 (mmRTP4 and hsRTP4)
were cloned into bicistronic lentiviral packaging plasmids expressing ZsGreen or DsRed2. Human Huh7 hepatoma cells
were transduced with hsRTP4, mmRTP4, or both lentiviruses and assessed for HCV permissiveness. We quantified

the frequencies of HCV NS5A* cells by flow cytometry within mm vs hsRTP4 singly or dually expressing cells 4 days

post infection with HCV J6/JFH1 (Jc1) [19] (Fig 1B). We found that, whereas hsRTP4 does not have an inhibitory effect,
mmRTP4 exerts a complete inhibition of HCV replication (Fig 1C). By assaying cells expressing both mmRTP4 and
hsRTP4, we determined that the inhibitory effect of mmRTP4 is dominant to the mild phenotype of hsRTP4 (Fig 1C).

PLOS Pathogens | https://doi.org/10.1371/journal.ppat. 1013412 September 8, 2025 3/25



https://paperpile.com/c/S3D3EQ/C1o2g
https://paperpile.com/c/S3D3EQ/ILWiY+I1b4E
https://paperpile.com/c/S3D3EQ/do88h
https://paperpile.com/c/S3D3EQ/ydWw6
https://paperpile.com/c/S3D3EQ/7Ao6m
https://paperpile.com/c/S3D3EQ/QKKi0
https://paperpile.com/c/S3D3EQ/hzIM5
https://paperpile.com/c/S3D3EQ/hzIM5
https://paperpile.com/c/S3D3EQ/hzIM5
https://paperpile.com/c/S3D3EQ/SsbWN

PLO%- Pathogens

A hsRTP4 IRES-ZsGreen
mmRTP4 IRES-DsRed2

l . , flow
3 days T 4 days cytometry
HCV-Jc1
MOI 0.1
B 5
g f% Nt
°N3'f§ U mmRTP4
s I e Both
DsRed?2
C 150~
ns |
) O
S S, O ‘
m —
& § 100 ‘ &
O O @)
2 = ©
S 3 o
(O]
o O
O_'.| .| ‘T._.T._
hsRTP4 - + - +
mMmRTP4 - - + +

Fig 1. Murine RTP4 exerts a dominant inhibitory effect on HCV replication. A. Schematic of in vitro HCV permissiveness assay. Huh7 human hepa-
toma cells transduced with a lentivirus expressing hsRTP4 and ZsGreen and/or another expressing mmRTP4 and DsRed2. Three days later, cells were
infected with HCV at an MOI of 0.1. Four days later, cells were trypsinized, stained with anti-NS5A, and analyzed via flow cytometry. B. Representative
gating scheme of the flow-cytometric analysis. C. Quantification of the frequencies of HCV NS5A" cells within cells expressing hsRTP4, mmRTP4 or
both, relative to non-transduced cells. **** P <0.0001; ns, not significant. Green =HCV-infected; blue = uninfected.

https://doi.org/10.1371/journal.ppat.1013412.9001

The RTP4 ZFD is the determinant of species-specific HCV inhibition

Given this sharp difference in phenotypes between orthologues, we next sought to identify the regions responsible for
the dominant phenotype of mmRTP4. RTP4 consists of three domains: a zinc-finger domain (ZFD), a disordered variable
region (DVR), and a transmembrane domain (TM) (Fig 2A) [20]. To compare these orthologs structurally, we analyzed
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Fig 2. The RTP4 ZFD is the determinant of species-specific HCV inhibition. A. Schematic of chimeras generated for this study. ZFD, zinc-finger
domain; DVR, disordered variable region; TM, transmembrane. Yellow boxes indicate 3CXXC motifs. B. Quantification of the frequencies of HCV
NS5A* cells within cells expressing hsRTP4, mmRTP4 or the indicated chimeras at day four post-infection. **** P <0.0001; ***, P<0.001; **, P<0.01; *,
P <0.05; ns, not significant. Green=HCV-infected; blue =uninfected.

https://doi.org/10.1371/journal.ppat.1013412.9002

predicted structures utilizing AlphaFold 3 [21] (S1A-S1B Fig) and observed a conservation of overall domain organization.
To quantify structural similarity, we compared predicted structures utilizing the UCSF ChimeraX MatchMaker plugin [22]
(S1C Fig). Both orthologs bear moderate structural similarity, with a sequence alignment score of 576.7 and root mean
square deviation (RMSD) between computationally pruned structural regions being 0.763 A (S1C Fig). Interspecies chi-
meras were generated by swapping murine and human DVRs (mmRTP4"PYR and hsRTP4™mPVR) These chimeras showed
conserved predicted tertiary structure (S1D—S1E Fig). Structural comparisons of these chimeras demonstrated con-
served structural similarity (score: 586.7; pruned RMSD: 0.682 A) (S1F Fig). In vitro analyses revealed that mmRTP4hs0VR
retained an inhibitory effect, denoting the ZFD as the essence of mmRTP4 HCV restriction (Fig 2B). It must be noted that
the murine DVR-TM region likely serves an auxiliary function to the murine ZFD antiviral effect, as mmRTP4"PVR does not
completely phenocopy the full-length mmRTP4 (Fig 2B).

The RTP4 ZFD is a 3CXXC ZFD, a subfamily of ZFDs that includes zygote arrest 1 (ZAR1) [23]. In RTP4, these include
3 CXXC maotifs beginning at amino acid positions 57, 95, and 157 that facilitate binding to nucleic acids. Notably, mmRTP4
possesses an extra CXXC motif adjacent to the second CXXC starting at amino acid position 98. To probe deeper into
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possible functional subdomains of the ZFD, we divided the ZFD into three regions that encompassed the separate CXXC
motifs, with the exception of the overlapping pair in mmRTP4 (Figs 2A, S1G-S1L). We cloned each of these subdo-
mains onto the backgrounds of the opposite ortholog (MmRTP4"sZFP-1-3 hsRTP4™m2FD-1-3]) " and assessed their effects on
HCV permissiveness (Fig 2B). hsRTP4mmZF0-1-3 did not impact permissiveness significantly, indicating that the complete
mmRTP4 ZFD is required for inhibition. Separately, mmRTP4"'ZF0-2 and mmRTP4ZFP-3 only mildly disrupted mmRTP4’s
antiviral activity, whereas mmRTP4"sZF0-1 preserved it. This suggests either a dispensability to the N-terminus of the
mmRTP4 ZFD or a sufficiency of the hsRTP4 ZFD to rescue full-length mmRTP4 activity. Nevertheless, these data pro-
vide greater insights into the species-specificity of RTP4 structural domain functions, indicating the primacy of mmRTP4
ZFD in HCV inhibition, with auxiliary functions of the DVR-TM..

Murine RTP4 abrogates ongoing HCV infection in vitro

In previous experiments, we had expressed RTP4 in cells prior to HCV challenge, and therefore RTP4 could have
reduced HCV infection by preventing viral entry and/or restricting replication. To distinguish these possibilities, we sought
to assess whether RTP4 could restrict an established HCV infection. Huh7-Lunet cells [24] were infected with HCV at an
MOI of 1; 7 days later,>90% of cells were NS5A*. From here, we transduced HCV-infected cells with bicistronic lenti-
viruses expressing hsRTP4, mmRTP4, or a blank cassette (each co-expressing a bicistronic fluorophore) (Fig 3A). We
quantified HCV infection by NS5A staining at a variety of timepoints thereafter, examining the frequency of infection in
both RTP4-expressing and non-expressing bystander cells within each sample (Fig 3B); cells were not passaged during
this time period The frequency of HCV NS5A* cells steadily decreased over the course of 9 days following mmRTP4
transduction, with no effect in hsRTP4-transduced or vehicle-transduced cells (Fig 3C).

To determine whether this decrease in infected cells correlated with infectious virus particles, we harvested and titered
HCV from cell culture supernatant and cell lysates at day 9 post-transduction (cells were not passaged during this time).
Titration of HCV in cell lysates revealed a significant decrease in intracellular viremia following mmRTP4 transduction
compared to vehicle control (Fig 3E), whereas no such phenotype was observed in extracellular viremia (Fig 3F). These
data suggest that murine RTP4 may exert a mild inhibitory effect upon infectious particle formation, albeit not to a level
that would significantly decrease extracellular viremia.

Murine RTP4 transduction induces a unique, transient transcriptional response during ongoing HCV infection

In our previous experiment, mmRTP4-expressing cells potently restricted HCV, but we were intrigued to see that
bystander cells in the same dish (undetectable for the marker gene of mmRTP4) also demonstrated decreasing NS5A lev-
els over time (Fig 3D). These data could be explained by two possibilities: either that some cells had mmRTP4 expression
but were undetectable by the fluorophore marker gene, or that mmRTP4 expression might cause a non-cell autonomous
effect. In other words, a cell expressing mmRTP4 directly restricts its own infection, and might simultaneously produce
IFN to trigger an antiviral state in non-transduced bystander cells, restricting their infection. Indeed, some ISGs, such as
RIG-I-like receptors and many IFN response factor (IRF) family proteins, both sense and amplify IFN production and sens-
ing in a positive feedback loop, alerting neighboring bystander cells.

To test whether mmRTP4 induced an ISG response to restrict HCV, we performed bulk RNA sequencing on HCV-
infected Huh7-Lunet cells transduced with mmRTP4, hsRTP4, or an empty lentivirus, collecting and analyzing samples at
12, 24, and 48 hours post-transduction, along with uninfected samples collected at 72 hours post-transduction (Fig 4A).
We detected a unique transcriptomic response in mmRTP4-transduced, HCV-infected cells at 12 hours post-transduction
(Fig 4B), which we did not detect in hsRTP4-transduced counterpart samples (Fig 4B). Looking more closely at the differ-
entially upregulated genes in mmRTP4-transduced samples, we did not observe the upregulation of any ISGs or factors
known to impede Flaviviridae infection in vitro (Fig 4C). As a whole, this indicates that mmRTP4 acts per se to inhibit HCV
replication with little or no coordination of the IFN response.
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Fig 3. Murine RTP4 abrogates ongoing HCV infection in vitro. A. Schematic of experimental workflow. Huh7-Lunet cells were infected with HCV

at an MOI of 1. One week later, cells were transduced with a lentivirus expressing bicistronically hsRTP4 with ZsGreen, mmRTP4 with DsRed2, or
DsRed2 alone. Cells were harvested at various timepoints for analysis via flow cytometry. B. Representative gating scheme of the flow-cytometric
analysis. C-D. Quantification of the frequencies of HCV NS5A* cells within cells C. expressing or D. not expressing the given transgene. Purple =mock-
transduced, HCV-infected; orange =hsRTP4-transduced, HCV-infected; pink=mmRTP4-transduced, HCV-infected; blue =mock-transduced, uninfected;
red =hsRTP4-transduced, uninfected; green=mmRTP4-transduced, uninfected. E-F. Quantification of HCV viremia in E. cell lysates and F. supernatants
at day 9 post-transduction. *, P <0.05; ns, not significant.

https://doi.org/10.1371/journal.ppat.1013412.9003
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of 1. One week later, cells were transduced with a lentivirus expressing bicistronically hsRTP4 with ZsGreen, mmRTP4 with DsRed2, or DsRed2 alone.
Cells were harvested at 12, 24, and 48 hours post-transduction for RNA sequencing. B. Differentially expressed genes in hsRTP4- and mmRTP4-
transduced samples, compared to mock-transduced, HCV-infected controls. C. Expression levels of the top 25 upregulated genes which were selected
based on their adj. p-value in mmRTP4-transduced vs mock-transduced cells at 12 hours post-transduction.

https://doi.org/10.1371/journal.ppat.1013412.g004
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RTP4 associates with HCV replication machinery

Given that mmRTP4 did not appear to act by ISG induction, we next wondered whether RTP4 might directly inhibit HCV
replication machinery. Indeed, multiple other host ISG products, such as viperin [25], VAMP-associated protein A (VAP-

A) [25] and cholesterol-25-hydroxylase (CH25H) [26], are known to bind and disrupt NS5A, a key component of the viral
replication complex, ultimately inhibiting HCV following innate immune activation [27]. RTP4 specifically has been demon-
strated to bind a variety of protein targets depending on the host and viral contexts. In AV infection, hsRTP4 binds directly
to NS1, inhibiting its proviral interaction with RIG-I [28]. In the context of HCoV-OCA43 infection, hsRTP4, but not mmRTP4,
bound viral dsRNA, leading to a species-specific inhibition of HCoV-OC43 replication [29].

To determine whether such an association underpins the species-specific nature of HCV inhibition by RTP4, we gener-
ated N-terminally FLAG-tagged expression constructs for hsRTP4 and mmRTP4 (Fig 5A). We confirmed proper expres-
sion of these constructs in cell lysates (Fig 5B), as well as their localization in vitro (Fig 5C), and we confirmed that the
tagged RTP4s phenocopied their untagged counterparts in the context of HCV infection (Fig 5D). We challenged Huh7
Lunet cells with HCV J6/JFH1-Jc1, transduced with FLAG-mmRTP4 or FLAG-hsRTP4, and then measured the ability
of each RTP4 to associate with HCV NS5A. Due to the relatively low amounts of NS5A present in the infected cell, we
utilized a proximity ligation assay (PLA) (Fig 5E). This sensitive, fluorescence-based approach has the benefit of providing
evidence of protein-protein interactions with subcellular resolution. As expected, in the absence of HCV infection, no PLA
signal was observed (Fig 5F). During infection, we established that both mmRTP4 and hsRTP4 interact with HCV NS5A
protein (Fig 5F), with the murine interaction being twice as frequent (Fig 5G). These data suggest that differential associ-
ation with NS5A and the HCV replication complex might be responsible for the differential inhibition of HCV by human or
murine RTP4.

RTP4 deficiency alone is insufficient to convey HCV permissiveness in vivo, irrespective of the immune status.

Finally, we aimed to determine the effect of knocking out RTP4 on HCV infection in vivo. To do this, we crossed a
mouse line expressing minimally humanized HCV entry factors (CD81E-2HH QCLNE2HH)) " which is able to support HCV
uptake but not replication, with an existing RTP4 knock-out line (RTP47") [30,31] (Fig 6A). The resultant CD81E-2HH]
OCLNE2HM RTP47 mice, along with a control group of CD81E-2HH OCLNE-2HH mice, were inoculated intravenously
with 1EB6 tissue culture infectious doses (TCID) HCV J6/JFH1-Jc1 and monitored over the course of 20 days. HCV
RNA as quantified by RT-qPCR was readily detectable in the sera of CD81E-2HH QCLNEL2HHI (Fig 6B) and CD81EL2HMI
OCLNE2HH RTP47~ mice (Fig 6C) immediately following inoculation. However, we did not observe any increases in
viral RNA at any point over the 21 day study period for either of the two genotypes. Similarly, there was not any statis-
tically significant difference in HCV RNA levels in liver tissue harvested from these two strains at the endpoint of 21 dpi
(Fig 6D and 6E) demonstrating collectively that RTP4 deficiency in HCV susceptible mice was not sufficient to increase
murine permissiveness.

One hypothesis to explain undetectable viremia in these mice is adaptive immunity; it is known that depletion of CD4*
cells is vital to establishing long-term RHV infection in C57BL/6 mice. To determine whether murine cellular responses
effectively antagonize any putative low-level HCV RNA replication, we sought to assess the capacity of CD815-2HH OCL-
NEL2HH RTP4-- mice to sustain HCV infection in the absence of functional B, T, and NK cells. To do so, we utilized FAH™
NOD Rag1™ l12rgNU't (FNRG) mice, a liver-injury, immunodeficient mouse platform for (xeno)transplantation of hepato-
cytes [32]. Hepatocytes were harvested from CD81E-2HH QCLNERHH RTP4~- donor mice and injected intrasplenically
into FNRG recipients (Fig 7A). Anti-FAH staining affirmed that donor CD81E-2HH OCLNE-2HH RTP4-- (FAH*) hepatocytes
engrafted robustly in the parenchyma of FNRG recipients (Fig 7B). Cohorts of highly engrafted FNRG[CD81E-2HH OCL-
NEL2HH RTP4-] mice were infected intravenously with 1E6 TCID HCV J6/JFH1-Jc1 and HCV RNA was quantified longitu-
dinally in the serum over a 30 day study period.
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Fig 5. Murine RTP4 associates with HCV NS5A more potently than does human RTP4. A. Schematic of FLAG-tagged RTP4 constructs generated
for this study. B. Western blot of FLAG-RTP4 in 293T cells transfected with overexpression constructs. C. Immunofluorescence staining of FLAG-RTP4
or HCV NS5A in construct-transduced or HCV-infected cells. D. Quantification of the frequencies of HCV NS5A* cells within cells expressing FLAG-
hsRTP4 or FLAG-mmRTP4. Green=HCV-infected; blue =uninfected. E. Schematic of proximity ligation assay; protein-protein interactions are leveraged
for in situ rolling amplification with a fluorescent readout. F. Representative images from proximity ligation assay interrogating NS5A-FLAG(hs/mmRTP4)
interactions during HCV infection or mock. G. Quantification of foci observed in F. *** P <0.001. Some figure elements (proteins [72, 73], antibodies [74])
were sourced from the public domain and are listed as references.

https://doi.org/10.1371/journal.ppat.1013412.9005
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Fig 6. HCV cannot infect HCV-susceptible mice deficient in RTP4. A. Breeding schematic for generation of CD81E-2HH QCLNE-HH RTP4~- mice.
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https://doi.org/10.1371/journal.ppat.1013412.9006

In these highly immunodeficient mice, we did not observe any increases in HCV RNA in sera (Fig 7C) or liver tissue
(Fig 7D) over the course of infection. We separately generated a cohort of mice engrafted with primary human hepato-
cytes, which has been demonstrated to be highly permissive to HCV infection [32,33]. We confirmed the engraftment of
these mice by means of serum human albumin ELISA (Fig 7E), which correlates tightly with engraftment percentage [33].
Over the course of weeks, these mice developed sustained serum HC viremia (Fig 7F) and elevated hepatic viral load (Fig
7G). Collectively, these data demonstrate that genetic disruption of RTP4 in mice expressing human HCV entry factors is
insufficient to increase their permissiveness, irrespective of the immune status of the animal.

Discussion

Here, we probe the species-specific nature of RTP4, a gene that had recently been identified as a restriction factor of flavi-
viruses in the black flying fox [18]. The data from this previous work hinted that RTP4 might restrict HCV infection in mice.
We found that expression of mmRTP4, but not hsRTP4, exhibits a dominant effect that can abrogate an established HCV
infection in vitro, preventing the formation of infectious virions. By bulk RNA-seq, RTP4-mediated inhibition of HCV did

not seem to trigger induction of ISGs, but instead likely acted directly on HCV replication. Via an in situ proximity ligation

PLOS Pathogens | https://doi.org/10.1371/journal.ppat. 1013412 September 8, 2025 11/25



https://paperpile.com/c/S3D3EQ/EaS8 + 8XDp
https://paperpile.com/c/S3D3EQ/8XDp
https://paperpile.com/c/S3D3EQ/hzIM5
https://paperpile.com/c/S3D3EQ/SeMH
https://doi.org/10.1371/journal.ppat.1013412.g006

PLO%- Pathogens

— o oo
CD81EL2IH/H] ' Ty <
OCL NEL2H/H] FAH7”- NTBC FN RG[CD81 EL2[H/H]
RTP4-- NOD OCLNEL2HHI RTP4/]
RAG1/~
IL2R NULL
9 FNRG[CD81EL2HH
B FAH-- FAH*- OCLNERIHH RTP47/]
x 2 o
o
() -
< N b |
C 101 D oo
E1010_ 9
2 10° . 107
(] O 108
» 108 2 .
E 107 9186:
=~ 108+ W s
O 105 o 104_
> 10+ |- @——0——0—80 = 10'7
T 103 T 10°9 . D
) 102
10 | | | | 101 -
0 10 20 30
Time post-infection [days]
E F 1011_ G 1010_
£1010 109
; I
- — = —]
£ £107- 2106
2 510 0g® Hios oot
2 O 1054 > 104 o.o
< > Q4 (i) 1034 .
£ O 105 {02
% = 102—~—7—"7 10"~
868 869 871 14 28 42
Time post-infection
[days]

Fig 7. HCV cannot infect immunodeficient mice harboring HCV-susceptible, RTP4-deficient murine hepatocytes. A. Generation of FNRG[C-
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RTP4~"] mice. C. Longitudinal HCV serum viremia in FNRG[CD81E-2HH OCLNE-2HH RTP47-] mice. D. Terminal liver viremia in FNRG[CD81E-2HHI
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OCLNEHH RTP4--] mice at day 34. GE, genomic equivalents. E. Serum human albumin ELISA in human liver-chimeric mice. C. Longitudinal HCV
serum viremia in human liver-chimeric mice. D. Terminal liver viremia in human liver-chimeric mice at day 34. GE, genomic equivalents. Some figure
elements (mouse [75], liver [76]) were sourced from the public domain and are listed as references.

https://doi.org/10.1371/journal.ppat.1013412.9007

assay leveraging tagged murine and human RTP4, we found that murine RTP4 associates with the HCV NSS5A protein
significantly more than does human RTP4. In support of this direct effect, we generated a variety of interspecies chime-
ric hs/mmRTP4s, and identified a C-terminal region of the murine 3CXXC ZFD as the determining factor of RTP4 HCV
inhibition, which is consistent with prior work on paRTP4 [18]. Knockout of RTP4, even in immunocompromised mice, was
insufficient to enable HCV replication, suggesting that RTP4 may be just one restriction factor among others that must be
modified in order to convey permissiveness. In total, our study advances our knowledge on the nature, extent, and mech-
anism for species-specific RTP4-mediated restriction of HCV in vitro and in vivo.

Whereas prior studies leveraged a variety of truncation and point-mutated versions of paRTP4 [18] and hsRTP4
[28, 29], our study presents an analysis of interspecies domain-swap chimeric versions of RTP4 in the context of viral infec-
tion (Fig 2A). These chimeras revealed the importance of the mmRTP4 ZFD for HCV inhibition, along with the sufficiency of
the hsRTP4 DVR to replace mmRTP4 DVR (Fig 2B). Notably, we found that the species-specific antiviral effect of mmRTP4
excludes the N-terminal-most section of the ZFD, which still inhibits HCV completely when humanized (Fig 2B).

What is the mechanism of action of RTP4? In its native context, RTP4 is an ISG that is strongly induced by IFN sig-
naling. Here, we expressed RTP4 constitutively from an exogenous source (lentiviral transduction), which allowed us
to isolate the effects of RTP4 separately from the rest of the ISG response. Expressing RTP4 inhibited HCV replication
without triggering expression of other ISGs (Fig 4), emphasizing the extent to which this phenotype is driven solely by the
expression of mMmRTP4 alone. Moreover, RTP4 could restrict an already established HCV infection (Fig 3A), and mildly
impact intracellular viremia (Fig 3E), both consistent with a mechanism directly targeting viral replication.

Our discovery of a direct interaction between RTP4 and the HCV NS5A protein by proximity ligation (Fig 5) further
clarifies the role of this restriction factor, especially in light of other known ISGs. NS5A appears to be a common target for
ISGs in mammalian cells [25,26,34]. For example, the ISG viperin directly binds both the HCV NS5A protein, an essential
component for replication and immune modulation, and VAP-A, inhibiting replication [25]. Similarly, CH25H, a factor known
to have multiple effector functions against HCV replication, directly binds NS5A [26,34]. These binding events likely disrupt
the extremely precise structure of the replication complex, which requires a variety of HCV and host proteins for proper
formation and function [35]. Just as NS5A has evolved to be a multifaceted inhibitor of antiviral signaling, so too has the
host cell evolved to target NS5A with a variety of interferon-stimulated effectors. Given the established dsRNA-binding
capability of human and black flying fox RTP4 in other infections [18,29], steric hindrance is a likely hypothesis for the
conserved mechanism of HCV inhibition by RTP4, viperin, and CH25H. The species-specificity of mmRTP4 in inhibiting
HCV replication resides in the strength of its interaction with HCV NS5A, which we measure to be two-fold higher than the
hsRTP4-NS5A interaction (Fig 5G).

This species-specific restriction of HCV by RTP4 is particularly fascinating in light of the evolutionary history of this
protein family. RTP4 belongs to a family of proteins that promote the cell-surface transport of G-protein-coupled receptors
including bitter-taste receptors, u-6 opioid receptors, and odorant receptors [36—38]. Variants of RTP4 have additionally
been implicated in diseases ranging from primary Sjogren’s syndrome to cutaneous melanoma, and it has been demon-
strated to have a pro-inflammatory effect in neuroinvasive infections [30,39—41]. Evolutionarily, RTPs have undergone
a significant degree of positive selection, with multiple clades evolving to serve as antiviral sentinels [42]. In mammals,
hsRTP4 has evolved an antiviral spectrum against a variety of clades, showing strong effects against the flavivirus
Entebbe bat virus [18], the human coronaviruses HCoV-OC43 and SARS-CoV-2 [29], and recently influenza A virus (IAV)
[28]. Notably, mMmRTP4 expression does not restrict infection by SARS-CoV-2 or HCoV-0OC43 [29]. Conceivably, mmRTP4
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underwent a similar process of evolution to target a unique range of viral clades, including hepaciviruses; mice are
afflicted with a variety of murine hepaciviruses that are distantly related to HCV [7,43,44].

None of the factors described as having divergent impacts on the HCV viral cycle between human and murine ortho-
logues are canonical ISGs [8]. This is notable, as the cell-intrinsic antiviral response has been implicated in limiting or
broadening the tropism of a variety of viruses [45,46]. Our study on murine and human RTP4 thus establishes a third
paradigmatic level of HCV restriction in mice. Indeed, the disruption of IFN receptors and upstream immune sentinels
(MAVS, IRF1) have been leveraged to enhance the low-level replication of drug-selectable HCV subgenomic replicons
and transfected full-length RNA in mouse cells in vitro and in vivo [17,47-52]. Our work here provides some explanation
for this, given the dominant phenotype of murine RTP4. We note that it cannot be discounted that other IFN-stimulated
factors may play a role in murine restriction of HCV similar to RTP4, given the variety of ISGs that have been described to
arise during HCV infections [53].

From a practical standpoint, ablating RTP4 alone is not sufficient to serve as a mouse model for HCV. To develop such
a model, it is necessary to understand the complete range of factors that prevent HCV from replicating within an immuno-
competent mouse; to this end, many have been delineated, as reviewed previously [8]. In short, there are multiple fac-
tors at the levels of entry, replication, and assembly where the mouse ortholog either directly inhibits HCV’s biology or is
incompatible with the given viral protein. As a result, the lack of replication of HCV in CD81E-2HH QCLNE-2HH RTP4~ and
FNRG[CD81E-2HH OCLNE-2HH RTP4~-] mice (Figs 6 and 7) is not surprising. Of note, these mice, while HCV-susceptible
and RTP4-deficient, express murine orthologues of several known host factors governing viral replication that are incom-
patible with virally encoded components of the replication complex. For example, these mice bear murine TRIM26, and
are thus unable to conduct K27-linked ubiquitination of HCV NS5B [14], as well as murine CypA, which is tenfold less
efficient than human CypA at facilitating viral replication [15]. Certainly, a more comprehensively humanized mouse must
be generated to complete full HCV pathogenesis in vivo.

Recent work has broadened the scope of viral targets of human RTP4; it had erstwhile been considered only to
inhibit a little-known flavivirus, Entebbe bat virus, but this has recently been extended to include human coronaviruses
HCoV-OC43 and SARS-CoV-2 [29], as well as influenza A virus [28]. While murine RTP4 exerts divergent effects in the
contexts of flavivirus (antiviral) and nidovirus (agnostic) infections, it is possible that it plays a role in rendering mice imper-
missible to other human-tropic pathogens. To this end, a version of mice expressing human RTP4 in lieu of murine RTP4
is presently being generated.

Depending on the viewpoint, the narrowness of HCV tropism is at once fortunate and frustrating. It is quite fortunate
that HCV, as opposed to other members of the Flaviviridae family, is unable to maintain itself in a perpetual zoonotic
or enzootic cycle [54]. Indeed, the restriction to humans and chimpanzees theoretically renders HCV vulnerable to full
eradication should a vaccine with even partial efficacy be developed [55]. Unfortunately, this vaccine’s development is
hampered by, among other factors, the lack of a proper animal model for infection. Though many models have been pro-
posed, including the use of controlled human infection models (CHIMs), a mouse model remains desirable due the ease
and economy of husbandry, bounty of available tools, and broad range of ethical experiments [10,56-58]. To that end, our
characterization of species-specific mmRTP4 restriction of HCV may pave the way for future immunocompetent mouse
models of HCV.

Materials & methods
Ethics statement

All animal experiments were performed in accordance with protocols reviewed and approved by the Institution Animal
Care and Use Committees (IACUCSs) of Princeton University (protocol number 3063). All mice were bred and generated in
the Laboratory Animal Resource (LAR) Center of Princeton University.
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Cell lines

Huh7 and Huh7.5 cells were kindly provided by Charles Rice (Rockefeller University, New York City, USA) and Huh7.5.1
cells by Frank Chisari (The Scripps Research Institute, La Jolla, USA) and Huh7-Lunet cells by Ralf Bartenschlager
(University of Heidelberg, Germany). 293Tx cells were obtained from TaKaRa (Kusatsu, Shiga, Japan). All cells have
been authenticated and are clear of mycoplasma contamination. All cells were maintained in Dulbecco’s Modified Eagle’s
Medium (DMEM, Thermo Fisher Scientific, Waltham, MA, USA) containing 10% (v/v) heat-inactivated fetal bovine serum
(FBS) (Bio-Techne, Minneapolis, MN, USA) and 1% (v/v) penicillin/streptomycin (Corning Inc., Corning, NY, USA) at 37 °C
with 5% (v/v) CO2. Upon reaching confluence, cells were trypsinized with 0.25% (v/v) trypsin/EDTA and re-plated.

Antibodies

The monoclonal mouse anti-NS5A 9E10 antibody [59] was generously provided by Charles Rice (Rockefeller University,
New York City, USA). The following commercial primary antibodies were used: mouse anti Myc-Tag 9B11 (Cell Signaling
Technology, Danvers, MA, USA), mouse anti DYKDDDDK Tag 9A3 (Cell Signaling Technology, Danvers, MA, USA), rabbit
anti DYKDDDDK Tag D6W5B (Cell Signaling Technology, Danvers, MA, USA), rabbit anti HA-Tag C29F4 (Cell Signaling
Technology, Danvers, MA, USA), mouse anti-p-actin (Cell Signaling Technology, Danvers, MA, USA), rabbit anti-B-actin
(Cell Signaling Technology, Danvers, MA, USA). The following commercial secondary antibodies were used: goat anti-
mouse Alexa 647 (Invitrogen, Waltham, MA, USA), goat anti-rabbit Alexa 647 (Invitrogen, Waltham, MA, USA), goat anti-
mouse Dylight 800 (100 ng/mL, Thermo Fisher Scientific, Waltham, MA, USA), goat anti-rabbit Dylight 680 (100 ng/mL,
Thermo Fisher Scientific, Waltham, MA, USA).

Plasmid construction

Coding sequences for human and murine orthologs of RTP4 (hsRTP4 and mmRTP4) were respectively isolated from the
human ORFeome library v8.1 [60] and interferon-stimulated C57BL/6 splenocytes. These were cloned into pLVX lentivirus
expression constructs using restriction cloning. Chimeras mmRTP4"PYR and hsRTP4™PVR were generated by In-Fusion
cloning. Chimeras mmRTP4mmzFoihs1-31 gnd hsRTP4hs2Fbimm1-3] were synthesized as gBlocks (Integrated DNA Technologies,
Coralville, IA, USA). To generate FLAG- and c-myc-tagged RTP4, forward primers were utilized to add the accordant epi-
tope tags at the N-terminus. All constructs were subjected to Sanger sequencing to confirm proper insertions (Table 1).

RTP4 structural prediction and analyses

For hsRTP4, mmRTP4, and all chimeric constructs generated in Fig 2, structural predictions were generated using Alpha-
Fold 3 [21], and resultant structures were visualized using UCSF ChimeraX 1.6.1 [22]. Select structures were compared
quantitatively using the MatchMaker plugin [61].

Lentivirus production and transduction

Lentiviral particles encoding the given RTP4 constructs were produced by X-tremeGENE HP DNA Transfection Reagent
(Roche Applied Science; Indianapolis, IN)-mediated transfection of 293TX cells seeded twelve hours prior to transfection
(2E6 cells per 10cm tissue culture dish) with 4 ug of the appropriate pLVX plasmid, 4 ug of HIV gag-pol plasmid, and 0.57
Mg of the G protein of vesicular stomatitis virus (VSV-G) plasmid per transfection reaction. Supernatants were harvested
at 48 and 72 hr post-transfection, stored at 4 °C and then passed through 0.45 ym membrane filters (Millipore, Darmstadt,
Germany). Polybrene (final concentration of 4 mg/mL) (Sigma-Aldrich, St. Louis, MO, USA) and HEPES (final concentra-
tion of 2mM) (Gibco, Waltham, MA, USA) were added to all lentiviral supernatants which were aliquoted and stored at
—-80 °C. All lentiviral transductions were performed via spinoculation with cells seeded at a concentration of 1.5E5 cells
per well in a six well format 24 hr prior to transduction. Cell confluency at the time of transduction was 30—40%, and 1 mL
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Table 1. Primers utilized for generation of RTP4 overexpression constructs in this study.

Primer Purpose Sequence (5°-3’)

PU-0-8943 hsRTP4 FP ATGGTTGTAGATTTCTGGACTTGG

PU-0-8944 hsRTP4 RP TCATTCTGATGTAAAGCATTTGACTACAATAAATAC

PU-0-8943 hsRTP4 ZFD FP ATGGTTGTAGATTTCTGGACTTGG

PU-O-10335 hsRTP4 ZFD RP CAAAGTGCATGCCTCACAATT

PU-0-10351 hsRTP4 DVR FP (In-Fusion) AATTGTGAGGCATGCGGCATATGTGGACAGGGCTTAAAAAGC

PU-O-10342 hsRTP4 DVR RP (In-Fusion) TTATCTAGTGAAAAGACTAAAAAGGGCAAATGCAGCAATAGACAAAAACAGAAATAGTGGTG-
GCTCTATATCTGGGTCTCGACTGGGCCCTAATTTC

PU-O-8894 mmRTP4 FP ATGCTGTTCCCCGATGACTTC
PU-O-8895 mmRTP4 RP TTATCTAGTGAAAAGACTAAAAAGGGCAAATGC
PU-O-8894 mmRTP4 ZFD FP ATGCTGTTCCCCGATGACTTC
PU-O-10336 mmRTP4 ZFD RP GCATGCCTCACAATTGCGTGT

PU-O-10349 mmRTP4 DVR FP (In-Fusion) GAGGCATGCACTTTGAGTCTAAACTCTCATGGAAGATG

PU-O-10339 mmRTP4 DVR RP (In-Fusion) TCATTCTGATGTAAAGCATTTGACTACAATAAATACAAGCAGCAAAATAAAGACACAGAT-
GTTCAGTGGTTCACGTTGGGGGGGCTCTCTG

PU-O-10886 FLAG-hsRTP4 FP AAGCTTCTCGAGATGGATTACAAGGATGACGACGATAAGATGGTTGTAGATTTCTGGACTTGG

PU-O-10982 FLAG-mmRTP4 FP AAGCTTCTCGAGATGGATTACAAGGATGACGACGATAAGATGCTGTTCCCCGATGAC

https://doi.org/10.1371/journal.ppat.1013412.t001

of lentivirus was added to each well. Plates were spun at 37 °C, 2hr, 2000rpm. Transduction efficiency was assessed via
flow cytometry for all constructs (see below).

Generation of HCV RNA and viral stocks

HCV viral RNA was produced via in vitro transcription of an Xbal-linearized J6/JFH1 (J6/JFH1-Jc1) [19] plasmid using
the HiScribe T7 High Yield RNA Synthesis Kit (New England Biolabs, Ipswich, MA, USA) as outlined in the user manual.
Viral RNA was purified using the MEGAclear Transcription Clean-Up Kit (Thermo Fisher Scientific, Waltham, MA, USA)
following manufacturer’s instructions, and quality control was performed by gel electrophoresis to ensure no significant
RNA degradation. Viral RNA stocks were stored as 5 ug aliquots at =80 °C. RNA was electroporated into Huh7.5-1 cells
[62]. The pellet was resuspended in the appropriate volume of ice-cold DPBS to achieve a concentration of 1.5E7 cells/
mL. 6E6 cells were then electroporated in a 2mm path length electroporation cuvette (BTX Harvard Apparatus, Holliston,
MA, USA) with 5 pg of viral RNA using an ECM 830 Square Wave Electroporation System (BTX) at the following settings:
five pulses, 99 ys per pulse, 1.1s pulse intervals, 860V. Following a ten-minute incubation at room temperature, the elec-
troporated cells were seeded into 150 mm plates and maintained in DMEM with 5% (v/v) FBS (Bio-Techne, Minneapolis,
MN, USA) and 1X non-essential amino acids (NEAA) (Gibco, Waltham, MA, USA). Media was changed one day post-
electroporation, and supernatants were collected twice daily from days four through six and stored at 4 °C. The pooled
supernatants were passed through a 0.22 ym vacuum filter and subsequently concentrated to ~40mL in 100kDa MWCO
Amicon Ultra-15 Centrifugal Filter Units (Millipore Sigma, Allentown, PA, USA).

Quantification of HCV titer by limiting dilution

The TCID50/mL of concentrated virus was determined after one freeze-thaw by limiting dilution assay. Huh7.5 cells were
seeded in a 96-well plate at a density of 6400 cells/well. 50 yL of ten-fold serial dilutions (from 1:1E2 to 1:1E7) of virus
were added to each column of wells, with 8 wells receiving each dilution. After removal of the inoculum 6-8 hours post-
infection, cells were washed with unsupplemented DMEM and cultured in 200 yL DMEM containing 10% (v/v) FBS and
1% (v/v) penicillin/streptomycin. On day 3 post-infection, cells were fixed and permeabilized in ice-cold 100% methanol
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for 30min at —20 °C. Cells were blocked in 1X PBS containing 0.1% (v/v) Tween-20, 1% (w/v) BSA, and 0.2% (w/v) skim
milk for 30 min at room temperature (RT). Cells were then treated with PBS containing 3% H,O, for S5min at RT. Cells were
then stained with a mouse anti-HCV NS5A monoclonal antibody (clone 9E10 [59], 220 ng/mL, 50uL/well) for 1 h at RT,
followed by an HRP-conjugated goat anti-mouse polyclonal antibody (Invitrogen, Waltham, MA, USA, 5ug/mL, 50uL/well).
HRP signal was detected using DAB Peroxidase (HRP) Substrate Kit (Vector Laboratories, Newark, CA, USA). TCID50/
mL was calculated using the Reed & Muench method [63].

Analysis of HCV infection by NS5A staining

HCV infections were conducted in a 24-well format with 3E4 cells seeded per well 12 hrs pre-infection. Infections were
conducted in triplicate wells using cell-culture produced virus produced as described above. For NS5A staining, tryp-
sinized cells were centrifuged at 2000 rpm for 3min at 4 °C, fixed with 4% (w/v) paraformaldehyde (PFA) (Sigma Aldrich,
St. Louis, MO, USA) and permeabilized in 0.1% (w/v) saponin (Thermo Fisher Scientific, Waltham, MA, USA) and 1%
(v/iv) FBS in DPBS. Pellets were subsequently incubated for 1 hr at room temperature with murine-produced primary anti-
body specific for HCV NS5A (clone 9E10) [59] diluted in FACS buffer (1% (v/v) FBS in DPBS) to 220 ng/mL. Cells were
washed with FACS buffer and then incubated at 4 °C for 30 min in the dark with goat anti-mouse Alexa 647 secondary
antibody (Invitrogen, Waltham, MA, USA) diluted to 8 ug/mL. Cells were subsequently centrifuged at 2000 rpm for 3 min at
4 °C, washed once with FACS buffer, and then analyzed in FACS buffer on a BD LSRII flow cytometer (BD Biosciences,
Franklin Lakes, NJ, USA). All flow cytometry data were processed in FlowJo Software version 10.4.2 (FlowJo, LLC).

Bulk RNA sequencing and analysis

HCV infections were conducted in a 10cm plate with 1E6 Huh7-Lunet cells seeded per plate 12 hrs pre-infection. Cells
were infected at an MOI of 1 and expanded over the course of a week. On day 6 post-infection, 24-well plates were
seeded with 3E4 cells per well. On day 7, cells were transduced with 500 L 1:5 diluted lentivirus as described above.

At 12, 24, and 48 hours post-transduction, cells were trypsinized, centrifuged at 2000 rpm for 3min at 4 °C, washed once
with DPBS, and resuspended in 200 uL H,0O with 133 pL lysis/binding buffer (Applied Biosystems, Waltham, MA, USA).
Timepoints were frozen on dry-ice and stored at =20 °C until RNA extraction. RNA extraction was performed using the
KingFisher Flex System (Thermo Fisher Scientific, Waltham, MA, USA). Samples were subsequently treated with 12 pL of
1X DNase | (RNase-free) (New England Biolabs, Ipswich, MA, USA) for 30 min at 37 °C. Total RNA was purified from this
reaction using 0.8X SPRIselect (Beckman Coulter, Brea, CA) and quantified via NanoDrop spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA).

Up to 25ng total RNA was used per sample for gene expression profiling. Bulk RNA-barcoding and sequencing (BRB-
Seq) [64] was performed with minor modifications. At the reverse transcription (RT) step, Template Switching RT Enzyme
Mix (New England Biolabs, Ipswich, MA, USA), along with a uniquely barcoded oligo(dT)30 primer was used for each
sample, modified with the lllumina TruSeq Read 1 priming site instead of Nextera Read 1 [65]. The remainder of the
BRB-Seq protocol was followed, pooling up to 24 first-strand cDNAs into a single tube, followed by Gubler-Hoffman nick
translation cDNA synthesis, and tagmented cDNA with in-house-produced Tn5 [66]. cDNAs were amplified for 14—15 PCR
cycles using a P5-containing primer and a distinct multiplexed i7 indexing primer (Chromium i7 Multiplex Kit, 10X Genom-
ics, Pleasanton, CA). Size-selection was performed using 0.65X SPRIselect (Beckman Coulter, Brea, CA), and libraries
were sequenced on one flowcell of a NovaSeq SP v1.5 flowcell (Illumina, San Diego, CA) with 28 cycles Read 1, 8 cycles
Read i7, and 101 cycles Read 2.

Reads were demultiplexed with Picard v2.25.6 (from within viral-core v.2.3.1) using Q20M1 mismatch tolerance and
the read structure flag ‘5S8B15M8B101T’ in order to simultaneously process the within-pool sample barcode (from the RT
primer) and the pool barcode (from the i7 indexing primer). Next, reads were mapped to the human genome hg38, plus
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the HCV/Jc1 isolate reference (derived from GenBank OQ726018.1), with STAR v2.7.11b, with uniquely mapping reads
counted to the comprehensive gene annotation on the primary assembly with htseq-count v2.0.5.

Data Processing and Differential Expressed Gene (DEG) analysis

Transcript read counts for mmRTP4/hsRTP4- or mock-transduced cells at various time points post-HCV infection were
analyzed using DESeq2 (v1.38.3) [67]. Biological replicates were first assessed for quality by calculating Pearson’s
correlation coefficients (PCC) of read counts across genes. Any replicate displaying a PCC <0.9 compared to the other
replicates was removed before DEG analysis. Low-abundance genes were filtered out by retaining only those with at least
10 reads in at least 2 samples.

Differential expression analyses were conducted using raw read counts, as recommended by DESeq2, to compare
the transduced versus mock-transduced samples at each time point. A gene was considered significantly differentially
expressed if it had an adjusted p-value <0.05 and an absolute log2 fold change >2. Heatmaps were generated with the
pheatmap (v1.0.12) package [68], using the Z-score of each gene for visualization. The top 25 upregulated genes identi-
fied in the mmRTP4-transduced versus mock-transduced comparison at 12 hours post-infection were selected and visual-
ized in the heatmap.

Western blot

Cells were centrifuged at 2000 rpm for 3min at 4 °C, and the resulting pellets were lysed for 5min on ice in RIPA buffer
(50mM Tris, pH 7-8; 0.1% (w/v) SDS; 0.5% (w/v) sodium deoxycholate; 1% (v/v) Triton-X-100) containing 1X protease
inhibitor cocktail (Sigma Aldrich, St. Louis, MO, USA). Lysates were subsequently spun down at 150009 for 60 min at 4
°C. Supernatants were mixed with 6X Laemmli buffer (375mM Tris pH 7-8, 10% (w/v) SDS, 50% (v/v) glycerol, 10% (v/v)
B-mercaptoethanol, 0.03% (w/v) bromophenol blue) and heated for 5min at 95 °C. Protein concentration was quantified
via Pierce BCA assay (Thermo Fisher Scientific, Waltham, MA, USA).

60 ug of each sample were separated on a 15% (w/v) SDS-polyacrylamide gel in running buffer (25mM Tris, 192mM
glycine, 0.1% (w/v) SDS in deionized H,O) at 150 V for 60 min. Proteins were then transferred onto a 0.2 um nitrocellu-
lose membrane (Bio-Rad Laboratories, Hercules, CA, USA) in transfer buffer (25mM Tris, 192mM glycine, 0.04% (w/v)
SDS, 20% (v/v) methanol in deionized H,0) at 95 V for 70 min. Membranes were treated with blocking solution (5% (w/v)
milk in PBS) overnight at 4 °C. Membranes were washed twice with 0.05% (v/v) Tween-20 in PBS (PBS-T) for 5min and
incubated with primary antibodies diluted in PBS-T for 60 min at room temperature. Membranes were washed thrice with
PBS-T for 5min and incubated with secondary antibodies diluted in PBS-T for 30 min at room temperature, followed by
three more washes with PBS-T. Membranes were subsequently visualized on an Odyssey CLx Imaging System (LI-COR
Biotechnology, Lincoln, NE, USA).

Proximity-ligation assay

HCV infections were conducted in a 6-well plate with 1.5E5 Huh7-Lunet cells seeded per plate pre-infection. Cells were
infected with HCV (J6/JFH1-Jc1) at an MOI of 1. On day 1 post-infection, 3E4 cells were seeded onto collagen-coated
coverslips in 24-well plates. The next day, cells were transduced with 500 pL 1:5 diluted lentivirus (FLAG-mmRTP4 or
FLAG-hsRTP4) without spinoculation. At 48 hours post-transduction, cells were fixed and permeabilized in ice-cold 100%
methanol for 30 min at =20 °C. The Duolink /n Situ Detection Reagents Green (Sigma-Aldrich, St. Louis, MO, USA) kit was
used following the manufacturer’s instructions, with the following modifications. Replacement buffers were used for wash
buffer A (150mM NaCl, 10mM Tris base, 0.05% Tween-20 in H,O, pH 7.4), and wash buffer B (100mM NaCl, 40 mM Tris
base, 160mM Tris-HCl in H,O, pH 7.5) [69]. For secondary antibodies, Duolink /n Situ PLA Probes Anti-Rabbit MINUS and
Anti-Mouse PLUS were used. Coverslips were mounted in Duolink /n Situ Mounting Medium with DAPI and imaged using
a Nikon Ti-E microscope (Nikon, Melville, NY, USA) within the Princeton University Confocal Microscopy Facility. Images
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were taken at 40X magnification and analyzed using Fiji (ImageJ2) image analysis software and Python. Foci were quanti-
fied using the Python OpenCYV library; a binary threshold was applied to the image using the cv2. THRESH_OTSU method
[70], contours were detected using cv2.findContours(), and objects with a total area below 10 pixels? were filtered out as
noise. Foci were quantified for cells within 10 images per sample.

In vivo experiments

Generation of CD81EL2HH QCLNE-2HH RTP47- mice
The generation of CD815-2HH QCLNE-MH has been described previously [31]. RTP4™ mice were generated previously by
targeting the first and second coding exons and were kindly provided by Xin-zhuan Su (NIAID) [30].

To generate CD81E-2HH OQCLNE-2HH RTP4~~ mice, RTP4~~ mice were bred with CD81E-2HH QCLNE2HH mice, and the
progeny generation (CD81E-2MH QCLNEL2MHI RTP4+~) was intercrossed. To test for CD81E-2HH and OCLNE-2HHI we con-
ducted gPCR on ear clippings as described previously [31]. To test for RTP4~~, we conducted 3 diagnostic PCR reactions
to screen for the novel junction present in knockout mice. In wild-type mice, PCRs 1 and 3 produce a band, whereas PCR
2 produces a band in knockout mice. To extract DNA from ear punch biopsies, ear clips were boiled in 80 pL digestive
buffer (6.25mL 1M NaOH, 50 uL 0.5M EDTA, 118.7mL H,O, pH 12) for 1h at 95 °C, and subsequently quenched with
80 pL neutralization buffer (40 mM Tris-HCI, pH 5). The resultant pH-neutral suspension of genomic DNA was utilized for
genotyping PCRs. To extract RNA, we utilized the Monarch Total RNA Miniprep Kit (New England Biolabs, Ipswich, MA,
USA) (Table 2).

Mouse hepatocyte isolation and transplantation

Murine hepatocyte isolation and transplantation into FNRG mice were conducted as described previously [71]. In brief,
mice were anaesthetized by intraperitoneal injection of a mixture of 100 mg/kg ketamine and 10 mg/kg xylazine. Livers
were perfused through the portal vein with a chelating solution (0.01M HEPES pH 7.3 and 0.5mM EGTA pH 8.0 in Ca?*/
Mg?*-free EBSS) at a flow rate of 2mL/min until the liver bleached, followed by 40 ml collagenase solution (0.01M HEPES
pH 7.3 and 1mg/ml Collagenase Type Il in EBSS with Ca?*, Mg?* and Phenol Red). The digested liver was cut into pieces,

Table 2. Primers utilized for mouse genotyping in this study.

Primer Purpose Sequence (5°-3’)

PU-O-3812 mCD81"2 gPCR primer 1 CCAAGGCTGTGGTGAAGACTTTC
PU-O-3814 mCD81"2 gPCR primer 2 GGCTGTTCCTCAGTATGGTGGTAG
PU-0-3812 mCD81"T gPCR primer 1 CCAAGGCTGTGGTGAAGACTTTC
PU-O-3813 mCD81"T gPCR primer 1 TGTTCTTGAGCACTGAGGTGGTC
PU-0-1235 mOCLNPEL2 gPCR primer 1 GTGTTTATTGCCACGATCGTGT
PU-O-1236 mOCLNPE2 gPCR primer 2 AAATTGGTTGCAGAGGGCATAT
PU-O-1237 mOCLN"T gPCR primer 1 CTCTTTGGAGGAAGCCTAAACTACC
PU-0-1238 mOCLNYT gPCR primer 1 AAACTGGTTGCAGATCATATAT
PU-O-1000 mGAPDH gPCR primer 1 ACGGCCGCATCTTCTTGTGCA
PU-0O-1001 mGAPDH gPCR primer 2 ACGGCCAAATCCGTTCACACC
PU-0-9208 RTP4-/~genotyping PCR 1 FP TAGGTGATTAGGAACACAACC
PU-0-9209 RTP4-'-genotyping PCR 1 RP AGCGACCCTAACCATCTTAGC
PU-0-9208 RTP4-'-genotyping PCR 2 FP TAGGTGATTAGGAACACAACC
PU-0-9210 RTP4-/-genotyping PCR 2 RP GCTATTTTCAGAGCATGTCC
PU-0-9693 RTP4-'-genotyping PCR 3 FP GCAGAAGTTGGACCTCTGC
PU-0-9210 RTP4-/~genotyping PCR 3 RP GCTATTTTCAGAGCATGTCC

https://doi.org/10.1371/journal.ppat.1013412.t002

PLOS Pathogens | hitps://doi.org/10.1371/journal.ppat. 1013412  September 8, 2025 19/25



https://paperpile.com/c/S3D3EQ/rHpeb
https://paperpile.com/c/S3D3EQ/r8pBC
https://paperpile.com/c/S3D3EQ/yjKOW
https://paperpile.com/c/S3D3EQ/r8pBC
https://paperpile.com/c/S3D3EQ/r7fmF
https://doi.org/10.1371/journal.ppat.1013412.t002

PLO%- Pathogens

transferred into a washing solution (0.01M HEPES pH7.3 and 10% FBS in DMEM), passed through a 100 pm cell strainer,
washed and passed through a 100 pm cell strainer. The resulting cell suspension was passed through a 70 ym cell
strained. Cell suspension was washed for three more times with spinning steps at 140g for 5min to remove unwanted
cellular contaminates. Cells were resuspended in HyClone DMEM (Cytiva, Marlborough, MA, USA) and cell viability was
assessed through trypan blue exclusion.

Engraftment of mouse hepatocytes into FNRG recipients

The generation of Fah” NOD.Cg-Rag1™™Mem|L2rg™mWi/SzJ IL2Rg™" (FNRG) mice has been previously described [32].
FNRG mice maintained on water supplemented with 10% (w/v) 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione
(NTBC, Yecuris Inc., Tualatin, OR, USA), to block the build-up of metabolites to toxic concentrations. To facilitate hepatic
engraftment female FNRG mice older than 6 weeks of age were injected intrasplenically with 1E6 hepatocytes freshly
isolated from CD81E-2HH QCLNE-2MH RTP4~ mice. Following transplantation FNRG mice were given water lacking NTBC
for 9 days, followed by 7 days with 1% NTBC, 7 days with water lacking NTBC, and then 4 days with 1% NTBC. Following
this, mice were solely provided water lacking NTBC.

HCV RNA isolation from serum

Mouse blood was harvested by cheek-puncture at the aforementioned intervals. Serum was harvested by centrifuging the
coagulated blood (3500rpm, 10 min, room temperature) and collecting the supernatant. Total RNA was isolated from 25
ML serum using the Zymo Viral RNA extraction kit (Genesee Scientific, El Cajon, CA, USA) or the KingFisher Flex System
(Thermo Fisher Scientific, Waltham, MA, USA), and the HCV genome copy number was quantified by one-step RT-gPCR
using a Multicode-RTx HCV RNA kit (Luminex Corporation, Austin, TX, USA) and a StepOne Real Time PCR (Applied
Biosystems, Waltham, MA, USA), according to manufacturer’s instructions.

HCV RNA isolation from liver tissue

Mouse livers were harvested postmortem in accordance with protocols reviewed and approved by the Institutional Animal
Care and Use Committees (IACUC) of Princeton University. Liver tissue was stored at -80 °C in RNALater. Stainless steel
beads (5mm, Qiagen, Hilden, Germany) and 350 uL lysis buffer were added to sample tubes containing 10-50mg liver
tissue and homogenized using a TissueLyser LT (Qiagen, Hilden, Germany). Total RNA was isolated from lysate using

the Monarch Total RNA Miniprep Kit (New England Biolabs, Ipswich, MA, USA) or the KingFisher Flex System (Thermo
Fisher Scientific, Waltham, MA, USA), and the HCV genome copy number was quantified by one-step RT-qPCR using

a Multicode-RTx HCV RNA kit (Luminex Corporation, Austin, TX, USA) and a StepOne Real Time PCR (Applied Biosys-
tems, Waltham, MA, USA), according to manufacturer’s instructions.

Histology processing, chromogenic immunohistochemistry, and whole slide scanning

Tissue samples were fixed for a minimum of 72h in 4% (w/v) paraformaldehyde (PFA) before processing in a Tissue-Tek
VIP-5 automated vacuum infiltration processor (Sakura Finetek USA, Torrance, CA, USA) and embedded in paraffin using
a HistoCore Arcadia paraffin embedding machine (Leica, Wetzlar, Germany). 5-um tissue sections were generated using
a RM2255 rotary microtome (Leica, Wetzlar, Germany) and transferred to positively charged slides. A Ventana Discovery
Ultra tissue autostainer (Roche Diagnostics, Indianapolis, IN, USA) was used for chromogenic immunohistochemistry
(IHC). A rabbit primary polyclonal antibody specific to fumarylacetoacetase (FAH) was diluted to 1/100 in Ventana antibody
diluent with casein (Roche) and incubated with tissue samples at RT for 3 hours (Invitrogen: PA5-42049), followed by
incubation with a secondary goat anti-rabbit HRP-polymer antibody (Vector Laboratories, Burlingame, CA, USA) for 20 min
at 37°C, and developed with 3,3-diaminobenzidine (DAB) and hematoxylin counterstain (Roche). Histology images were
acquired using a Phenolmager whole slide scanner (Akoya Biosciences, Marlborough, MA, USA) for figure preparation.
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Table 3. Primers utilized for RT-qPCR quantification of ectopic RTP4 and housekeeping genes.

Primer Purpose Sequence (5’-3’)

PU-0-8026 hsHPRT1 gPCR primer 1 ACTGAAGAGCTATTGTAATGACCAG
PU-0-8027 hsHPRT1 gPCR primer 2 TGGATTATACTGCCTGACCAAG
PU-0-10332 FLAG-hs/mmRTP4 qPCR primer 1 GATTACAAGGATGACGACGATAAG
PU-O-11974 FLAG-hsRTP4 gPCR primer 2 CTAGCTGAAGGTTGCCATCCAA
PU-0-12546 FLAG-mmRTP4 gPCR primer 2 ACAATGTTCTTATCCAAATGCAGGC
PU-O-10768 mmRTP4 qPCR primer 1 TGGGAGCAGACATTTCAAGAAC
PU-O-10769 mmRTP4 qPCR primer 2 ACCTGAGCAGAGGTCCAACTT
PU-O-11728 mmHPRT1 gPCR primer 1 TCAGTCAACGGGGGACATAAA
PU-O-11729 mmHPRT1 qPCR primer 2 GGGGCTGTACTGCTTAACCAG

https://doi.org/10.1371/journal.ppat.1013412.t003

Transfection of FLAG-RTP4 constructs

293T cells were seeded in 10cm dishes at a density of 2.2E6 cells/plate. Huh7 Lunet cells were seeded in 6-well plates at
a density of 3E5 cells/well. 12 hours post-seeding, cells were transfected with either 10 pg (293T) or 1.5 pg (Huh7 Lunet) of
tagged constructs utilizing X-tremeGENE HP DNA Transfection Reagent (Roche Applied Science; Indianapolis, IN). Media
was changed 24 hours post-transfection. 48 hours post-transfection, cells were harvested for downstream analyses.

IFNB stimulation of primary murine hepatocytes (PMHs)

PMHs were harvested from 6-8 week old C57BL/6 mice via collagenase perfusion as described above. PMHs were
seeded into a collagen-coated 24-well plate at a density of 8E4 cells/well. 3 hours post-seeding, PMHs were treated with
250 IU recombinant mouse IFN-B1 (BioLegend, San Diego, CA, USA). 12 hours post-stimulation, total RNA was isolated
for RT-gPCR analysis (see below).

Quantification of ectopic RTP4 expression via RT-qPCR

RNA was harvested from cell pellets utilizing the Monarch Total RNA Miniprep Kit (New England Biolabs, Ipswich, MA,
USA), following manufacturer instructions. Transcripts from the resultant eluates were quantified using Luna Universal
gPCR Master Mix (New England Biolabs, Ipswich, MA, USA) with the primers listed in Table 3.
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