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Abstract

Invertebrates lack the immune machinery underlying vertebrate-like acquired immunity.

However, in many insects past infection by the same pathogen can ‘prime’ the immune

response, resulting in improved survival upon reinfection. Here, we investigated the mecha-

nistic basis and epidemiological consequences of innate immune priming in the fruit fly Dro-

sophila melanogaster when infected with the gram-negative bacterial pathogen Providencia

rettgeri. We find that priming in response to P. rettgeri infection is a long-lasting and sexually

dimorphic response. We further explore the epidemiological consequences of immune prim-

ing and find it has the potential to curtail pathogen transmission by reducing pathogen shed-

ding and spread. The enhanced survival of individuals previously exposed to a non-lethal

bacterial inoculum coincided with a transient decrease in bacterial loads, and we provide

strong evidence that the effect of priming requires the IMD-responsive antimicrobial-peptide

Diptericin-B in the fat body. Further, we show that while Diptericin B is the main effector of

bacterial clearance, it is not sufficient for immune priming, which requires regulation of IMD

by peptidoglycan recognition proteins. This work underscores the plasticity and complexity

of invertebrate responses to infection, providing novel experimental evidence for the effects

of innate immune priming on population-level epidemiological outcomes.

Author summary

When we are vaccinated, our immune response is able to respond quickly if we are ever

exposed to the same pathogen in the future. Unlike humans, the immune systems of

invertebrates, such as insects, are not capable of the same type of specific immune mem-

ory. However, much work has shown that insects previously exposed to an inactivated

pathogen will fare better if they are re-infected–a phenomenon broadly called “immune

priming”. How insects are able to do this is an exciting focus of current research. We

investigated immune priming in the fruit fly, a powerful model system for infection and
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immunity. We found that exposure to an inactivated form of the bacterial fly pathogen

Providencia rettgeri resulted in flies better surviving a subsequent live infection. This effect

lasted several days, was stronger in male flies, and was seen in different fly genetic back-

grounds. We uncovered that priming requires a specific immune response in the fly fat-

body (the equivalent to a fly ‘liver’) that produces an antimicrobial protein called Dipteri-
cin. We also found that primed flies were able to keep pathogen growth lower, and that

this reduced their ability to spread the infection to other flies.

Introduction

Immunisation using attenuated or inactivated pathogens is one of the most successful public

health practices to reduce the incidence of infectious diseases [1]. Immunisation works

because humans and other vertebrate animals have evolved an acquired immune response

capable of specific immune memory, which ensures a strong, precise, and effective response to

a secondary infection [2]. Insects possess a robust innate immune response to pathogens

which includes both cellular and humoral components [3–5], but lack vertebrate-like special-

ized immune cells responsible for acquired immunity. These differences in immune physiol-

ogy resulted in the long-standing assumption that invertebrates should not be capable of

immune ‘memory’, though this view was clearly at odds with empirical evidence from several

invertebrate host-pathogen systems [6–8]. A substantial body of work has revealed diverse

priming responses in a range of arthropod taxa, including Dipterans: fruit flies [9], mosquitoes

[10]; Coleopterans: flour beetles [11,12]; Lepidopterans: the greater wax-moth [13]; Hymenop-

terans: bumblebee [14]; Crustaceans: water fleas [15] and Arachnids: spiders and scorpions

[16]. There is therefore substantial evidence that arthropods possess a form of “immune prim-

ing”, where low doses of an infectious pathogen, or even an inactivated pathogen, can lead to

increased survival upon reinfection.

There are many ways in which invertebrates may enhance their immune responses upon

reinfection [6,17,18]. In Drosophila, the priming response during infection with the gram-pos-

itive bacterial pathogen Streptococcus pneumoniae was shown to be dependent on haemocytes

and phagocytosis, while the Toll-pathway—the main pathway involved in clearance of gram-

positive bacteria—was shown to be insufficient for successful priming [9]. Increased phago-

cytic activity in primed individuals has also been shown to play a key role in priming during

Pseudomonas aeruginosa infection in Drosophila [19], while in the woodlouse, prior exposure

to heat-killed bacteria led to increased phagocytosis by haemocytes upon reinfection [20]. In

other Drosophila work, PGRP-LB (peptidoglycan recognition protein LB, a negative regulator

of the Immune deficiency (IMD)-pathway) was identified as a key mediator of transgenera-

tional immune priming against infection with parasitoid wasps (Leptopilina heterotoma and

Leptopilina victoriae). Here, downregulation of PGRP-LB was necessary to increase haemocyte

proliferation, required for wasp encapsulation by haemocytes in the offspring [21]. By contrast,

in response to infection with Drosophila C virus (DCV), Drosophila progeny can produce a

DCV-specific priming response by inheriting viral cDNA from the infected adult flies which is

a partial copy of the virus genome [22,23]. The benefits of priming are not always associated

with increased pathogen clearance, as shown during Enterococcus faecalis infection, where pro-

tection was explained by increased infection tolerance, not increased clearance [24].

Beyond its underlying mechanisms, an important but understudied aspect of immune

priming is its potential consequences for pathogen transmission [17,25–27]. Epidemiological

modelling predicts that priming should affect the likelihood of pathogen persistence, destabi-

lise host–pathogen population dynamics, and that these effects depend on the degree of
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protection conferred by priming [26]. Further theoretical work suggests that priming can

either increase or decrease infection prevalence depending on the extent to which it affects the

pathogen’s colonization success and the host’s ability to clear or tolerate the infection [25].

While primed individuals may live longer, thus extending the infectious period, their pathogen

burden may be lower, which could lead to lower pathogen shedding and less severe epidemics.

Immune priming is therefore expected to have a significant impact on the outcome of patho-

gen transmission by directly modifying important epidemiological parameters, but the

strength and direction of these effects is not intuitive to predict.

Here, we focus on immune priming in Drosophila when infected with the gram-negative

bacterial pathogen Providencia rettgeri to investigate the occurrence, generality, duration, and

mechanistic basis of immune priming during systemic infection. Furthermore, motivated by

the theoretical predictions about the role of immune priming on epidemiological dynamics,

we also designed transmission experiments to enable us to test how immune priming could

affect each of these behavioural and immunological components of pathogen spread.

Results

Immune priming in Drosophila is a long-lasting response, showing sex-

specific effects in different genetic backgrounds

We first examined if the length of time between the initial non-lethal exposure with heat-killed

P. rettgeri and the secondary systemic pathogenic challenge with live P. rettgeri affects the

extent of priming. To address this, we exposed w1118male and female control flies to a systemic

infection of live P. rettgeri 18-hours, 48-hours, 96-hours, 1-week or 2-weeks following the ini-

tial exposure to heat-killed bacteria. We found significant sex differences in the magnitude of

the priming effect (sex treatment effect p<0.05) at 18-hours, 1-week and 2-weeks treatments

(S1 Table), reflecting time-dependent and sex-specific priming dynamics. Male w1118 flies

showed increased survival after initial priming for time points 18-hours, 48-hours and

96-hours, and still showed a significant, albeit reduced, priming response 1-week and 2-weeks

after the initial exposure (Fig 1A–1E). Female flies did not show a priming response when

infected 18-hours following the initial challenge, but the priming response increased with

48-hours and 96-hours priming intervals before completely disappearing after a week time-

interval (including 2-weeks) (Fig 1A–1E and S1 Table).

Next, we asked if priming occurred in two other commonly used Drosophila lines, Canton-

S and Oregon-R (Ore-R) as observed with w1118 (Fig 2A–2D). Given the widespread effects of

the endosymbiontWolbachia onDrosophila immunity [28–30] we also tested whether the

presence ofWolbachia had any effect on immune priming by comparing the priming response

of Oregon-R (OreR), a line originally infected withWolbachia strain wMel, henceforth OreR-
Wol+ and aWolbachia-free line OreRWol- that was derived from OreRWol+ by antibiotic treat-

ment [30]. Females and males of the four Drosophila lines were treated first with heat-killed P.

rettgeri, followed by infection with a systemic infection with live P. rettgeri 96-hours after the

first treatment. Since the 96-hour time gap between priming and live P. rettgeri treatments

showed maximum priming response (difference in survival) for both males and females of the

w1118 line (Figs 1C and 2A), we kept the 96-hours timepoint as the consistent time-gap

between priming and live infection throughout the study. w1118 did not show differences

between sexes in the priming responses at this timepoint (S2 Table; Sex × Treatment effect

p = 0.93). Canton-S flies showed increased survival following priming and we observed a

stronger survival benefit in females (Sex effect, p<0.001)(Fig 2C and S2 Table). Oregon-R

males also exhibited increased survival following priming, but priming had no significant

effect on the females, as indicated by a significant interaction between sex and priming

PLOS PATHOGENS Innate immune priming in Drosophila

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012308 June 10, 2024 3 / 27

https://doi.org/10.1371/journal.ppat.1012308


Fig 1. The benefit of priming is long-lasting. Survival curves of w1118 females and males with primed (exposed to heat-killed P. rettgeri in the first exposure)

and unprimed (exposed to a sterile solution in the first exposure) treatments challenged with live P. rettgeri pathogen after (A) 18-hours (B) 48-hours and (C)

96-hours (D) 168-hours/1-week and (E) 336-hours/2-weeks post priming that is, initial non-lethal exposure to heat-killed P. rettgeri (n = 7–9 vial with 10–15

flies in each vial/sex/treatment/timepoint).

https://doi.org/10.1371/journal.ppat.1012308.g001
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treatment (Sex × Treatment effect p<0.001; Fig 2D and S2 Table). We found that the presence

ofWolbachia significantly improved overall survival of both males and females (Fig 2C and

2D and S3 Table). However, the immune priming observed in males in absence ofWolbachia
(OreRWol-) was no longer present in flies carryingWolbachia (OreRWol+), and both sexes

showed similar patterns of survival (Sex effect, p = 0.43; Fig 2B and S2 Table).

Primed male w1118 flies exhibit a transient reduction in bacterial load

Previous studies have shown that the priming response to fungi and gram-positive bacteria can be

explained by increased clearance of bacterial pathogens in primed individuals [9,31]. We therefore

examined whether the increased survival following a prior challenge we observed was a result of

greater bacterial clearance in the primed individuals, or if the primed flies were simply better able

to tolerate the bacterial infection [24]. To investigate this, we repeated the priming experiment

withw1118 as it showed the strongest priming phenotype in both sexes (Figs 1C and 3A), and mea-

sured the bacterial load at 24-hours and 72-hours post-infection for both primed and unprimed

female and male flies. Again, we observed a clear priming effect in both sexes (Fig 3A and S4

Table). In primed males the systemic infection resulted in higher survival (Sex effect, p = 0<001),

but the effect of priming on the survival benefit was the same in both sexes (Sex × Treatment effect

p = 0.34; S4 Table) and also in decreased bacterial loads at 24-hours post-infection when com-

pared to unprimed individuals (Fig 3 and S4 Table for survival and S5 Table for load). However,

by 72-hours post-infection, bacterial loads had dropped in both primed and unprimed male flies

and there was no detectable effect of priming on the bacterial loads (Fig 4B and S5 Table).

Priming following oral infection reduces bacterial shedding and

transmission in males

Apart from increasing survival during infections, immune priming may also have conse-

quences to pathogen spread and transmission [27]. Despite having enhanced survival, primed

Fig 2. Survival curves of females and males of the commonly used Drosophila lines either primed-challenged or unprimed-challenged with P. rettgeri. (A)

w1118 –this is the same data plotted in Fig 1C, and included in this figure to allow a direct comparison with the other lines (B) Canton-S (C) Oregon-R carrying

endosymbiontWolbachia (D) Oregon-R cleared ofWolbachia. (n = 7–9 vials with 10–15 flies in each vial/sex/treatment/line).

https://doi.org/10.1371/journal.ppat.1012308.g002

PLOS PATHOGENS Innate immune priming in Drosophila

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012308 June 10, 2024 5 / 27

https://doi.org/10.1371/journal.ppat.1012308.g002
https://doi.org/10.1371/journal.ppat.1012308


individuals may also extend the infectious period or their pathogen burden may be lower,

which would lead to less severe epidemics [27]. To investigate how immune priming affects

epidemiological parameters, we tested whether primed individuals have reduced bacterial

shedding and spread. Given the oral-faecal nature of bacterial transmission and that our previ-

ous results all related to systemic infections, we first established that a survival benefit of prim-

ing also occurs under oral infection. Following an initial oral exposure to a heat-killed P.

rettgeri culture, after a 72-hour period we exposed female and male w1118 flies orally to a lethal

dose of live P. rettgeri. Primed w1118males, but not females, showed increased survival

decreased internal bacterial loads after priming via the oral route of infection. (Fig 4A and 4B

and S6 and S7 Tables).

Given this priming effect on bacterial loads (Fig 4B) we hypothesised that priming could

directly impact the amount of bacterial shedding, and therefore have a direct impact on patho-

gen transmission. We measured the shedding of single flies 4-hours after infection by live P.

rettgeri exposure. We found that male flies previously primed with a heat-killed bacterial

Fig 3. Bacterial loads of primed and unprimed w1118 flies. (A). Survival curves of primed and unprimed control w1118 flies (B). Internal bacterial load

(n = 20–22 vial with 5–7 flies in each vial/sex/treatment) after (i) 24-hours and (ii) 72-hours following P. rettgeri infection. Different letters in panel-B

denotes primed and unprimed individuals are significantly different, tested using Tukey’s HSD pairwise comparisons, analysed separately for each timepoint

and sex combination. The error bars in panel B represent standard error.

https://doi.org/10.1371/journal.ppat.1012308.g003
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inoculum shed less bacteria than unprimed flies. However, both primed and unprimed females

showed increased bacterial shedding following oral P. rettgeri infection (Fig 5A and S9 Table).

These effects on bacterial shedding are likely to have a direct effect on the spread of infection

in groups of individuals. In transmission assays, primed donor males also spread very little

pathogen upon re-infection with oral P. rettgeri, compared to the unprimed male treatment

where successful transmission was detected recipient flies (Fig 5B and S9 Table). However,

both primed and unprimed females showed equivalent levels of bacterial spread following oral

P. rettgeri infection (Fig 5B and S9 Table). While multiple traits, including host activity levels

and contact rates may influence pathogen transmission [32,33], we did not find any difference

in the locomotor activity of primed and unprimed flies (S3 Fig). Our results therefore provide

evidence that, in male flies, immune priming reduces pathogen transmission by directly

decreasing bacterial shedding from infectious flies.

The IMD-pathway, but not the Toll pathway, is required for immune

priming during P. rettgeri infections

In fruit flies, the production of AMPs during antibacterial immunity is mediated by the

Immune deficiency (IMD) and Toll pathways. In both pathways, pathogens are recognised by

peptidoglycan receptors (PGRPs), initiating a signalling cascade that culminates in the activa-

tion of the NF-κB-like transcription factors (Dorsal in Toll or Relish in IMD), resulting in the

Fig 4. Priming occurs in males but not females during oral infections. (A) Survival curves of male and female wildtype (w1118) flies with (i) systemic (ii) oral

priming where flies initially exposed to heat-killed P. rettgeri or unprimed flies exposed to a sterile solution in the first exposure, this is followed by live P.

rettgeri pathogen after 72-hour time gap [systemic infection dose = 0.75 OD (~45 cells/fly) and oral P. rettgeri infection dose = 25 OD600]. (n = 7–9 vials/sex/

treatment/infection route) (B). Mean bacterial load measured as colony forming units at 24 hours following (i) systemic and (ii) oral priming, followed by live

P. rettgeri infection for male and female w1118. Different letters in panel-B denotes primed and unprimed individuals are significantly different, tested using

Tukey’s HSD pairwise comparisons.

https://doi.org/10.1371/journal.ppat.1012308.g004
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upregulation of AMP genes. The Toll-pathway generally recognises LYS-type peptidoglycan

found in gram-positive bacteria and fungi. The IMD-pathway recognises DAP-type peptido-

glycan found in gram-negative bacteria and produces AMPs such as Diptericins, Attacins and

Drosocin among others. AMPs work with a high degree of specificity, so that only a small sub-

set of the total AMP repertoire provides the most effective protection against specific patho-

gens [34], although this specificity has been shown to be greatly reduced during aging [35].

The inducible AMPs regulated by the IMD signalling pathway play a crucial role in resisting

gram-negative bacterial infection such as P. rettgeri [36]. Therefore, we wanted to investigate

whether the IMD signalling pathway and IMD-responsive AMPs contribute to immune prim-

ing. To address this, we used several transgenic fly lines (CRISPR knockouts and UAS-RNAi

knockdowns) with functional absence of or knockdown of different regulatory and effector

components of the IMD-signalling pathway. As all CRISPR/cas9 AMP mutants were isoge-

nized onto the iso-w1118 background, we first confirmed that the priming response in iso-w1118

was the same as the w1118 used in the previous experiments (Figs 6A and S4). First, we tested a

Relish loss-of-function mutant RelE20, a key regulator of the IMD immune response. As

expected, we found that Relishmutants did not show any bacterial clearance, died at faster

rate, and therefore did not show any benefit of a priming treatment (Fig 6Aii for survival and

Fig 6Bii for bacterial load, S10 Table for survival and S11 Table for bacterial load). Loss-of—

function of spätzle (spz), a key regulator in the Toll pathway, showed enhanced survival follow-

ing initial heat-killed exposure, and their mortality rates were the same as in controls (w1118)
(Fig 6Aiii and S10 Table) indicating that Toll-pathway does not contribute to priming during

P. rettgeri infection (Fig 6Aiii and S10 Table). In both lines where priming induced a survival

benefit, the magnitude of effect was similar for males and females (Sex × Treatment effect

>0.6; S10 Table).

Fig 5. The effects of priming on bacterial shedding and transmission. (A). Bacterial shedding after 4-hours following oral priming (initial heat-killed

exposure) and infection with live P. rettgeri (OD600 = 25) for males and females (n = 15 individual flies per treatment). (B) percentage transmission of

measurable bacterial loads for male and female w1118 flies (recipient-flies) over the first 4-hours following exposure with infected donor flies (n = 6

independent transmission assays). Different letters denote primed and unprimed individuals are significantly different, tested using Tukey’s HSD pairwise

comparisons.

https://doi.org/10.1371/journal.ppat.1012308.g005
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Expression of IMD-regulated Diptericin B in the fat body is required for

priming

Given the important role of the IMD pathway for the priming response (Fig 6), next, we tested

whether mutants with defective IMD signalling or unable to produce specific antimicrobial

peptides were capable of immune priming. We first used a ΔAMP transgenic line, which lacks

most of the known Drosophila AMPs (10 AMPs in total). ΔAMPs flies are extremely suscepti-

ble to the majority of microbial pathogens, including gram-negative bacteria [34], and we con-

firmed that both primed and unprimed ΔAMP flies succumb to death at a similar rate

following systemic infection, and both primed and unprimed ΔAMP flies also exhibited ele-

vated bacterial loads (measured 24-hours after the secondary pathogenic exposure) (Fig 7Ai

for survival, Fig 7Bi for bacterial load, S10 and S11 Tables, relative to control w1118 flies–com-

pare with previous figure Fig 6Bi), showing that AMPs are needed for the priming response

Fig 6. Priming requires the IMD but not the Toll pathway. (A): Survival curves for control flies and flies lacking different innate immune pathway

components in females and males (i) control iso-w1118 (ii) RelE20- IMD-pathway transcription factor (iii) Spz- Toll pathway regulator in both males and

females (B) (i-iii) bacterial load measured after 24-hours post-secondary pathogenic exposure (n = 7–9 vial/sex/treatment/transgenic lines). Different

letters in panel-B indicate that primed and unprimed individuals are significantly different, tested using Tukey’s HSD pairwise comparisons, analysed

separately for each timepoint and sex combination. The error bars in panel B represent standard error.

https://doi.org/10.1371/journal.ppat.1012308.g006
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Fig 7. Priming requires specific AMP expression. (A). Survival curves for CRISPR/Cas9 AMP mutants (i) ΔAMP fly line: lacking all known 10 fly AMPs–(ii)

Group-B: lacking major IMD pathway AMPs (iii)Dpt knockout and (iv) ΔAMP+Dpt: lacking all AMPs exceptDpt. (B) internal bacterial load quantified after

24-hours post-secondary exposure (n = 7–9 vials with 10–15 flies in each vial/sex/treatment/transgenic lines). Different letters in panel-B denotes primed and

unprimed individuals are significantly different, tested using Tukey’s HSD pairwise comparisons, analysed separately for each fly line and sex combination. The

error bars in panel B represent standard error.

https://doi.org/10.1371/journal.ppat.1012308.g007
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against P. rettgeri. To investigate which AMPs are required for priming against P. rettgeri
infection, we used a Group-B transgenic line, lacking major IMD regulated AMPs (including

Diptericins and Attacins and Drosocin) but have all upstream IMD signalling intact. Primed

Group-B flies showed mortality similar to unprimed Group-B flies (Fig 7Aii and S11 Table)

and exhibited increased bacterial loads across both the sexes irrespective of being primed or

not (Fig 7Bii and S11 Table). Thus, despite being able to produce other AMPs, removal of

IMD-regulated AMPs completely eliminated the priming effect, indicating that AMPs regu-

lated by the IMD-pathway are required for immune priming against P. rettgeri infection.

Since Diptericins have been shown previously to play a key role in defence against P. rettgeri,
we then used a Dptmutant (lacking Diptericin-A and B) and AMPs+Dpt transgenic fly lines

(flies lacking all known AMPs except Diptericin) to test whether Diptericins are required and

sufficient for priming in both females and males. The survival benefit of priming disappeared

in flies lacking DptA+B across both females and males and both primed and unprimed Dpt
mutants exhibited increased bacterial load (Fig 7Biii and S11 Table). Notably, the priming

response was recovered completely in male flies that lacked other AMPs but possessed func-

tional Diptericins (AMPs+Dpt). However, the same effect was not seen in females

(Sex × Treatment effect p<0.01; Fig 7Aiv for survival, Fig 7Biv for bacterial load; S10 Table

for survival and S11 Table for bacterial load).

In response to gram-positive Streptococcus pneumoniae infection, previous work described

the role of haemocytes in immune priming through increased phagocytosis [9]. Subsequent

work has also shown that reactive oxygen species (ROS) burst from haemocytes is important

for immune priming during Enterococcus faecalis infection [37]. Since our results pointed to a

Diptericins being required for immune priming against P. rettgeri, we wanted to determine if

Diptericin expression in either the fat body or haemocytes was more important for immune

priming. Using-tissue specific Diptericin-BUAS-RNAi knockdown, we found that male flies

with knocked-down DptB in fat bodies no longer showed immune priming compared to the

background or control iso-w1118, while knocking down DptB in haemocytes resulted in a

smaller but still significant increase in survival following an initial exposure (Fig 8 and S12

Table). This would therefore support that immune priming requires DptB expression in the

fat body, while haemocyte-derived DptB is not important for priming. It is worth noting that it

is possible that haemocytes contribute to immune priming through phagocytosis or melanisa-

tion, or via cross-talk with the IMD pathway, and this remains a question for future research.

Priming is not an outcome of constant Dpt upregulation

As our results indicated that AMPs, especially Diptericins play a key role in Drosophila priming

against P. rettgeri, we wanted to test if the priming effect we had observed was a result of con-

stant upregulation of AMPs after initial heat-killed exposure allowing rapid bacterial clearance

during the secondary exposure, or if AMP expression returned to a baseline level within the

96-hours between priming and the live infection. To do this, we measured Dpt gene expression

at 18-hours and 72-hours following initial heat-killed exposure, and then 12-hours, 24-hours

and 72-hours following secondary live P. rettgeri infection. DptB expression increased

18-hours after initial heat-killed exposure but returned to baseline levels by 72-hours (Fig 9A

and 9B and S13 Table) indicating that flies did mount an immune response to the heat killed

bacteria, but that this was resolved by the time they were infected with the live bacteria at

96-hours.

Further, 72-hours following a lethal secondary live P. rettgeri infection, we found that

primed w1118 females and males showed increased DptB levels compared to unprimed individ-

uals (Fig 9A and 9B). The increased DptB expression also resulted in increased bacterial
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Fig 8. Survival curves tissue-specific Dpt knockdowns. (i) control iso-w1118 andUAS-RNAimutants—(ii) FB>DptB RNAi knock down of DptB in

fat body and (iii) FB>DptB RNAi knock down ofDptB in haemocytes. (n = ~50 flies/sex/treatment/fly lines).

https://doi.org/10.1371/journal.ppat.1012308.g008
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clearance in males. In case of females, despite higher Dpt levels at 72-hours following second-

ary live infection in primed flies, we did not detect any difference in bacterial clearance

between primed and unprimed flies. We also tested the expression pattern of other IMD-

Fig 9. Antimicrobial gene expression following priming. (A) Mean±SE (standard error) of Diptericin-AMPs

expression at different time points (hours) for females and males wild-type w1118 flies—naïve or unhandled flies (time

0h); flies exposed to initial heat-killed P. rettgeri (blue); primed flies that are initially exposed to heat-killed P. rettgeri
followed by challenge with P. rettgeri (dark red); unprimed flies that receive 1xPBS during primary exposure followed by

live P. rettgeri during secondary exposure (grey) [n = 5 groups of 3 pooled flies per sex/treatment/timepoint]. (B).

Diptericin (A+B), Attacin-C andDrosocin AMPs expression 12-hours and 24-hours after exposure to live P. rettgeri in
w1118 female flies. Diptericin data is the same as shown in panel A (top right panel), shown here for clarity and for

comparison with Attacin-C andDrosocin. Asterisks ‘*’ indicates that primed and unprimed individuals are significantly

different (p<0.05). The error bars represent standard error.

https://doi.org/10.1371/journal.ppat.1012308.g009
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responsive AMPs such as Attacin-C and Drosocin in females. Overall, we found that the

expression of Attacin-C and Drosocin was not different between primed and unprimed females

(Fig 9C for AttC and Dro and S13 Table).

Regulation of IMD by PGRPs is required for immune priming

Following gram-negative bacterial infection, DAP-type peptidoglycans from gram-negative

bacteria are recognised by the peptidoglycan receptors PGRP- LC (a transmembrane receptor)

and PGRP-LE (a secreted isoform and an intracellular isoform), which then activate the IMD

intracellular signalling cascade [36,38]. Immune regulation is achieved by several negative reg-

ulators, including PGRP-LB, a secreted peptidoglycan with amidase activity, that break down

peptidoglycans into smaller, less immunogenetic fragments [36,38]. PGRP-LB has also been

shown to be important for transgenerational immune priming in Drosophila against parasitoid

wasp infection [21]. Given the role of DptB in the observed priming benefit, we therefore

decided to investigate the role of PGRPs in the immune priming we observed during P. rettgeri
infection.

To address this, we used fly lines with loss-of-function in PGRP-LB, LC and LE. Regardless

of which PGRP was disrupted, we observed that flies were no longer able to increase their sur-

vival following an initial exposure (Fig 10A and S14 Table). However, unlike similar outcomes

with Relish or ΔAMP, here the lack of priming was not driven by an inability to clear bacterial

loads, as microbe loads in PGRPmutants were ~100-fold lower than in Relish or AMP mutants

(Fig 10B and S15 Table). Further, Dpt expression compared to the w1118 control was either

similar (PGRP-LC, PGRP-LE) or higher (PGRP-LB), as expected, in both primed and

unprimed flies (S5 Fig and S16 Table). This suggests that Diptericin expression is required, but

not sufficient, for successful priming, which requires adequate regulation by PGRPs. Which

specific molecular signal modifies PGRP-mediated regulation of Diptericin expression follow-

ing an initial priming challenge is unclear, but must lie upstream of the IMD pathway.

Discussion

The observation of immune priming in invertebrates underlines the importance of whole

organism research in immunity in lieu of a purely mechanistic approach to immunology,

highlighting that the same phenomenology can originate in very different mechanisms

[18,39]. Thus, substantial experimental evidence in both lab adapted and wild-caught arthro-

pods suggests that immune priming is a widespread phenomenon, and is predicted to have a

profound impact on the outcome of host–pathogen interactions, including infection severity

and pathogen transmission [40,26,27,17].

In the present work, we investigated the occurrence, generality, and mechanistic basis of

immune priming in fruit flies when infected with the gram-negative pathogen Providencia
rettgeri. We present evidence that priming with an initial non-lethal bacterial inoculum results

increased survival after a secondary lethal challenge with the same live bacterial pathogen. This

protective response may last at least two weeks after the initial exposure, is particularly strong

in male flies, and occurs in several genetic backgrounds. We show that the increased survival

of primed individuals coincides with a transient decrease in bacterial loads, and that this is

likely driven by the expression of the IMD-responsive AMP Diptericin-B in the fat body. Fur-

ther, we show that while Diptericin is required as the effector of bacterial clearance, it is not

sufficient for immune priming, which requires the regulation by at least three PGRPs

(PGRP-LB, PGRP-LC, and PGRP-LE). Therefore, despite having an intact IMD signalling cas-

cade, and being able to express Diptericin, flies lacking any one of PGRP-LB, LC or LE were
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not capable of increasing survival following an initial sublethal challenge. Together, our data

indicates that PGRPs are necessary for regulating immune priming against P. rettgeri.
These results are largely consistent with other work showing that the pathways that signal

pathogen clearance may not be the same that underlie the signalling of the priming response.

For example, Cabrera et al [24] investigated priming with the Gram-positive E. faecalis and

found that while the Toll pathway was required for responding to a single infection, Toll sig-

nalling was dispensable for immune priming [24]. By contrast, IMD-deficient flies were still

able to clear single E. faecalis infections (due a functional Toll response) but were no longer

able to increase survival following an initial exposure. That is, in support of our results here,

the IMD played a distinct role in signalling priming that was independent of its role in clear-

ance. Further, previous work found that the Toll pathway is required (though not sufficient)

for priming in response to gram-positive bacterial Streptococcus pneumoniae infection [9] and

here we find that the Toll pathway is not required for a functional immune priming response.

Fig 10. (A). Survival curves for males and females of Loss-of-function in PGRPs (peptidoglycan recognition proteins) of IMD (i) PGRP-LB (ii) PGRP-LC
and (iii) PGRP-LE (B). internal bacterial load quantified after 24-hours post-secondary exposure in female and male flies (n = 7–9 vials with 10–15 flies in

each vial/sex/treatment/ fly lines). The same letters in panel-B denote that primed and unprimed individuals are not significantly different, tested using

Tukey’s HSD pairwise comparisons for each fly line and sex combination. The error bars represent standard error.

https://doi.org/10.1371/journal.ppat.1012308.g010
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In response to infection, the expression of several AMP genes in Drosophila increases and

then drops once the infection threat is resolved or controlled. Previous studies have shown

that this occurs within a period of few hours during bacterial infections [41], and that in many

cases, this increased AMP expression underlies the immune priming response [18,42]. In

other host-pathogen systems, genome wide insect transcriptome studies have identified upre-

gulation of several AMPs in primed individuals, for example, Attacins, Defensins and Coleop-
tericins in flour beetles [43,44], Cecropin, Attacin, Gloverin,Moricin and Lysozyme in

silkworms [45], Gallerimycin and Galiomicin in wax-moths [46] and finally, Cecropin in

tobacco moths and fruit flies [47,37]. However, there are also examples where innate immune

priming involves the downregulation of AMP expression, such as priming with the gram-posi-

tive E. faecalis [24].

One key aspect of our results is that immune priming was not the result of continued upre-

gulation of Diptericin following the initial exposure to heat-killed bacteria. Instead, we

observed that the initial immune response to heat-killed bacteria had already been resolved at

72-hours, before the secondary exposure to a lethal infection at 96-hours (see Fig 9A). This

second up-regulation of AMP expression was at least 10-times higher than the response to

heat-killed bacteria, and was initially similar between both primed and unprimed flies

(exposed to a sterile solution in the first exposure). It was only at 72-hours following the sec-

ond lethal exposure that we observed significantly higher expression of Diptericin in primed

flies. This difference appears to arise because unprimed flies show a faster resolution of the

immune response compared to primed flies; that is, the expression of Diptericin shows a faster

decline between 24-hours and 72-hours post-exposure in unprimed compared to primed flies

(see Fig 9A). These patterns of gene expression provide a partial explanation for the increased

survival following priming, but they do not explain why primed individuals had lower bacterial

loads at 24-hours after exposure to the second lethal infection, as at this timepoint we did not

detect any differences in Diptericin expression between primed and unprimed flies. It is also

unclear why primed females showed increased expression of Diptericin after 24-hours, but do

not show any reduction in bacterial loads at this timepoint following priming, in the way male

flies did.

The sex differences we observed in priming reflect a larger pattern of sexual dimorphism in

immunity present in most organisms, including Drosophila [48–50]. Here, we found that

males showed better bacterial clearance after initial exposure to heat-killed P. rettgeri which

enabled them to experience enhanced survival compared to females, who exhibited higher bac-

terial loads and greater mortality. Previous work has established several ways in which the

immune responses of male and female Drosophila may differ, including Toll [51] and IMD

[52] signalling or signalling of damage during enteric infections [53]. Our results indicate that

the Toll pathway is not required for successful priming, so sex-differences in Toll signalling

are unlikely to be important in explaining sexually dimorphic priming. However, other work

has shown that disrupting the negative regulator of IMD, PGRP-LB, affected survival to a

greater extent in females following E. coli infection [52]. Given that we identified a role for

PGRP-mediated regulation of Dpt as key for immune priming, sex differences in PGRP regula-

tion could potentially explain differences in priming between males and females.

Another aspect related to sex differences in priming, was that males experienced a survival

benefit of prior exposure in every experiment we report; female flies showed more variable

response, showing a survival benefit of priming repeatedly in several independent experiments

(Figs 1, 2, 3, and 6) but not in others (Fig 4). Further while the priming phenotype was success-

fully recovered in males by restoring expression of the AMP Dtp, this was not observed in

females. These variable outcomes in females remain puzzling, and are likely not the outcome

of heritable sex-differences–it is hard to imagine how a priming response might evolve in
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males, but not females, and we did repeatedly observe it. Instead, one possibility for the

observed sex-differences could relate to unmeasured environmental variation in our experi-

mental setups–although these were always minimised as much as possible–which may interact

with different nutritional demands and metabolic activities in female Drosophila. For instance,

female fruit flies are often able to reallocate resources in accordance with their reproductive

demands, as observed in terminal investment during infection [54–56]. Studies from other

insects suggest that inducing priming responses can directly reduce the reproductive fitness in

mosquitoes [57], wax moth [58], and mealworm beetles [59]. There are therefore potential

trade-offs between investment in reproductive effort and investment in stronger immune

responses following priming. Given that all females used in this study were mated, it is possible

that such trade-offs forced a reallocation of resources towards reproduction, thereby reducing

the observed magnitude of the priming response in females. Future studies may consider com-

paring priming responses in females with different reproductive states in order to test whether

immune priming is costlier for female Drosophila.
A subsidiary finding of this work was the effect of the endosymbiontWolbachia on immune

priming. How endosymbionts that are widespread among insects are likely to influence innate

immune priming is a topic of considerable interest [60]. There is abundant evidence that Dro-
sophila carrying the endosymbiontWolbachia are better able to survive infections, especially

viral infections [61,29,62,30]. In this case, we observed that the priming response that was pres-

ent in male flies cleared ofWolbachia disappeared in males carrying the endosymbiont. This

effect is unlikely due to a direct effect ofWolbachia on the ability to clear P. rettgeri in primed

flies, as previous work has found thatWolbachia had no effect on the ability to suppress P.

rettgeri during systemic infection [63]. Indeed, if priming is the result of upregulation of AMP

expression, this may suggest thatWolbachiamay be actively suppressing the expression of

AMPs, thereby reducing the beneficial effects of priming. However, this hypothesis would con-

tradict work showing that someWolbachia strains upregulate the host’s immune response and

result in a reduction of pathogen growth [64,65]. Another possibility is that while bothWolba-
chia and P. rettgeri are Gram-negative bacteria, they could elicit the expression of competing

AMP responses, leading to a less efficient priming response. Further rigorous experimental

work is therefore required to fully understand this effect ofWolbachia on immune priming.

Finally, it is important to consider the implications of immune priming for disease ecology

and epidemiology, and particularly how it may affect pathogen transmission. If priming acts

by improving bacterial clearance via increased AMP expression, as observed in the present

work, we predict that priming is likely to reduce pathogen shedding at the individual level,

resulting in reduced disease transmission at the population level. Epidemiological models that

have incorporated priming predict that primed individuals with enhanced survival following

an initial sub-lethal pathogenic exposure are less likely to become infectious upon re-infections

[27]. It remains unclear whether immune priming reduces pathogen transmissibility, varies

the infectious period, or alters infection-induced behavioural changes in the host [27]. An

additional level of complexity is that there is likely to be substantial within-population genetic

variation in how priming affects each of these components of pathogen transmission. Insects

offer a powerful system to investigate these effects, because they rely on an innate immune sys-

tem that can induce an easily measurable priming response, but further, insect are also impor-

tant vectors of many infectious diseases. Immune priming has thus emerged as a provocative

idea to reduce the vectorial capacity of insect vectors, thereby reducing the transmission of

vector-borne pathogens [17]. A better understanding of how immune priming contributes to

host heterogeneity in disease outcomes would aid our understanding of the causes and conse-

quences of variation in infectious disease dynamics.
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Materials and methods

Fly strains and maintenance

SeveralD.melanogaster strains:w1118 (ViennaDrosophila Resource Center), iso-w1118 (Bloomington

Drosophila Stock Center), Canton-S, Oregon-RWolbachia+ve andOregon-RWolbachia-ve [30].Trans-

genic flies included immune mutants RelE20 (relish—IMD pathway regulator [66]) and spz (spätzle–
Toll pathway regulator [67], and were a gift from the Saleh lab (Pasteur, Paris). We also used the fol-

lowing CRISPR/Cas9 deletion lines, originally gifted by the Lematire lab (EPFL, Lausanne) [34]: (a)

ΔAMPs—flies lacking 10 fly AMPs, (b) Group-B—flies lacking major IMD regulated AMPs includ-

ingAttacins (AttCMi; AttDSK1),Drosocin (DroSK4) and Diptericins (DptSK12), (c)DptSK12 –flies lacking

Diptericins (DptA and DptB), and (d) ΔAMPs+Dpt–flies lacking 10 known AMPs exceptDiptericins.
All the CRISPR/Cas9 mutants were generated previously from the iso-w1118 genetic background

using CRISPR/Cas9 gene editing technology to induce null mutations in the selected genes [34].

We also used the binary GAL4/UAS system for tissue specific silencing of target genes with

the RNA interference (RNAi) method. Diptericin-B (DptB) (Bloomington stock# 28975) was

tissue-specifically knocked down in the fat body (w1118-iso,Fb-Gal4i+(P{fat}) and in haemocytes

[w1118-iso,Hmldelta- Gal4; He-Gal4 –a combination of two haemocyte GAL4 drivers, the Hml-

GAL4.Δ [68] and He-GAL4.Z [69]]. All fly stocks and experimental flies were maintained at

25˚C ±1˚C on a 12:12 hour light: dark cycle in vials containing 7ml of standard cornmeal fly

medium [70]. For the experiments, we controlled larval density by placing 10 females and 5

males in each vial and the females were allowed to lay eggs for 48-hours. Fourteen days later,

the eclosing males and females were sorted and collected and separated into group of 25 flies

in each vial. Three-day old, mated individuals were used in all experiments.

Systemic immune priming and infection assays

P. rettgeri was grown at 37˚C in 10ml Luria broth (Sigma Ltd) overnight to reach optical density

OD600 = 0.95 (measured at 600nm in a Cell Density Meter, Fisherbrand). The culture was centri-

fuged at 5000 rpm for 5 min at 4˚C, and the supernatant was removed, and the final OD was

adjusted to 0.1 and 0.2 by using sterile 1xPBS (Phosphate buffer saline). To obtain heat-killed bac-

teria the dilution was incubated at 90˚C for 20–30 mins [11]. To ensure all bacteria were dead in

the heat-treated culture, it was plated and no growth was confirmed. To prime individuals, 3-day

old adults were pricked with a 0.14-mm pin (Fine Science Tools) dipped in either heat-killed bacte-

ria for the primed treatment or in 1xPBS solution for the unprimed treatment (exposed to a sterile

solution in the first exposure) in the mesopleuron region (the area situated under the wing and to

the left of the pleural suture) [71]. Following this initial priming treatment, the individuals were

pricked using OD600 = 0.1 live P. rettgeri bacteria (resulting in approximately 70 bacterial cells/fly).

To test whether male and female adult flies show priming (measured as enhanced survival) with

increasing time intervals between the initial heat-killed exposure and later challenge with live P.

rettgeri, we tested several time points between the two challenges 18-hours, 48-hours, 96-hours,

1-week and 2-weeks (See S1 Fig for experimental design; n = 9–13 vial treatment/sex/ fly line). We

used a split vial experimental design to obtain replicate matched data for both survival and bacte-

rial load see [72] for details. Briefly after infection each vial containing about 25 flies (of each treat-

ment, sex and fly line combination) were divided into 2 vials for measuring (i). survival following

infection (see S1i Fig; 13–17 flies/combination) and (ii). internal bacterial load (see S1ii Fig).

Bacterial load quantification

To test whether the host’s ability to supress bacterial growth varies across primed and

unprimed individuals, we quantified bacterial load as colony forming units (CFUs) at
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24-hours after P. rettgeri infection for controls and transgenic flies in both sexes. Flies were

surface sterilized in groups of 3–5 flies per vial in 70% ethanol for 30s and washed twice with

distilled water before homogenising flies individually using micro pestles. We immediately

performed serial dilutions of the homogenate with 1xPBS and plated them on LB agar plates

and cultured at 29˚C overnight. The following day, we counted the CFUs manually [73]

(n = 9–13 vial/sex/treatment/fly mutants).

Gene expression quantification

The expression of Diptericins was quantified by qRT-PCR. In parallel with the survival experi-

ment, we randomly selected a subset of control w1118 individuals (both males and females) for

RNA extraction, we included 15 flies [5–7 replicates of 3 flies pooled together for each treat-

ment (primed and unprimed) for both males and females]. We randomly removed selected

flies (3 flies per vial) at different time points post exposure to P. rettgeri (18-hours and

72-hours post-priming, 12-hours and 24-hours post-challenge). We then homogenised pools

of three in 80μl of TRIzol reagent (Invitrogen, Life Technologies). Homogenates were kept fro-

zen at -70˚C until RNA extraction. We performed mRNA extractions using the standard phe-

nol-chloroform method and included a DNase treatment (Ambion, Life Technologies).

We confirmed the purity of eluted RNA using a Nanodrop 1000 Spectrophotometer (ver-

sion 3.8.1) before going ahead with reverse transcription (RT). The cDNA was synthesized

from 2μl of the eluted RNA using M-MLV reverse transcriptase (Promega) and random hex-

amer primers, and then diluted 1: 1 in nuclease free water. We then performed quantitative

RT-PCR (qRT-PCR) on an Applied Biosystems StepOnePlus machine using Fast SYBR Green

Master Mix (Invitrogen) using a 10μl reaction containing 1.5L of 1:1 diluted cDNA, 5μl of Fast

SYBR Green Master Mix an 3.5μl of a primer stock containing both forward and reverse

primer at 1μM suspended in nuclease free water (final reaction concentration of each primer

0.35μM). For each cDNA sample, we performed two technical replicates for each set of primers

and the average threshold cycle (Ct) was used for analysis. We obtained the AMP primers

from Sigma-Aldrich Ltd; Dpt_Forward: 5’ GACGCCACGAGATTGGACTG 3’, Dpt_Reverse:

5’ CCCACTTTCCAGCTCGGTTC 3’, AttC_Forward: TGCCCGATTGGACCTAAGC, Att-
C_Reverse: GCGTATGGGTTTTGGTCAGTTC, Dro_Forward: ACTGGCCATCGAGGAT

CACC, Dro_Reverse: TCTCCGCGGTATGCACACAT. We used RpL49 as endogenous refer-

ence gene, RpL49_Forward: 5’ ATGCTAAGCTGTCGCACAAATG 3’, RpL49_Reverse: 5’

GTTCGATCCGTAACCGATGT 3’. We optimised the annealing temperature (Ta) and the

efficiency (Eff) of the Dpt primer pair was calculated by 10-fold serial dilution of a target tem-

plate (each dilution was assayed in duplicate); Dpt: Ta = 59˚C, Eff = 102%; AttC: Ta = 60˚C,

Eff = 94%; Dro: Ta = 61˚C, Eff = 104%. We analysed the gene expression data by calculating

the ΔΔCT value [74]. Fold change = 2-ΔΔCt

Where, ΔΔCt = [(Ct of Gene A–Ct of Internal control) of Infected sample]–

[(Ct of Gene A–Ct of Internal control) of Control sample]

We used RpL32 as a reference gene as it was expressing steadily in our treatment and con-

trol conditions. We calculated fold change in gene expression relative to the uninfected con-

trols to calculate ΔΔCT and used ANOVA to test whether AMP expression differed

significantly between primed and unprimed treatment for males and females.

Oral priming and infection

For oral priming and live infection, we adjusted the final concentration to OD600 = 25 [53,73].

We initially prepared vials for oral priming by pipetting 350–400 μl of standard agar [see [73]]

onto lid of a 7ml tubes (bijou vials) and allowed it to dry. Simultaneously, we starved the
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experimental flies on 12ml agar vials for 4 hours. Once the agar on the lids dried, we placed a

small filter disc (Whattmann-10) in the lid and pipetted 80μl of heat-killed bacterial culture

(primed treatment) or 5% sucrose solution (unprimed control treatment) directly onto the fil-

ter disc. Once the agar dried, we orally exposed flies (heat-killed only, primed and unprimed

treatment) by adding approximately 10 flies per vial for 18-hours and then transferred the flies

onto fresh Lewis food vials. After 3-days, we again prepared the bijou vials and once the agar

dried, this time we added 80μl of live bacterial culture (OD600 = 25) and exposed flies to live P.

rettgeri for 18-hours. We then transferred flies onto fresh food vials and observed survival after

oral exposure to P. rettgeri every 12 hours for the following 8 days.

Measuring locomotor activity

We measured the locomotor activity of single flies (n = 52 flies for each for each sex and treat-

ment combination) during three continuous days using a Drosophila Activity Monitor–DAM

(v2 and v5) System [75], in an insect incubator maintained at 25˚C ± 1˚C in a 12 D: 12 L cycle.

We then processed the raw activity data using the DAM System File Scan Software [75]. We

analysed fly activity data using three metrics [76–79]: total activity, the average activity during

5-min activity bouts, and proportion of 5-min bouts with zero activity (which has been defined

as sleep in Drosophila [80]) (S2III Fig)

Measuring bacterial shedding

We measured the bacterial shedding of single flies (n = 8–12 flies per treatment and sex combi-

nation) at a single time point, 4-hours following overnight oral bacterial exposure. We chose

this timepoint as in other work we have found that most faecal shedding of bacterial pathogens

occurs within the first 4 hours, and steadily decreases by 8 hours following overnight oral

infection. Following oral priming to either heat-killed bacterial culture (primed treatment) or

5% sucrose solution (unprimed treatment), flies were exposed to an oral infection with live

infection with 80μl of live P. rettgeri culture (OD600 = 25). Following 18 hours of oral exposure,

flies were placed individually into 1.5ml Eppendorf tubes with approximately 50μl of Lewis

medium in the bottom of the tube for 4-hours. After 4-hours, flies were removed from the

tube and the remaining content of each tube was washed with 50μl of 1xPBS buffer by vortex-

ing thoroughly for at least 5 secs. We then plated these samples on a LB agar plates, incubated

them at 29˚C and counted the colonies manually after 18-hours.

Measuring bacterial transmission

We measured transmission in groups of flies, by collecting age-matched donor and recipient

w1118 flies, separately for each sex. To test the effect of priming on the ability of flies to transmit

P.rettgeri, we orally exposed 3-day old w1118 flies (donor flies) with either 5% sucrose and heat-

killed bacteria (primed) or 5% sucrose only (unprimed). After 96-hours the donor flies were

exposed to OD600 = 25 of P. rettgeri (see oral infection section above). The infected donors were

marked by cutting the corner of a fly wing. We then placed one donor and five uninfected

recipient flies in 7ml bijou vials with a small amount of Lewis food on the lid for each treat-

ment (heat-killed bacteria only and 5% sucrose exposed without live infection) and sex-combi-

nation. After 4-hours exposure we surface-sterilised and homogenized the flies and plated the

homogenate to measure the presence or absence of P. rettgeri infection inside each recipient

fly, as an indication of successful transmission of bacteria from the donors to the recipient

flies. We also set up and plated flies in groups with no infection, to confirm that our measures

of P. rettgeri prevalence reflected successful transmission from the donor flies.
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Data analysis

All statistical analyses and graphics were carried out and produced in R (version 4.2.2) using

the ggplot2, coxhz and lme4 packages [81–83], and all raw data and code is available at

10.5281/zenodo.7624084 [84] or in S1 Data. We analysed the survival data following systemic

P. rettgeri infection with a mixed effects Cox model using the R package ‘coxme’ [82] for differ-

ent treatment groups (that is, primed and unprimed) across both the sexes and fly lines (con-

trols and transgenic lines). We specified the model as: survival ~ treatment * sex * (1|vials/

block), with ‘treatment’ and ‘sex’ and their interactions as fixed effects, and ‘vials’ nested within

each ‘block’ as a random effect for control and transgenic lines. We used ANOVA to test the

impact of each fixed effect in the ‘coxme’ model. We analysed the bacterial load, measured as

log10 bacterial colony-forming units (CFUs) at 24-hours following P. rettgeri infection. As bac-

terial load data was non-normally distributed, we log-transformed the data and analysed using

a non-parametric one-way ANOVA (Kruskal-Wallis test) to test whether the ‘treatment’

groups that is, primed and unprimed individuals significantly differed in internal bacterial

load for males and females of each fly lines (control and transgenic lines). Data for bacterial

shedding and transmission were non-normally distributed (tested using Shapiro-Wilks test for

normality) hence we performed non-parametric Wilcoxon Kruskal-Wallis tests for bacterial

shedding and transmission data.

Supporting information

S1 Data. All data used to generate figures.

(XLSX)

S1 Fig. Schematic representation of different priming experiments aimed at (I). testing

whether the length of the period between primary heat-killed exposure and the secondary

pathogenic challenge affects the extent of priming (II). how different lab-adapted control/

genetic background flies vary in priming (III). dissecting the role of innate immune pathways

(IMD and Toll) and inducible AMPs in immune priming and (IV). deciphering mechanisms

that bring about immune priming in Drosophila using tissue-specific fat body and haemocytes

UASRNAi mutants. The experimental design for priming assays includes survival and internal

bacterial load quantification.

(TIFF)

S2 Fig. Experimental design to measure epidemiological components following systemic

(OD600 = 1) and oral (OD600 = 25) priming and infection with initial heat-killed exposure

followed by live P. rettgeri in male and female wildtype w1118 flies. The assays include (I).

survival following different infection routes (II). internal bacterial load (III). behavioural com-

ponents of pathogen exposure such as sleep and awake activity (IV). bacteria shedding and

(V). transmission. n = 6–7 vials of 8–12 flies in each vial, for each treatment and sex combina-

tion.

(TIFF)

S3 Fig. The effect of priming on fly locomotor activity. Mean ±SE total locomotor activity

for males and females (n = 52 individual flies per treatment), during first 72-hours following

systemic and oral priming and infection. (A) average total locomotor activity (B) average

awake activity and (C) proportion of flies spent sleeping.

(TIFF)

S4 Fig. Survival curves of w1118 and iso-w1118 (drosdel). flies after initial heat-killed expo-

sure and followed by live P. rettgeri infection with OD600 = 0.1. As another control, we
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infected both w1118 and iso-w1118 control because the CRISPR/cas9 AMP mutants we used

were on the iso-w1118 background, so we wanted to confirm that any changes in priming

were not due to the background of the mutants, as opposed to the mutations. We found that

the differences between w1118 and iso-w1118 (primed and unprimed treatments) were not

significantly different.

(TIFF)

S5 Fig. Diptericin expression in PGRP deletion lines. 24-hours after exposure to live P.

rettgeri in male and female control w1118 flies and flies with loss-of-function in different

PGRPs, PGRP-LB, PGRP-LC & -LE.

(TIFF)

S1 Table. Summary of mixed effects Cox model, fitting the model to estimate time-delayed

priming response in control w1118 male and female flies.

(DOCX)

S2 Table. Summary of mixed effects Cox model, fitting the model to estimate priming

response in different laboratory control w1118 male and female flies.

(DOCX)

S3 Table. Summary of mixed effects Cox model, fitting the model to estimate the impact

Wolbachia on immune priming response using genetic background OreR male and female

flies.

(DOCX)

S4 Table. Summary of mixed effects Cox model, fitting the model to estimate priming

response in male and female control w1118 flies.

(DOCX)

S5 Table. Summary of log10 transformed bacterial load.

(DOCX)

S6 Table. Summary of Cox prop-hazard model, for female and male flies of wild type

w1118.

(DOCX)

S7 Table. Summary of log transformed bacterial load data.

(DOCX)

S8 Table. Model outputs for statistical test (GLM) performed on host activity data.

(DOCX)

S9 Table. Summary of non-parametric Wilcoxon (Kruskal-Wallis) test for oral bacterial

shedding (log transformed bacterial load).

(DOCX)

S10 Table. Summary of mixed effects Cox model, fitting the model to estimate priming

response in male and female control w1118, IMD and toll transgenic flies.
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