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Abstract

The microsporidian Enterocytozoon hepatopenaei (EHP) is a fungi-related, spore-forming

parasite. EHP infection causes growth retardation and size variation in shrimp, resulting in

severe economic losses. Studies on shrimp immune response have shown that several anti-

microbial peptides (AMPs) were upregulated upon EHP infection. Among those highly upre-

gulated AMPs is c-type lysozyme (LvLyz-c). However, the immune signaling pathway

responsible for LvLyz-c production in shrimp as well as its function against the EHP infection

are still poorly understood. Here, we characterized major shrimp immune signaling path-

ways and found that Toll and JAK/STAT pathways were up-regulated upon EHP infection.

Knocking down of a Domeless (DOME) receptor in the JAK/STAT pathways resulted in a

significant reduction of the LvLyz-c and the elevation of EHP copy number. We further eluci-

dated the function of LvLyz-c by heterologously expressing a recombinant LvLyz-c (rLvLyz-

c) in an Escherichia coli. rLvLyz-c exhibited antibacterial activity against several bacteria

such as Bacillus subtilis and Vibrio parahaemolyticus. Interestingly, we found an antifungal

activity of rLvLyz-c against Candida albican, which led us to further investigate the effects of

rLvLyz-c on EHP spores. Incubation of the EHP spores with rLvLyz-c followed by a chitin

staining showed that the signals were dramatically decreased in a dose-dependent manner,

suggesting that rLvLyz-c possibly digest a chitin coat on the EHP spores. Transmission

electron microscopy analysis revealed that an endospore layer, which is composed mainly

of chitin, was digested by rLvLyz-c. Lastly, we observed that EHP spores that were treated

with rLvLyz-c showed a significant reduction of the spore germination rate. We hypothesize

that thinning of the endospore of EHP would result in altered permeability, hence affecting

spore germination. This work provides insights into shrimp immune signaling pathways

responsible for LvLyz-c production and its anti-EHP property. This knowledge will serve as

important foundations for developing EHP control strategies.

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012199 April 29, 2024 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sangklai N, Supungul P, Jaroenlak P,

Tassanakajon A (2024) Immune signaling of

Litopenaeus vannamei c-type lysozyme and its role

during microsporidian Enterocytozoon

hepatopenaei (EHP) infection. PLoS Pathog 20(4):

e1012199. https://doi.org/10.1371/journal.

ppat.1012199

Editor: Francis Michael Jiggins, University of

Cambridge, UNITED KINGDOM

Received: February 5, 2024

Accepted: April 16, 2024

Published: April 29, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.ppat.1012199

Copyright: © 2024 Sangklai et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data generated or

analyzed during this study are included in the

https://orcid.org/0000-0002-2036-232X
https://doi.org/10.1371/journal.ppat.1012199
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1012199&domain=pdf&date_stamp=2024-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1012199&domain=pdf&date_stamp=2024-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1012199&domain=pdf&date_stamp=2024-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1012199&domain=pdf&date_stamp=2024-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1012199&domain=pdf&date_stamp=2024-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1012199&domain=pdf&date_stamp=2024-05-09
https://doi.org/10.1371/journal.ppat.1012199
https://doi.org/10.1371/journal.ppat.1012199
https://doi.org/10.1371/journal.ppat.1012199
http://creativecommons.org/licenses/by/4.0/


Author summary

The microsporidian parasite Enterozytozoon hepatopanei (EHP) has caused a significant

disease in Penaeid shrimp since 2009. EHP infection results in growth retardation and

severe size variation in shrimp. Currently, the immune defense mechanism against EHP

infection is still largely unknown, thus the basic knowledge on shrimp innate immunity is

useful for controlling EHP infection. Recently, it has been shown that a lysozyme-c type

(LvLyz-c) potentially plays an important role during the EHP infection. However, the sig-

naling cascade that regulates the LvLyz-c production is poorly studied. Here, we examined

the immune signaling pathway responsible for the LvLyz-c production and its crucial role

in controlling EHP infection. We showed that Toll and JAK/STAT pathways were up-reg-

ulated upon EHP infection. Inhibition of JAK/STAT pathway resulted in reduction of

LvLyz-c and increase in EHP proliferation. Further characterization using a recombinant

LvLyz-c (rLvLyz-c) revealed both antibacterial and antifungal activities. rLvLyz-c digested

an endospore layer of the EHP spore. Thinning of the endospore consequently reduced

spore germination rate. This work provides a basic foundation on the immune signaling

pathway leading to the LvLyz-c production and its function against EHP spores. LvLyz-c

could serve as a promising target for the development of EHP control strategy.

Introduction

Shrimp farming industry has a high economic value in many countries around the world [1].

The high demand in international markets and global consumption result in a rapid expansion

of the shrimp aquaculture industry, especially a culture of the Pacific white shrimp Litopenaeus
vannamei, which can grow faster and can be cultured at a high density [2]. However, the

major obstacle in successful shrimp farming comes from several disease outbreaks caused by

bacterial, viral, and parasitic infections [3–5]. These infections lead to significant economic

losses [6]. Recently, an emerging disease called hepatopancreatic microsporidiosis (HPM), has

become a major concern in the shrimp farming industry [7,8]. HPM is caused by a microspor-

idian parasite Enterocytozoon hepatopenaei (EHP) [9]. EHP infection is associated with growth

retardation and severe size variation, resulting in a reduction in shrimp biomass production

[10].

EHP was first reported to infect the black tiger shrimp Penaeus monodon in Thailand in

2004 [11]. Since then, EHP has been widespread in many Asian countries, for example, Korea,

China, Indonesia, India, Vietnam, and Malaysia [5,12–16]. Although the EHP infection does

not cause mortality in shrimp, the co-infection of EHP with bacteria and viruses including

Vibrio parahaemolyticus caused acute hepatopancreatic necrosis disease (VPAHPND), white

spot syndrome virus (WSSV), and myonecrosis virus (IMNV) can cause a 100% mortality

[17–19]. It is suggested that EHP infection could make the shrimp weaken. Hence, they are

more susceptible to other diseases [20].

Shrimp immunity against pathogens heavily relies on innate immunity, including cellular

and humoral responses [21]. In cellular immune response, hemocytes play an important role

in protection against pathogen invasions [22]. The cellular immune responses performed

directly by hemocytes are apoptosis, nodulation, encapsulation, and phagocytosis [23]. While,

the humoral immune responses include prophenoloxidase (proPO) system, blood clotting sys-

tem, and antimicrobial peptide (AMPs) [24]. Both cellular and humoral immune responses

work together to limit the invading pathogens [25]. The defense against these pathogens is
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specifically mediated by pattern recognition receptors (PRRs), which bind to pathogen-associ-

ated molecular patterns (PAMPs) [26]. The recognition of PAMPs induces several immune

signaling cascades, including Toll like receptor (TLR), immune deficiency (IMD), and JAK/

STAT signaling pathways [27–29]. The activation of the signaling cascade triggers a secretion

of antimicrobial peptides (AMPs), such as penaeidins, lysozymes, crustins, and anti-lipopoly-

saccharide factor (ALF) to fight against bacterial and viral infection [21].

In humans, microsporidia are recognized by macrophages via MyD88-dependent TLR2

and stimulate the expression of several cytokines and chemokines [30]. In addition, MyD88

signaling is required for the activation of dendritic cells by Enterocytozoon bieneusi, suggesting

a potential function in activation of downstream molecules. This results in the production of

cytokine and AMPs, which plays an important role in limiting microsporidia infection [31]. In

silkworm Bombyx mori, the Toll, IMD, and JAK/STAT signaling pathways are induced by

microsporidian Nosema bombycis infection, which leads to the production of antimicrobial

peptides including lebocin, gloverin, cecropin, and attacin families [32,33]. Similar to silk-

worm, these signaling pathways in shrimp are important in EHP clearance by increasing

proPO activating cascade and several immune-related genes to combat EHP proliferation [34].

Immune-related factors in Toll, IMD, and JAK/STAT signaling pathways were involved in

the cellular defense mechanism against microsporidian infection [35]. In shrimp, some AMPs

have shown to exhibit antifungal activity [36,37] implying their potential role in EHP infection.

Previous study revealed that α-2 macroglobulin, c-type lectin, peritrophin-44-like protein,

lysozyme-c type, prophenoloxidase activating enzyme, and integrin were up-regulated during

the EHP infection [38]. Of interest, the proteomic and transcriptomic studies showed that the

expression level of lysozyme-c type from L. vannamei (LvLyz-c) was approximately increased

by 3.1 and 1.5-fold after the EHP infection, respectively [38,39]. This indicates that LvLyz-c

plays an essential role in response to the EHP infection. However, the information on innate

immunity response during EHP infection, especially the signaling pathway controlling the

lysozyme production and the function of lysozyme against the EHP are still unclear. Here, we

investigated the innate immune signaling pathways responsible for the LvLyz-c production

upon EHP infection using an RNA interference technique. To characterize the role of the

LvLyz-c, recombinant LvLyz-c (rLvLyz-c) was produced in the Escherichia coli system. rLvLyz-

c was tested for its antimicrobial activity and ability to digest chitin layer of EHP endospore

and inhibit spore germination. This work provides insights into the molecular mechanism on

how LvLyz-c is regulated and the important function of LvLyz-c in limiting EHP infection.

LvLyz-c could serve as one of the promising targets for controlling EHP infection problems in

the future.

Results

Several immune-related genes are up-regulated during EHP infection

Molecular mechanisms on how shrimp respond to EHP infection remain largely unknown.

Here, we systematically quantify the expression levels of several immune related-genes in the

JAK/STAT, TLR pathways, and AMPs upon the EHP infection. For the JAK/STAT pathway, a

receptor LvDOME was significantly up-regulated at 9 and 15 days post-cohabitation (Fig 1A),

while LvJAK was up-regulated at day 1 and 9 (Fig 1B). In contrast, a transcription factor

LvSTAT was significantly increased only at day 9 (Fig 1C). In the TLR pathway, the LvTLR2
receptor was increased only at the 11 day post-cohabitation (Fig 1D). However, the down-

stream effector LvMyD88 was up-regulated at all timepoints (Fig 1E), while LvDorsal was up-

regulated at day 1 and 15 (Fig 1F). Our results suggest that both JAK/STAT and TLR pathways

are involved in the EHP infection. However, it is unclear which immune signaling pathway
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Fig 1. Temporal expression of the immune-related genes upon EHP infection. (A-C), JAK/STAT pathway; (D-F), Toll like receptor

(TLR) pathway; (G-I), Antimicrobial peptides (AMPs). Shrimp were reared together with EHP-positive shrimps. Immune-related gene

transcriptional levels were determined via qRT-PCR at 1, 9, 11, and 15 days after EHP cohabitation. Each data point was normalized to

the expression of the EF-1α gene and calculated relative to the expression level in the specific pathogen-free (SPF) shrimp. Dotted line

represents the expression level in the SPF shrimp. Error bars represent the standard deviation of three biological replicates (n = 3). All

the data were analyzed by one-way ANOVA. * represents P<0.05, ** shows P<0.01, and *** indicates P<0.001.

https://doi.org/10.1371/journal.ppat.1012199.g001
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may play a role in an early or late stage of the infection. In response to the EHP infection, we

found that LvALF1 was significantly up-regulated at 9 days post-cohabitation (Fig 1G), while

LvPEN3 was increased at day 1 and 15 (Fig 1I). Interestingly, the expression level of LvLyz-c
was increased by approximately 6.4 folds at day 15, which was higher than other AMPs

(Fig 1H). This highlighted that LvLyz-c possibly be one of the important AMPs or alternatively

working together with other AMPs to fight against the EHP infection.

LvTLR2 and LvDOME are required for suppressing EHP proliferation in

shrimp

To test whether LvLyz-c is responsible for limiting EHP infection, we silenced 2 main surface

receptors, including LvTLR2 and LvDOME using an RNA interference (RNAi) technique.

Double-stranded RNA (dsRNA) specific to either LvTLR2 or LvDOME were injected twice

prior to cohabitation (See method). Our results showed that LvTLR2 and LvDOME were suc-

cessfully suppressed and the silencing effect lasted until 11 days post-cohabitation (Fig 2A and

2D). After knocking down these two receptors, we tested the LvLyz-c expression level at differ-

ent timepoints (Fig 2B and 2E). LvDOME knockdown resulted in reduction of the LvLyz-c
level at 7, 9, and 11 days post cohabitation (Fig 2B), suggesting that the production of LvLyz-c
could be under the regulation of LvDOME. To further characterize the effect of LvLyz-c on the

EHP proliferation, we quantified the EHP copy number in the shrimp that were injected with

dsLvDOME compared to the control group. When LvDOME was knocked down, EHP copy

number significantly increased at least 10 times (Fig 2C). This result supported the functions

of JAK/STAT pathways in reducing EHP infection.

In contrast, LvTLR2 knockdown increased the LvLyz-c expression level (Fig 2E). This sug-

gests that LvLyz-cmay not be regulated by the TLR pathway. However, LvTLR2 knockdown

could result in increasing the EHP copy number at 9 and 11 days post-cohabitation (Fig 2F),

indicating that the TLR pathway is still one of the immune signaling pathways responsible for

controlling the EHP infection in shrimp. However, further investigation needs to be per-

formed to elucidate the function of LvTLR2 upon EHP infection.

LvSTAT potentially binds to the LvLyz-c promoter

To further confirm that the LvLyz-c production is under the JAK/STAT signaling pathways,

we harnessed the luciferase reporter assay. Briefly, the transcription factor LvSTAT coding

sequence was cloned into a pcDNA3.1 vector. The predicted promoter sequence of LvLyz-c
(positions −213 to +24, 238 bp) was cloned into plasmid pGL3 containing a luciferase reporter

gene (luc+) (Fig 3A). After co-transfection of these two plasmids into HEK293 cells, we found

that the relative luciferase activity significantly increased by 2.88 folds (P<0.0001) compared

to the control groups, including no plasmid, pGL3, and pcDNA3.1 transfected cells. Mean-

while, the signal disappeared in cells carrying a deletion of the STAT binding site (TTCTCA-

GAAA [40], 10 bp) construct (Fig 3B). This result confirms that LvSTAT binds to the LvLyz-c
promoter and the LvLyz-c is under the regulation of the JAK/STAT signaling pathway.

rLvLyz-c exhibits both antibacterial and antifungal activities

Previous study has shown that lysozyme displayed antimicrobial activities against various

pathogens [41]. To test whether LvLyz-c from shrimp contains any antimicrobial activities, we

recombinantly expressed LvLyz-c in an E. coli system. The recombinant LvLyz-c (rLvLyz-c)

was successfully purified using a Ni-NTA affinity chromatography (S1 Fig) and the agar well

diffusion assay was performed against gram-positive bacteria, gram-negative bacteria, and

yeast cells (Fig 4A). Clear zones were observed only when tested with a gram-positive B.
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subtilis, and two of the gram-negative bacteria V. parahaemolyticus (AHPND stain) and V.

haveyi (Fig 4A and 4B). It is unclear why rLvLyz-c selectively works on some bacterial species

but not others. It is possible that different bacteria process different modifications on the cell

wall layers, which could affect the LvLyz-c activity [42]. Interestingly, rLvLyz-c exhibited the

antifungal activity against C. albican (Fig 4). This implies that rLvLyz-c could potentially digest

both peptidoglycan and chitin, a major component of bacteria and fungi cell walls. This result

opens a possibility that rLvLyz-c might be able to digest a chitin layer on the EHP spore.

rLvLyz-c digests a chitin layer presented on the EHP spore

Typically, microsporidian spores contain 2 different layers, including a proteinaceous elec-

tron-dense exospore and electron-lucent chitinous endospore [43]. To investigate the role of

LvLyz-c against the EHP spores, we stained the mature EHP spores with a chitin staining dye,

called calcofluor white M2R. After incubating the spores with various concentrations of

rLvLyz-c ranging from 0.1 μM to 16 μM, the fluorescent intensities were significantly reduced

in a dose-dependent manner (Fig 5A and 5B). The intensity was the lowest at 8 μM concentra-

tion and remained unchanged when the concentration was increased to 16 μM (Fig 5B). To

further investigate the effect of rLvLyz-c on the EHP spore layers in a nanoscale resolution, we

utilized a room-temperature transmission electron microscopy (TEM). We measured the area

Fig 2. Effect of the immune-related receptor knockdown on LvLyz-c expression level and EHP copy number. (A-C) Domeless receptor and (D-F) Toll-like

receptor 2 (TLR2) knockdowns. The mRNA expression level of LvDOME, LvTLR2, and LvLyz-c were quantified by qRT-PCR. EHP copy numbers were

analyzed using absolute qPCR comparing with aSSU rRNA gene of EHP. The GFP dsRNA treated shrimp were used as a control. All the data were analyzed by

one-way ANOVA. bars with * indicate statistically significant differences (P<0.05); bars with ** indicate highly statistically significant (P<0.01).

https://doi.org/10.1371/journal.ppat.1012199.g002
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and the thickness of both spore wall layers. The results showed that endospore thickness and

area significantly decreased after being treated with 16 μM of rLvLyz-c (Fig 5C–5E). However,

the exospore layer remains unaffected (Fig 5D and 5E). These results suggest that rLvLyz-c

exhibits a chitinase activity and directly digests the EHP endospore layer.

Recombinant LvLyz-c reduces EHP spore germination

Next, we further investigate the role of rLvLyz-c on EHP spore germination. A recent finding

on mechanisms of the polar tube firing in microsporidia showed that the spore wall is one of

the essential components to provide a successful spore germination and transport of infectious

cargo [44]. Hence, we hypothesized that thinning of the endospore layer by rLvLyz-c could

affect the EHP spore germination. To test this hypothesis, mature EHP spores were incubated

with different concentrations of rLvLyz-c varying from 0.3125 μM to 5 μM and the spore ger-

mination was enduced by 2% Phloxine B solution. Our results revealed that the germination

rate drastically decreased from ~60% to 7% after incubating with 5 μM rLvLyz-c (Fig 6A and

6B). Collectively, our results suggest that rLvLyz-c reduces the thickness of the endospore layer

and this contributes to the reduction of spore germination.

Discussion

Toll and JAK/STAT signaling pathways participate in the synthesis of AMPs against various

pathogens [45]. Synthesizing from our data, we propose a model of how LvLyz-c is regulated

and how LvLyz-c functions in limiting EHP infection in shrimp (Fig 7). Our results show that

the JAK/STAT pathway mediates the LvLyz-c production in response to EHP infection and the

Fig 3. Luciferase assay of LvSTAT and LvLyz-c promoter transiently expressed in the HEK293 cells. (A) Schematics of a luciferase reporter gene

and constructs of protein expression plasmids. ΔSBS represents a construct where the STAT binding site (10 bp) was removed. (B) Transient

luciferase assay detection. Values are means ± standard errors of three independent replicates (n = 3). Statistical significance was determined by

student T-test (** P< 0.01).

https://doi.org/10.1371/journal.ppat.1012199.g003
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production of LvLyz-c is independent of the Toll signaling pathway. A transcription factor

STAT binds to a LvLyz-c promoter which leads to the production of LvLyz-c. Functional char-

acterization of LvLyz-c reveals the anti-EHP properties by (1) digesting a chitinous endospore

layer of EHP spore and (2) inhibiting the EHP spore germination process (Fig 7). However,

the mechanistic details of how LvLyz-c could prevent the spore germination remain an open

question and require further investigation.

The JAK/STAT signaling pathway is an essential pathway associated with both innate and

adaptive immunity [22,23]. In vertebrates, various cytokines such as interferons and interleu-

kins activate the JAK/STAT pathway, resulting in mediated immune responses to infections

[24]. In silkworms, the JAK/STAT signaling pathway is shown to be associated with antifungal

immune response [46]. The inhibition of the JAK/STAT pathway could significantly decrease

the antifungal activity of the hemolymph against Beauveria bassiana infection [25]. In shrimps,

the JAK/STAT signaling pathway plays an important role against bacteria and virus infection

[47,48]. A recent study shows that the expression levels of PmDOME and PmSTAT, were signifi-

cantly increased after a white spot syndrome virus (WSSV) infection [49]. Disruption of

PmDOME or PmSTAT by RNA interference affected the prophenoloxidase system and the pro-

duction of IFN-like antiviral cytokine and AMPs during the WSSV infection [49,50]. A previous

study has also suggested that the production of AMPs is controlled by the JAK/STAT signaling

pathways [29,47]. Here, we demonstrate that LvDOME is one of the receptors in response to the

EHP infection. The signaling cascade is activated through the JAK/STAT signaling pathway to

stimulate the expression of LvLyz-c, to fight against the EHP infection in shrimp.

In invertebrates, lysozyme is one of the key components in innate immunity. Its function is

involved in hydrolyzing bacterial cell walls [27]. Previous studies have demonstrated that lyso-

zymes from P.monodon exhibited antimicrobial activities against both gram-positive and

Fig 4. Agar diffusion antimicrobial assay of a recombinant LvLyz-c. (A) Antimicrobial plate assay against gram negative bacteria Vibrio parahaemolyticus,
gram positive bacteria Bacillus subtilis, and yeast Candida albican. (B) Clear zone inhibition measurement shown in millimeter units. Values are

means ± standard errors of three independent replicates (n = 3).

https://doi.org/10.1371/journal.ppat.1012199.g004
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gram-negative bacteria [28,29]. Meanwhile, proteomic and transcriptomic studies showed that

the expression level of LvLyz-c was increased during the EHP infection, indicating that LvLyz-

c might play an important role in response to the EHP infection [38,39]. In accordance with

the previous work [51], rLvLyz-c showed similar antibacterial activities. Unexpectedly, we

found the antifungal activity of rLvLyz-c against C. albican and EHP spores. These two

Fig 5. Enzymatic digestion of the EHP endospore layer. (A) Fluorescent micrographs of EHP spores stained with a

chitin dye. (B) Quantification of the fluorescence intensity of EHP spores from (A). (C) Representative TEM

micrographs. Red arrows represent the endospore layer. (D) Quantification of the EHP spore wall thickness and (E)

spore wall area. Each experiment was performed in three biological replicates (n = 100 for each replicate, except in (E)

that n = 10). ** P<0.01 and *** (P<0.001. Scale bars for the micrographs are 5 μm for fluorescence analysis and

200 μm for TEM.

https://doi.org/10.1371/journal.ppat.1012199.g005
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organisms shared a similar cell wall architecture, which is composed of chitin. Hence, it is pos-

sible that rLvLyz-c could digest the chitin layer. Indeed, our data shows that the thickness of

the EHP endospore layer–a layer riched in chitin, is reduced after the rLvLyz-c treatment. This

suggests its role in limiting the EHP infection. In addition to the chitinase property, rLvLyz-c

possibly alters the membrane permeability of the spore which affects the ion flux and osmotic

pressure required for successful spore germination. A recent work on a biophysical characteri-

zation of the microsporidian germination process suggests that the spore wall is important to

withstand the pressure generated during the germination process [44]. Hence, the reduction of

the EHP endospore layer by rLvLyz-c might disturb an influx of water into the spore, resulting

in an osmotic pressure imbalance which hinders spore germination.

Taken together, our data demonstrate that the JAK/STAT signaling pathway is responsible

for the production of the LvLyz-c in response to the EHP infection. LvLyz-c exhibits antifungal

activity that limits the EHP germination process. This study provides insights into the defense

mechanism of shrimp against the EHP infection and the roles of LvLyz-c in limiting the EHP

germination process. The LvLyz-c could serve as a promising target to be used as one of the

EHP prevention and control strategies.

Materials and methods

Ethics statement

This study was carried out in strict accordance with the recommendations of the Weatherall

report. The protocol was approved by the Committee on the Ethics of Animal Experiments of

Chulalongkorn University (Protocol Number: 2323018).

Bacterial strains and animals

For the antimicrobial assays, Gram-positive bacteria (Bacillis subtilis and Staphylococcus
aureus), Gram-negative bacteria (Vibrio harveyi, Vibrio parahaemolyticus, Vibrio fluvialis,

Fig 6. Inhibitory effect of rLvLyz-c on EHP spore germination. (A) EHP spore germination after incubating with rLvLyz-c

(B) Quantification of the EHP spore germination rate. Each experiment was performed in three independent biological

replicates (n = 100 for each replicate). ** P<0.01 and *** P<0.001. Scale bar is 5 μm.

https://doi.org/10.1371/journal.ppat.1012199.g006
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Vibrio alginolyticus, Vibrio cholera, Vibrio mimicus, and Escherichia coli 363), and yeast cells

(Candida albicans) were used. Furthermore, E. coli Rosetta(DE3) pLysS was used for the

recombinant protein expression experiment.

Specific pathogen-free (SPF) juvenile Litopenaeus vannamei with an average weight

between 2–4 g were provided by the Marine Shrimp Broodstock Research Center II (MSBRC-

2), Charoen Pokphand Foods PCL (Phetchaburi Province, Thailand). Shrimps were accli-

mated under laboratory conditions at an ambient temperature of 28˚C ± 1˚C and with 20 ppt

salinity for 1 week prior to experiments.

EHP spore preparation

EHP-infected shrimps were obtained from commercial ponds in Chanthaburi province, Eastern

Thailand. Hepatopancreas from 15–20 shrimps were pooled and they were homogenized using a

glass pressure homogenizer. The cell lysates were filtered with a 40-μm cell strainer (Jet Biofil,

China). Then, the lysate was passed through a G24 needle 5 times. The equal amount of 100%

Percoll was added and centrifuged at 1,500 xg for 15 min at room temperature (RT). Mature

spores of EHP were separated from other developmental stages by ultracentrifugation at 12,656

xg, RT, for 15 min in a discontinuous density gradient, including 25%, 50%, 75%, and 100% Per-

coll (from top to bottom) (Cytiva, USA). The EHP mature spores were kept at 4˚C before use.

Fig 7. Schematic representation of EHP-mediated activation of the Lyz-c production by TLR2 or JAK-STAT signaling pathway. EHP induces TLR2 and

DOME receptors to activate their downstream effectors, LvMyD88 and LvJAK, respectively. LvDorsal or LvSTAT transcription factor promotes a specific set

of antimicrobial peptides, including LvLyz-c, LvPEN3, and LvALF1. LvLyz-c production upon the infection could digest the endospore layer of EHP and

inhibit the EHP germination process. Note that Fig 7 was created with BioRender.

https://doi.org/10.1371/journal.ppat.1012199.g007
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Total RNA isolation and cDNA synthesis

Total RNA was extracted from shrimp hemocytes using a FavorPrep Blood/Cultured Cell

Total RNA Mini Kit (Favorgen, Taiwan). Then, the first-strand cDNA was synthesized using a

First-strand cDNA Synthesis Kit (Thermo Fisher Scientific, USA) according to the manufac-

turer’s instructions. cDNA was stored at −20˚C until use.

Expression analysis of Litopenaeus vannamei Toll-like receptors (LvTLRs)

and LvDOME related genes after EHP challenge

Specific pathogen-free (SPF) L. vannamei were separated into control and EHP-infected

groups. EHP-infected shrimps were prepared by co-habitation technique [9]. Fifty SPF

shrimps were reared together with 15–20 EHP-positive shrimps. Shrimp hemocytes from each

group (n = 5) were collected at 1, 9, 11, and 15 days post cohabitation. Total RNA from the

hemocytes was extracted and cDNA was synthesized as described above. The amount of

cDNA used in each qPCR reaction was 10 ng. The expressions of LvTLRs and LvDOME signal-

ing pathways, including LvTLR2 (JN180637.1), LvMyD88 (JX073567.1), LvDorsal
(FJ998202.1), LvDOME (KC346866.1), LvJAK (KP310054.1), LvSTAT (KC779541.1), and anti-

microbial peptide (AMP) genes, including LvALF1 (MF135540.1), LvPEN3 (DQ206403.1),

and LvLyz-c (AY170126.2) were investigated using a Luna Universal qPCR Master Mix (New

England Biolabs, UK) and a CFX96 TouchÔ Real-time PCR Detection System (Bio-Rad, USA)

with qPCR specific primers (S1 Table). Relative expression was calculated using the 2–ΔΔCt

method relative to the elongation factor 1α (EF1α) gene. The ΔΔCt value was calculated as

CtEHP-infected group − CtSPF group.

Double stranded RNA (dsRNA) production and RNA interference (RNAi)

experiment

To prepare specific dsRNAs for the gene knockdown experiment, fragments of LvTLR2 and

LvDOME were synthesized by T7 RiboMAX Express RNAi System kit (Promega, USA) using

gene-specific primers flanked with the T7 promoter sequence (S1 Table). GFP was used as a

control. The quality of dsRNA was verified after annealing by agarose gel electrophoresis and

the concentration was measured using a NanoDrop 2000 spectrophotometer (Thermo Scien-

tific, USA).

To test the silencing efficiency of dsRNAs, each shrimp was double injected with dsLvTLR2
(2.5 μg/g shrimp), dsLvDOME (1 μg/g shrimp), or dsGFP (2.5 μg/g shrimp) in the third

abdominal segment. The second injection was carried out 24 hours after the first injection.

Then, the injected shrimps were reared together with 15–20 EHP-infected shrimps. Hemo-

lymph was collected at 1, 7, 9, and 11 days after dsRNA double injection. Then, hemolymph

was centrifuged at 800 xg for 10 min at 4˚C to collect hemocyte cells. Shrimp hemocyte was

collected for total RNA extraction and first-strand cDNA synthesis as described above. The

amount of cDNA used in each qPCR reaction was 10 ng. The cDNA samples were used to

investigate the LvTLR2 or LvDOME suppression efficiency via RT-qPCR using specific for-

ward and reverse primers (S1 Table). The gene expression levels of dsLvTLR2- or dsLvDOME-

infected shrimps were calculated in relative to that of the dsGFP-injected group.

Detection of EHP copy numbers by absolute qPCR

To determine the copy number of EHP in the infected shrimp samples, the genomic DNA was

isolated from the hepatopancreas using a FavorPrep Tissue Genomic DNA Extraction Mini

Kit (Favorgen, Taiwan). Fifteen nanograms of the gDNA from five individual shrimp from
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each time point were used as templates in the qPCR analysis using a Luna Universal qPCR

Master Mix (NEB, UK). The instructions from the company were followed. Small subunit of

ribosomal RNA (SSU rRNA) gene (FJ496359.1) was used for generating a standard curve. The

copy numbers of EHP in each sample were calculated using the Ct values of each sample based

on the SSU rRNA standard curve.

Cell culture and luciferase reporter assay

To confirm that the LvLyz-c production is regulated under the JAK/STAT signaling pathways,

a luciferase reporter assay was performed. Human embryonic kidney 293 (HEK293) cells were

cultured in a Dulbecco’s Modified Eagle’s medium (DMEM) (Life Technologies, USA) with

10% heat-inactivated fetal bovine serum (FBS) (Life Technologies, USA). Cells were incubated

at 37˚C with 5% CO2 supplement. The cDNA sequence coding for a LvSTAT gene was cloned

into pcDNA3.1-Myc expression plasmids (Santa Cruz Biotechnology, USA). The pGL3-LvLyz-
c was constructed by cloning a fragment of the LvLyz-c promoter region (position −213 to +24

bp) into a pGL3 luciferase reporter plasmid. For reporter assays, HEK293 cells (2 × 105 cells/

well) were seeded into 24-well plates. After 24 h, cells were co-transfected with 100 ng of

pGL3-LvLyz-c-WT (with wild-type STAT binding sites) or pGL3-LvLyz-c-ΔSDS (containing

corresponding deletion of STAT binding sites) luciferase reporter plasmids and 1 μg of

pcDNA3.1-Myc-LvSTAT protein expression plasmids using a Lipofectamine 3000 in Opti-

MEM with a 1:1 ratio. Ten nanograms of pRL-TK Renilla luciferase reporter plasmid was

transfected and used as an internal control. After 24 h post transfection, the activities of the

firefly and renilla luciferases were measured according to the user instruction. Luciferase activ-

ities were measured using a TriStar2 LB 942 Multi-mode microplate reader (Berthold). Note

that the consensus recognition motif for STAT (TTCNNNGAA) was obtained from Mitchell

et. al 2005 [40].

Recombinant protein production and purification

To investigate the role of LvLyz-c against EHP infection, recombinant LvLyz-c (rLvLyz-c)

(AY170126.2) was produced in E. coli Rosetta(DE3)pLysS. The protein coding domain of

LvLyz-c was analyzed using a Simple Modular Architecture Research Tool [52]. The nucleo-

tide sequence encoding for a lysozyme-specific domain was amplified using gene-specific

primers containing NcoI and XhoI restriction sites (S1 Table). In addition, a 6x His-tag was

added at N-terminus. The rLvLyz-c fragment was ligated into a pET19b vector (Novagen,

USA) and transformed into E. coli Rosetta(DE3)pLysS. The recombinant rLvLyz-c expression

was induced with 1 mM of isopropyl-d-1-thiogalactopyranoside (IPTG) for 4 hours at 37˚C.

The cells were collected, suspended in 8M urea dissolved in 1X STE buffer (10 mM Tris, 1 mM

EDTA, 100 mM NaCl, pH 8.8), and lysed by ultrasonication method. The protein was then

purified using a Ni-NTA affinity column under denaturation conditions. The rLvLyz-c was

eluted with 300 mM imidazole in 8M urea. The urea concentration was decreased by using an

Amicon Ultra-15 centrifugal filter with a molecular weight cutoff of 3 kDa (Millipore, USA).

The purity of the rLvLyz-c was analyzed on 15% (w/v) SDS-PAGE and western blot using an

anti-His tag antibody.

Antimicrobial assay

Antimicrobial activity of rLvLyz-c was assessed using an agar well diffusion method as

described by Valgas et al, 2007 [53]. The bacterial density was adjusted to an OD600 of ~0.2

with the STE buffer and the culture was spread onto the surface of the 2% agar plate. Ten

micrograms of rLvLyz-c were added into a 0.4-cm well and incubated at 30˚C for 16 hours.
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The diameters of the lysis clear zone were measured using ImageJ software. Kanamycin,

amphotericin b, and hen egg-white lysozyme (HEWL) were used as positive controls, while

STE buffer alone was used as a negative control.

Effect of rLvLyz-c on EHP spores

To investigate the chitinolytic activity of rLvLyz-c on the EHP spores, 5 μl of EHP mature

spores (108 spores/ml) were incubated with 250 μl of rLvLyz-c in different concentrations,

namely 0.1, 0.4, 1, 4, 8, and 16 μM for 16 hours at 30˚C. The EHP spores were collected by

centrifuging at 1,500 xg for 10 min at room temperature, and the supernatant was removed.

The spores were resuspended in 1 ml of 1X phosphate buffered saline (PBS) pH 7.4 and stained

with 0.5 μl of calcofluor white (1 g/L) for 15 min at room temperature. The spores were col-

lected by centrifuging at 1,500 xg for 10 min at room temperature and washed with 1X PBS

twice. 5 μl of the stained spores was gently placed onto a glass slide, sealed with a coverslip, and

then observed under a fluorescence microscope (Zeiss Axio Observer 7, Germany) with a

100 × oil objective lens. The excitation wavelength of 385 nm with 20% laser intensity and the

exposure time of 20 ms were used for image acquisition.

The chitinolytic activity of rLvLyz-c was further investigated by a transmission electron

microscopy (TEM). The TEM samples were prepared by the Scientific and Technological

Research Equipment Centre, Chulalongkorn University. In brief, rLvLyz-c treated-spores were

fixed in a sodium cacodylate buffer (pH 7.2) containing 2.5% glutaraldehyde and 2% parafor-

maldehyde. Then, fixed spores were post-fixed with 1% osmium tetroxide (OsO4) and embed-

ded in a 2% melted agar. After dehydration using a gradient of cold ethanol. The samples were

transferred into an epoxy resin then stained with uranyl acetate and lead citrate to increase the

contrast. Spore sections were observed under a transmission electron microscope (Hitachi

HT7700, Japan) and imaged with a nominal magnification of 22,000x.

Effect of rLvLyz-c on EHP polar tube germination

Five μl of EHP mature spores (108 spores/ml) was incubated with 250 μl of rLvLyz-c in differ-

ent concentrations, including 0, 0.3125, 0.625, 1.25, 2.5, and 5 μM for 16 hours at 30˚C. The

spores were collected by centrifuging at 1,500 xg for 10 min at room temperature, and the

supernatant was discarded. Then, spore germination was induced by the addition of 10 μl of

2% (w/v) Phloxine B (Sigma, USA). Spores were then placed onto a glass slide, sealed with a

coverslip, and observed under a Zeiss Axio Observer 7 with a 100 × oil objective lens, and

exposure time of 1 ms.

Image analysis

Image J software [54] was used to measure an area, integrated density and the mean fluorescence

of the EHP stained spores for each condition. The total corrected cellular fluorescence (TCCF)

was calculated by subtracting the area of selected cell × mean fluorescence of background readings

from the integrated density values. Spore wall thickness was measured using a “straight line” tool.

A line between electron-dense exospore layer and electron-lucent endospore layer was made and

measured. Spore wall area was measured using a “polygon selections” tool. The length was

reported in a μm unit. Graphs were plotted using a GraphPad Prism 9 software.

Statistical analyses

The GraphPad Prism 9 software was used for all statistical analyses. In the knockdown and

polar tube germination experiments, a two-tailed unpaired Student’s t-test was used to
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compare the differences between two groups. For fluorescence intensity analyses, one-way

ANOVA was used to analyze the differences compared with the control.
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