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Abstract

Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burg-

dorferi. Borrelia species have highly fragmented genomes composed of a linear chromo-

some and a constellation of linear and circular plasmids some of which are required

throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease

spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replica-

tion to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains

evidence of horizontal transfer, the mechanisms of gene transfer between strains remain

unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro

cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and

long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32

pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with

preferential packaging of plasmids containing the cp32 pac region. Additionally, we find

ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including

lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to

resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome

and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biol-

ogy of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized trans-

duction of diverse genes and the maintenance of genetic diversity in Lyme disease

spirochetes.

Author summary

Lyme disease is a tick-borne disease caused by the bacterium Borrelia (Borreliella) burg-
dorferi. Borrelia bacteria have complex genomes that include various circular and linear

DNA plasmids. Horizontal gene transfer occurs between Lyme disease bacteria; however,

the mechanisms are unclear. A key component of the Borrelia genome is the 32-kb circu-

lar plasmid prophage cp32. When cp32 prophages are induced, infectious virions called
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ϕBB-1 are produced. It is thought that ϕBB-1 phages horizontally transfer DNA between

Lyme disease bacteria. Using proteomics and long read DNA sequencing, we found that

ϕBB-1 virions package not only cp32 plasmids but also fragments of the bacterial chromo-

some and other plasmids. Additionally, our sequencing revealed unique features of the

packaged DNA, such as the pac site that is used to initiate DNA packaging into ϕBB-1

capsids. These findings implicate a role for ϕBB-1 in horizontal gene transfer between

Borrelia strains, contributing to their genetic diversity. Understanding this process is vital

for developing better strategies to combat Lyme disease.

Introduction

The bacterium Borrelia (Borreliella) burgdorferi is the causative agent of Lyme disease, the

most common tick-borne disease in the Northern Hemisphere [1–3]. Lyme disease spirochetes

have complex and highly fragmented genomes composed of a ~900-kb linear chromosome

and up to twenty distinct and co-existing linear and circular plasmids that are similar but not

identical across the genospecies [4–6].

As a vector-borne pathogen, B. burgdorferi relies on the differential expression of several

outer surface lipoproteins to transmit from its tick vector to a vertebrate host [7]. As such, a

large fraction of the B. burgdorferi genome encodes outer membrane lipoproteins, mostly car-

ried on the plasmids [6,8,9].

In natural populations, genetic variation in outer membrane lipoprotein alleles is associated

with species-level adaptations [6,8–10] and variation in outer membrane lipoprotein alleles

across the genospecies is driven primarily by horizontal gene transfer [5,11–21]. However, the

mechanism(s) by which heterologous B. burgdorferi strains exchange genetic material are not

well defined.

Viruses that infect bacteria (phages) are key drivers of horizontal gene transfer between bac-

teria [22]. The genomes of nearly all sequenced Lyme disease spirochetes include the 32-kb cir-

cular plasmid (cp32) prophages (Fig 1A and 1B) [4]. The cp32s carry several outer membrane

lipoprotein gene families including mlp and ospE/ospF/elp (erps), which are all involved in

immune evasion [23–27] and exhibit sequence variation that is consistent with historical

recombination amongst cp32 plasmid isoforms [20,21,28]. Recent work indicates that cp32

Fig 1. The B. burgdorferi genome is highly fragmented and is composed of a linear chromosome, linear and circular plasmids, and cp32 prophages. The

genomes of B. burgdorferi strains (A) B31 and (B) CA-11.2A are shown. (C) The temperate ϕBB-1 phage lifecycle is depicted.

https://doi.org/10.1371/journal.ppat.1012122.g001

PLOS PATHOGENS The lyme disease bacteriophage genome

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012122 April 1, 2024 2 / 25

Funding: PRS is supported by NIH grants

R21AI151597 and P30GM140963. MK is

supported by NIH grant P20GM103474. DRF is

supported by NSF GRFP grant 366502. A.S-F. is a

M. Jane Williams and Valerie Vargo Presidential

Assistant Professor of Biology and is supported by

NIH grants K99GM147842 and R00GM147842,

and by the Postdoctoral Enrichment Program

Award from the Burroughs Wellcome Fund (G-

1021106.01). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript. The

authors declare no conflicts of interest.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.ppat.1012122.g001
https://doi.org/10.1371/journal.ppat.1012122


prophages are induced in the tick midgut during a bloodmeal [9,29,30]. When induced, cp32

prophages undergo lytic replication where they are packaged into infectious virions designated

ϕBB-1 (Fig 1C) [31–33].

In addition to horizontally transferring phage genomes between bacterial hosts (transduc-

tion), phages frequently package and horizontally transfer pieces of the bacterial chromosome

or other non-phage DNA (generalized transduction) [34]. Generalized transduction was first

observed in the Salmonella phage P22 in the 1950s [35] and since then has been observed in

numerous other phage species [34,36–39]. ϕBB-1 is a generalized transducing phage that can

horizontally transfer shuttle vectors carrying antibiotic resistance cassettes between B. burgdor-
feri strains [31,40]. However, to our knowledge, generalized transduction of anything other

than engineered plasmids by ϕBB-1 has not been observed.

Here, we define the genetic material packaged by ϕBB-1 virions isolated from B. burgdorferi
strain CA-11.2A. Our proteomics studies confirm that ϕBB-1 virions are composed primarily

of capsid and other phage structural proteins encoded by the cp32s; however, putative phage

structural proteins encoded by lp54 were also detected. Long-read sequencing reveals that

ϕBB-1 virions package a variety of genetic material including cp32 isoforms that are linearized

at a region immediately upstream of the erp locus (ospE/ospF/elp) and packaged into ϕBB-1

capsids via a headful genome packaging mechanism at a packaging site (pac). When intro-

duced to a shuttle vector, the pac region promotes the packaging of shuttle vectors into ϕBB-1

virions, demonstrating the utility of ϕBB-1 as a tool to genetically manipulate Lyme disease

spirochetes. Additionally, full-length contigs of cp26, lp17, lp38, lp54, and lp56 are recovered

from packaged reads as are fragments of the linear chromosome. Finally, long-read sequencing

of packaged DNA allowed us to fully resolve most of the covalently closed hairpin telomeres in

the B. burgdorferi CA-11.2A genome.

Overall, this study implicates ϕBB-1 in mobilizing large portions of the B. burgdorferi
genome, which may explain certain aspects of genome stability and diversity observed in Lyme

disease spirochetes.

Results

fBB-1 phage purification, virion morphology, and proteomic analysis

In the laboratory, lytic ϕBB-1 replication (Fig 1C) can be induced by fermentation products

such as ethanol [40,41]. We first measured ϕBB-1 titers in early stationary-phase cultures

(~1 × 108 cells/mL) of B. burgdorferi B31 or CA-11.2A induced with 5% ethanol, as described

by Eggers et al. [40]. Seventy-two hours after induction, bacteria were removed by centrifuga-

tion and filtering. Virions were then purified from supernatants by chloroform extraction and

precipitation with ammonium sulfate. Purified virions were treated for one hour with DNase

to destroy DNA not protected within a capsid and treated with chloroform to inactivate

DNase; quantitative PCR (qPCR) was then used to measure packaged cp32 copy numbers.

B. burgdorferi strain CA-11.2A consistently produced ~10 times more phage than B31 (Fig

2A) and was selected for further study. Imaging of purified virions collected from CA-11.2A

by transmission electron microscopy reveals virions with an elongated capsid and contractile

tail (Fig 2B), which is similar to the Myoviridae morphology of ϕBB-1 virions produced by

strain B31 in vitro [9,42,43] and by a human B. burgdorferi isolate following ciprofloxacin

treatment [44].

Mass spectrometry analysis of purified virions identified ten capsid and other structural

proteins encoded by the cp32s including the major capsid protein and capsid fibers (Fig 2C

and S1 Table). We also detected highly conserved predicted phage capsid proteins encoded by

lp54 (Fig 2D). Of note, the highest abundance proteins detected were OspC, OspA, and
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GroEL, which dominate the B. burgdorferi proteome and are known contaminants in protein

samples [45,46]. While the virions we visualized all appear to have the same elongated capsid

morphology, virions with a notably smaller capsid morphology have been isolated and imaged

from B. burgdorferi CA-11.2A [31]. These observations raise the possibility that there are mul-

tiple intact phages inhabiting the CA-11.2A genome.

fBB-1 virions package portions of the B. burgdorferi genome

We performed long-read sequencing on DNA packaged in purified ϕBB-1 virions, as outlined

in Fig 3. Although intact B. burgdorferi cells were removed via both centrifugation and filtra-

tion prior to chloroform treatment, there is concern that contaminating unpackaged B. burg-
dorferi chromosomal or plasmid DNA co-purifies with phage virions. To control for this, we

spiked purified ϕBB-1 virions with high molecular weight (>20 kb) salmon sperm DNA (Fig

4A) at 1.7 μg/mL, a concentration that approximates the amount of DNA released by 3 × 108

lysed bacterial cells into one milliliter of media [47]. Samples were then treated with DNase

overnight followed by phage DNA extraction using a proteinase K/SDS/phenol-chloroform

DNA extraction protocol [32]. Purified DNA was directly sequenced using the Nanopore Min-

ION (long read) platform.

Across three replicates, we recovered a total of 110,986 nanopore reads >700 bp in length

that met a minimum q-score threshold of 7. Kraken [48] and BLAST analyses indicated that

Fig 2. fBB-1 phage titer, virion morphology, and proteomic analysis. (A) Packaged, DNase-protected cp32 copy numbers in bacterial supernatants were

measured by qPCR. Data are the SE of the mean of three experiments, ***p<0.001. (B) Virions were purified from 4-L cultures of B. burgdorferi CA-11.2A and

imaged by transmission electron microscopy. Representative images from two independent preparations are shown. (C and D) HPLC-MS/MS-based

proteomics was used to identify proteins in two purified virion preparations. The SE of the mean of spectral counts for peptides associated with the indicated

phage structural proteins are shown for each replicate. See also S1 Table for the complete proteomics dataset.

https://doi.org/10.1371/journal.ppat.1012122.g002
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the DNase treatment successfully degraded unpackaged DNA, as only 155 reads (0.14% of the

total) with an average length of 1.2kb were derived from the salmon-sperm DNA spike-in (Fig

4B). To further reduce the possibility of unpackaged B. burgdorferi DNA carryover, we

imposed a stringent 5kb read-length cutoff, thus reducing the number of salmon-derived

reads to zero and leaving a total of 58,399 reads (Fig 4C) with a median length of ~12.3 kb

Fig 3. Workflow for sequencing packaged fBB-1 DNA.

https://doi.org/10.1371/journal.ppat.1012122.g003

Fig 4. Establishing a 5kb read length cutoff to exclude unpackaged reads. (A) The salmon sperm DNA used to spike purified phages prior to DNase

treatment was run on an agarose gel to estimate its size. Note that the majority of salmon DNA is larger than the 20-kb high molecular weight marker in the left

lane. (B) 0.14% of 110,986 reads> 700 bp, 0.14% were classified as matching salmon sequences. Reads classified as salmon were plotted as a function of their

length for each replicate. Error bars represent the SE of the mean of three replicate experiments. All reads except one (arrow) were below 5 kb in length (dashed

line) with an average length of 1.2 kb. (C) Read length cutoff was plotted as a function of the number of reads remaining in each replicate dataset. In total,

58,399 reads remain after establishing a 5-kb cutoff. (D) Read length for all reads>5 kb in each replicate was plotted.

https://doi.org/10.1371/journal.ppat.1012122.g004
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(Fig 4D). Note that we detected a high number of ~32 kb reads in each replicate which are the

approximate size of cp32 prophages (Fig 4D, dashed line).

Overall, ~99.6% of packaged reads>5 kb were classified as B. burgdorferi (Fig 5A), the

majority of which (~79%) were cp32 isoforms (Fig 5B). Cp32-10 and cp32-3 were preferen-

tially packaged (~32% and ~25%, respectively) followed by cp32-13 and cp32-5 (each at ~10%)

(Fig 5B). Reads mapping to cp32-3, cp32-5, cp32-10, and cp32-13 had a mean coverage of

over 1,000× (Fig 5C). Cp32-1 reads accounted for only about one percent of all packaged reads

(Fig 5B) and had lower mean coverage of approximately 36× (Fig 5C), suggesting that cp32-1

was not undergoing lytic replication. Read length distributions across cp32s indicate that full-

length ~32 kb molecules were often recovered for cp32-3, cp32-5, and cp32-13, but less fre-

quently for cp32-1 and cp32-10 (Fig 5D). The maximum read lengths recovered for each ele-

ment in the CA-11.2A genome are listed in S2 Table.

Additionally, 11.6% of reads > 5 kb mapped to the linear chromosome and ~6.3% of reads

>5 kb mapped to lp54 (Fig 5B). The remaining reads mapped to all the defined genetic ele-

ments of B. burgdorferi CA-11.2A including plasmids cp26, lp17, lp36/lp28-4, lp38, lp56, and

lp28-3 at 1–2% each (Fig 5B). The average length for packaged chromosome reads and other

low-frequency plasmids packaged by ϕBB-1 is ~8,000 bp (Fig 5D). This may indicate a packag-

ing bias towards shorter DNA molecules for non-cp32 DNA molecules. De novo assembly of

packaged reads produced full-length contigs of all cp32s, lp17, cp26, lp36, lp38, lp54, and lp56

(S1 Fig), suggesting that full-length versions of these plasmids are packaged by ϕBB-1.

Of note, the CA-11.2A genome was reported to contain a unique plasmid, lp36/lp28-4, that

is thought to have arisen from the fusion of lp36 with lp28-4 [49]. De novo assembly of pack-

aged reads resolved lp36/lp28-4 into individual lp36 and lp28-4 contigs (S1E and S1F Fig).

Fig 5. fBB-1 virions package cp32 isoforms, chromosome fragments, lp54, and other plasmid DNA. (A) Kraken and BLAST were used to determine the

taxonomic affiliation of reads>5kb. Note that no eukaryotic reads were identified. (B and C) The (B) percent and (C) mean coverage for reads affiliated with

the indicated B. burgdorferi plasmid or linear chromosome are shown for each replicate. Error bars represent the SE of the mean. (D) Read length distributions

for the indicated plasmids or chromosome are shown.

https://doi.org/10.1371/journal.ppat.1012122.g005
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Additionally, whole genome sequencing (MiSeq) of our CA-11.2A strain confirmed that lp36

and lp28-4 are separate as no reads that span the lp36-lp28-4 junction were observed and cov-

erage depth was notably different between lp36 and lp28-4 (~200× vs. 25×, respectively, S2A

Fig). Furthermore, PCR confirmed the sequencing results (S2B–S2D Fig). These data indicate

that the lp36/lp28-4 plasmid is two distinct episomes in our CA-11.2A strain.

Collectively, these results indicate that in addition to cp32 molecules, ϕBB-1 is capable of

packaging non-cp32 portions of the B. burgdorferi genome. We discuss the major packaged

DNA species in the following sections.

cp32 molecules are linearized near the erp locus and packaged via a headful

mechanism

Our sequencing data provide insight into how ϕBB-1 packages cp32 molecules. Many phage

species package linear double-stranded DNA genomes that circularize after being injected into

a host [50]. Because DNA isolated from ϕBB-1 virions is thought to be linearized [32], we used

PhageTerm [51] to predict the linear ends of packaged DNA. Native DNA termini are present

once per linear DNA molecule, but non-native DNA ends produced during sequencing are

distributed randomly along DNA molecules. Thus, reads that start at native DNA terminal

positions occur more frequently than anywhere else in the genome. PhageTerm takes advan-

tage of this to resolve DNA termini and predict phage packaging mechanisms [51]. PhageTerm

identified the termini of packaged cp32 molecules at approximately 26 kb in a region lying

immediately upstream of the erp loci (Fig 6A). In agreement with the PhageTerm results,

when packaged reads were used to map the physical ends of packaged cp32 molecules, a sharp

boundary in coverage depth is observed upstream of the erp loci in all cp32s (Fig 6B–6F).

Notably, the intergenic region upstream of the erp loci is conserved across the cp32 isoforms

found in diverse strains of Lyme disease spirochetes (Fig 6G) [15] and the linear cp32 ends

identified by long-read sequencing converge at the same conserved terminal sequence motif

(Fig 6H).

PhageTerm predicts that cp32s are packaged by a headful mechanism which supports the

previously proposed headful genome packaging mechanism for cp32s [41]. Phages that use the

headful packaging mechanism generate a concatemer containing several head-to-tail copies of

their genome (Fig 7A). During headful packaging, a cut is made at a defined packaging site

(pac site) and a headful (a little more than a full genome) of linear phage DNA is packaged.

Once a headful is achieved, the phage genome is cut at non-defined sites, resulting in variable

cut positions and size variation in packaged DNA, which we observe in packaged cp32 reads

downstream of the initial cut site (Fig 6B–6F).

Our results suggest that the cp32 pac site is upstream of the erp loci. If the cp32 pac site is in

this region, then DNA molecules containing the pac sequence are expected to be packaged

into ϕBB-1 virions. To test this, we cloned the putative cp32-3 pac site (Fig 6G, black bar) into

a derivative of the pBSV2 shuttle vector that lacks the promoter and MCS [52], transformed B.

burgdorferi strain CA-11.2A, and induced lytic ϕBB-1 replication with 5% ethanol. Superna-

tants containing virions were collected, filtered, treated with chloroform, and DNase treated as

described above. pBSV2 shuttle vector copy numbers were measured by qPCR using primers

that target the pBSV2 kanamycin resistance (kan) cassette. To control for possible chromo-

somal DNA contamination, qPCR was also performed using primers targeting the chromo-

somal flaB gene. Final packaged pBSV2 copy numbers were calculated by subtracting flaB
copy numbers from pBSV2 (kan cassette) copy numbers.

Copy numbers of packaged pBSV2 encoding the cp32-3 pac site were significantly

(p<0.001) higher compared to virions collected from the supernatants of cells carrying an
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Fig 6. cp32s are linearized upstream of the erp loci. (A) PhageTerm was used to predict the linear ends of packaged cp32 molecules. (B–F) Nanopore reads

were mapped to the indicated cp32s. Note the sharp boundary just upstream of the erp loci (highlighted in red). The yellow triangles indicate the PhageTerm

predicted linear ends. (G) Alignments of the intergenic region upstream of the erp loci is shown for each cp32. Colors indicating A, T, C, or G are shown in

panel H. The black line indicates the pac region that was cloned into a shuttle vector, as described in Fig 7. (H) A nucleic acid logo was constructed from 207

cp32 sequence alignments. Yellow triangles indicate the linear end of cp32 isoforms as predicted by PhageTerm and confirmed by long-read sequencing.

https://doi.org/10.1371/journal.ppat.1012122.g006
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empty pBSV2 vector (Fig 7B), indicating that DNA molecules that contain the pac site are

preferentially packaged by ϕBB-1 virions.

Our results indicate that B. burgdorferi CA-11.2A produces more phage than strain B31

(Fig 2A), consistent with previous data [32]. This observation could be explained by mutations

in the pac region or other regulatory elements that govern phage replication decisions. Indeed,

comparing the pac region in the B31 cp32s to the CA-11.2A cp32s reveal numerous differences

upstream of the cut site we identified (S3A Fig). Notably, the cut site itself is conserved across

cp32s in B31 and CA-11.2A.

Phylogenetic analysis of the cp32 pac region in CA-11.2A and B31 reveal further insight.

We find that the CA-11.2A cp32-1 isoform is packaged at a ~100-fold lower frequency than

the other cp32 isoforms (see Fig 5B and 5C). Phylogenetic analysis reveals that the cp32-1 pac
region is divergent from the other cp32 pac sites (S3B Fig). Similarly, prior observations in

B31 by Wachter et al. [9] find that the cp32-9 isoform is not transcriptionally active compared

to the other cp32 isoforms. Our phylogenetic analysis reveals that the pac region of cp32-9 is

also divergent (S3B Fig). These results suggest that mutations in the pac region can affect

DNA packaging efficiency into phage capsids.

The cp32 prophages have conserved motifs that occur in a specific

arrangement not found in other DNA sequences packaged by ϕBB-1 virions

To identify motif(s) that may be shared between the cp32s and other genomic elements that

are packaged into ϕBB-1 virions (e.g., lp54), we first used an iterative BLAST search to identify

Fig 7. Shuttle vectors containing the cp32 pac region are preferentially packaged into ϕBB-1 virions. (A) Schematic depicting the headful genome packaging

mechanism. (B) After ethanol induction, ϕBB-1 virions were collected from CA-11.2A cells not carrying plasmid pBSV2 (No vector), cells transformed with empty

pBSV2, or cells transformed with pBSV2 with the cp32-3 pac site (see Fig 6G for the cloned pac region). Copy numbers of pBSV2 packaged into ϕBB-1 virions were

measured by qPCR. Data are the SE of the mean of three experiments, ***p<0.001.

https://doi.org/10.1371/journal.ppat.1012122.g007
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distantly homologous DNA sequences (Fig 8). A non-redundant list of these diverse DNA

sequences were then used as an input dataset for sequence motif discovery via MEME [53]. All

five cp32 isoforms found in B. burgdorferi CA-11.2A have the same specific arrangement of

conserved sequence motifs around the pac region (Fig 8A and 8B) and these are conserved in

cp32 isoforms across B. burgdorferi (Fig 8C). However, significant matches to these motifs

were not identified in other CA-11.2A genetic elements packaged by ϕBB-1 (S1 Data), sug-

gesting that packaging of non-cp32 DNA may require a pseudo-pac site that is smaller than

the motifs identified or that packaging of non-cp32 DNA occurs spontaneously or through dif-

ferent mechanisms.

The complete or partial arrangement of motifs found around the pac site of B. burgdorferi
cp32 isoforms is conserved in cp32 plasmids and some linear plasmids originating from other

Lyme and relapsing fever Borrelia (21 species total) (Fig 8C). The iterative BLAST search also

revealed that a diverse set of circular and linear plasmids in a broader set of Borrelia species

share some of the motifs found in B. burgdorferi cp32 isoforms. In total, linear or circular plas-

mid sequences from 21 different Borrelia species (both Lyme disease and relapsing fever spiro-

chetes) had homology to the B. burgdorferi cp32 pac-containing DNA sequences (Fig 8C).

Deciphering the structure of linear plasmids packaged by ϕBB-1

After the cp32s, lp54 is a major DNA species packaged by ϕBB-1 (Fig 5C). Lp54 is a linear plas-

mid with covalently closed telomeres that is present in all Lyme disease Borrelia with about a

third of its encoded genes being paralogues to genes encoded on the cp32s [6,54]. De novo

Fig 8. Cp32 prophages have conserved motifs that occur in a specific arrangement around the pac site. (A) Outline of bioinformatic strategy to identify

motifs enriched in the pac-containing DNA sequence of cp32 isoforms. All B. burgdorferi cp32 isoforms have the same motifs in the pac region. The cp32 cut

site is indicated by the yellow triangle. (B) Sequence logos of the motifs identified in panel A and schematized in panel C. Nine of the top ten motifs occur at

least once in the pac-containing region of cp32 DNA sequences. Motifs represented with right or left facing triangles often occur as direct and/or indirect

repeats. (C) Phylogenetic tree of non-redundant DNA sequences with homology to B. burgdorferi cp32 pac-region identified in panel A. For each clade, the

bacterial species and type of plasmid are listed. For clarity in the figure, bacterial species names have been truncated to a three letter abbreviation consisting of

the first letter of the genus and the first two letters of the species (Borrelia afzelii, Baf; Borrelia andersonii, Ban; Borrelia bavariensis, Bba; Borrelia bissettiae, Bbi;
Borrelia burgdorferi, Bbu; Borrelia coriaceae, Bco; Borrelia crocidurae, Bcr; Borrelia duttoni, Bdu; Borrelia fainii, Bfa; Borrelia finlandensis, Bfi; Borrelia garinii,
Bga; Borrelia hermsii, Bhe; Borrelia japonica, Bja; Borrelia mayonii, Bma; Borrelia miyamotoi, Bmi; Borrelia parkeri, Bpa; Borrelia puertoricensis, Bpu; Borrelia
recurrentis, Bre; Borrelia turicatae, Btu; Borrelia valaisiana, Bva; Borrelia venezuelensis, Bve). There is variability in the motif architecture between sequences

within a single clade; however, for clarity, a representative motif architecture discovered by MEME is shown [53]. The top two clades of sequences (outlined in

black) are dominated by cp32 isoforms and the cp32 motif architecture, therefore a single motif scheme is shown for these two clades. The region of DNA and

motifs cloned into the pBSV2 shuttle vector is outlined in dashes.

https://doi.org/10.1371/journal.ppat.1012122.g008
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assembly of packaged lp54 reads produces a 67.4 kb contig consisting of full-length lp54

(54,021 bp, NC_012194.1) flanked by sequences containing tail-to-tail (7,310 bp) and head-to-

head (6,074 bp) junctions (Fig 9A). Read depth for lp54 was >100 for most of the contig; how-

ever, read depth drops precipitously at both tail-to-tail and head-to-head junctions (Fig 9A),

suggesting that the telomeres of lp54 interfere with sequencing.

B. burgdorferi telomeres contain inverted repeat sequences [55] and we identified the CA-

11.2A lp54 inverted repeat sequence as 50–TTTATTAGTATACTAATAAA (Fig 9B and 9C,

boxed sequences). Our sequencing of the telomeric ends of lp54 extends the reference

sequence at the left telomeric end by seven nucleotides (Fig 9B, underlined). Further, com-

pared to the lp54 reference sequence, the packaged left and right junction-spanning sequences

each encode an additional 18 bp of sequence (Fig 9B and 9C). These sequences, although

unique at each end (Fig 9D), form perfect hairpin structures (Fig 9E and 9F). Overall, these

data suggest that lp54 molecules with complete telomere sequences are packaged into virions.

However, whether linear lp54 with covalently closed telomeres or lp54 replication intermedi-

ates that contain head-to-head and tail-to-tail junctions are packaged is unclear.

The de novo assembly approach applied to lp54 was also successful in resolving the telo-

meric ends of other linear elements of the CA-11.2A genome, including the linear chromo-

some and plasmids lp17, lp56, and lp38 (Fig 10). Conserved elements for each telomere are

highlighted [56–61]. Additionally, we were able to resolve left and right telomeres for lp36 (Fig

10), providing yet further evidence that lp36 is not fused to lp28-4.

Discussion

In nature, Lyme disease spirochetes exist as diverse populations of closely related bacteria that

possess sufficient antigenic variability to allow them to co-infect and reinfect non-naïve

Fig 9. Full-length lp54 with fully resolved telomeres are recovered from ϕBB-1-packaged DNA. (A) De novo assembly of packaged reads produced a

67,405-bp contig with tail-to-tail and head-to-head junctions. (B and C) Sequences at the packaged 50 junction (light orange) or the 30 junction (cyan) are

compared to the lp54 reference sequence NC_012194.1. (D) Alignments of the tail-to-tail and head-to-head junctions reveals a variable 18-bp sequence in

between the conserved inverted repeats. (E and F) Predicted hairpin structures are shown for each end of lp54. The loop sequence for each hairpin is

underlined in panel D.

https://doi.org/10.1371/journal.ppat.1012122.g009
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vertebrate hosts [62–73]. Moreover, horizontal gene transfer between Lyme disease spirochetes

has been extensively documented [19,74–78]. Nevertheless, the mechanism underlying hori-

zontal genetic exchange among Lyme disease spirochetes has remained undefined. Our study

implicates ϕBB-1 in mediating horizontal gene transfer between Lyme disease spirochetes.

Horizontal gene transfer between heterologous spirochetes likely occurs in the tick midgut

during and immediately after a blood meal when spirochete replication rates and densities are

at their highest. ϕBB-1 replication is also induced in the tick midgut during a bloodmeal

[9,29,30] with implications for their facilitation of horizontal gene transfer evidenced by

homologous recombination between cp32 isoforms [15–17] and the horizontal transfer of

cp32s between Borrelia strains [21]. These observations suggest a conserved phage receptor is

present across the genospecies; however, the identity of the ϕBB-1 is not yet known.

Our sequencing data suggest that ϕBB-1 virions package large portions of the B. burgdorferi
genome, giving ϕBB-1 the potential to mobilize numerous beneficial alleles during the enzo-

otic cycle via generalized transduction. For example, the circular cp32 prophages are highly

conserved across the Borrelia genus [26]; however, cp32 isoforms contain variable regions that

encode outer membrane lipoproteins such as Mlp and OspE/OspF/Elp, which are known to

facilitate the B. burgdorferi lifecycle [24,26,27,79]. The linear plasmid lp54 encodes the outer

membrane lipoproteins OspA and OspB, which are required for B. burgdorferi to colonize the

tick midgut [80–82]. The outer membrane lipoprotein OspC, which is required for B. burgdor-
feri to infect a vertebrate host, is encoded by the circular plasmid cp26 [62,77,83]. These alleles

(and many others) are packaged by ϕBB-1, which is consistent with a role for phage-mediated

transduction of genes encoding essential membrane lipoproteins between heterologous

spirochetes.

In B. burgdorferi, the linear chromosome is highly conserved as are the circular plasmids

cp32 and cp26 and the linear plasmids lp17, lp38, lp54, and lp56 are all evolutionarily stable

[4–6,16,84]. However, other plasmids distributed across the genospecies show considerably

more variation, encode mostly (87%) pseudogenes, and are thought to be in a state of evolu-

tionary decay [6]. The packaged plasmids for which we recovered full-length contigs include

the cp32s, cp26, lp17, lp38, lp54, and lp56—the same plasmids that are evolutionarily stable

Fig 10. Packaged reads resolve the telomeric ends of the linear chromosome and most linear plasmids in the CA-11.2A genome. Reads spanning tail-to-

tail or head-to-head junctions of the linear chromosome or the indicated linear plasmids form perfect hairpin structures. Conserved regulatory elements for

each telomere are highlighted.

https://doi.org/10.1371/journal.ppat.1012122.g010
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across the genospecies [4–6,16,84]. These observations suggest that genes encoded on ϕBB-

1-packaged plasmids are under positive selection, possibly due to the continuous transduction

between Lyme disease spirochetes during the enzootic cycle.

In addition to providing evidence that ϕBB-1 virions package large portions of the B. burg-
dorferi genome, our study provides insight into ϕBB-1 virion structure and identifies virion

proteins present in ϕBB-1. Using mass spectrometry-based proteomics, we confirm that puta-

tive capsid and structural genes encoded by the cp32s, such as the major capsid protein P06,

are indeed translated and assembled into mature ϕBB-1 virions.

Our long-read sequencing studies indicate that ϕBB-1 packages full-length linear cp32 mol-

ecules via a headful mechanism using pac sites. The headful packaging mechanism is used by

numerous phages and was first described for E. coli phage T4 in 1967 [85]. After injecting lin-

ear DNA into a new host, the phage genome re-circularizes before continuing its replication

cycle. Genes encoded near the ends of linear phage genomes are subject to copy number varia-

tion and recombination as the phage genome re-circularizes [86]. Our data suggest that the

conversion of linear cp32 molecules into circular cp32 molecules occurs in the vicinity of the

erp locus, which would facilitate recombination with polymorphic erp alleles encoded by other

cp32 isoforms in diverse B. burgdorferi hosts.

In this study, the packaging of specific cp32 isoforms was biased: cp32-3, cp32-5, cp32-10, and

cp32-13 were predominantly packaged while cp32-1 was rarely packaged. This result is consistent

with observations by Wachter et al. where cp32 isoform copy number and transcriptional activity

were not uniform across all cp32 isoforms in B. burgdorferi strain B31: cp32-1, cp32-3, and cp32-6

were predominantly induced (highest copy numbers) and had the highest transcriptional activity

while cp32-9 was not induced and was transcriptionally inactive [9]. Variability in the pac region

or other regulatory elements involved in cp32 induction may explain why different cp32 isoforms

replicate and/or are packaged at different rates. Pseudo-pac site homology to bona fide pac sites

affects generalized transduction frequencies by phages like P22 [87–89]. However, generalized

transduction is unpredictable and any part of the bacterial genome is likely packaged at low fre-

quencies [90]. The motifs that are found most broadly in the pac region (e.g., Fig 8C, blue triangle

and green square) may represent pseudo-pac sites for conserved host factors that are present in all

Borrelia species whereas the other motifs may represent protein-binding sites or regulatory

sequences that are specific to given prophage or plasmids.

In the intergenic region upstream of the erp loci, we identified a 377-bp region that contains

the cp32 pac signal. Introducing the cp32 pac region to a shuttle vector facilitated the packag-

ing of the shuttle vector into ϕBB-1 virions. Our identification of the cp32 pac site will be use-

ful for the engineering of recombinant DNA that can be packaged into virions that infect

spirochetes, giving ϕBB-1 the potential for use as a tool for the genetic dissection and manipu-

lation of Lyme disease spirochetes.

After the cp32s, lp54 was the most frequently packaged plasmid. This may be related to the evo-

lutionary origins of lp54: about one-third of the genes encoded by lp54 are paralogous to cp32-en-

coded genes and lp54 is thought to have emerged from an ancient recombination event between a

cp32 and a linear plasmid [6]. In addition, lp54 encodes putative phage proteins including a porin

(BBA74) [91] and phage capsid proteins that are highly conserved across the genospecies [92],

which we detected in purified virions by mass spectrometry. While we observed virions with a dis-

tinct elongated capsid morphology, virions with a notably smaller capsid morphology have been

observed after induction in vitro [9,31,32]. These observations raise the possibility that lp54 may

be a prophage, although it is not clear if lp54 produces its own capsids, relies on cp32-encoded

capsids, or if both lp54 and cp32 capsid proteins assemble to produce chimeric virions.

Our long-read dataset contained reads that spanned head-to-head and tail-to-tail junctions

in lp54. These reads allowed us to define the lp54 telomere sequences; however, whether full-
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length lp54 molecules are packaged or at which stage of the replication cycle lp54 is packaged

is unknown. In B. burgdorferi, both the linear chromosome and linear plasmids have cova-

lently closed hairpin telomeres and replicate via a telomere resolution mechanism

[57,59,93,94]. Examination of a naturally occurring lp54 dimer in B. valaisiana isolate VS116

suggests that a circular head-to-head dimer is produced during lp54 replication prior to telo-

mere resolution and replication completion [95]. Linear, covalently closed lp54 molecules may

be packaged or lp54 replication intermediates may be packaged.

As obligate vector-borne bacteria, Lyme disease spirochetes live relatively restrictive life-

styles that might be expected to i) limit their exposure to novel gene pools, ii) enhance reduc-

tive evolution, and iii) favor the loss of mobile DNA elements. A role for ϕBB-1 in mediating

the transduction of beneficial alleles between heterologous spirochetes in local vector and res-

ervoir host populations may explain why cp32 prophages are ubiquitous not only amongst

Lyme disease spirochetes, but also relapsing fever spirochetes.

Methods

ϕBB-1 induction

Borrelia burgdorferi B31 or CA-11.2A was grown in BSK-II growth medium to 7 × 107/mL and

centrifuged at 6,000 × g, 10 min, 35˚C to pellet cells, which were resuspended in fresh media to a

density of 2 × 108/mL. EtOH was added to a final concentration of 5% and the resuspended cul-

ture was incubated at 35˚C for an additional 2 hours to induce phage production. The induced

culture was then centrifuged at 6,000 × g, 10 min, 35˚C and the pellet was resuspended in fresh

media to a density of 5 × 107/mL after which it was incubated at 35˚C for 72 hours to produce

phage. After 72 hours, the culture was centrifuged at 6,000 × g for 10 min to remove cells and the

phage-containing supernatant was filtered twice through 0.2 μm filters before storage at 4˚C.

cp32 qPCR

For qPCR, 100 μL of filtered culture supernatant was mixed with 20ul of chloroform to eliminate

remaining intact cells and then centrifuged to separate the phases. 80 μL of the aqueous phase was

transferred to a new tube, mixed with 0.8 μL of 100X DNase I reaction buffer (1M Tris-HCl pH

7.5, 250 mM MgCl2, 50 mM CaCl2) and DNase treated with 0.8U DNase I for 1 hour at 37˚C. Fol-

lowing DNase treatment, supernatants were mixed with 20 μl chloroform to inactivate DNase,

spun to separate phases and the aqueous phase added directly to a qPCR reaction (0.5 μL treated

supernatant/10 μL total reaction volume). qPCR was performed using SsoAdvanced Universal

Inhibitor-Tolerant SYBR green supermix (BioRad, Hercules, CA) following maufacturer’s

instructions, primers that target a conserved cp32 intergenic region between bbp08 and bbp09
(50-CTTTACACATATCAAGACCTTAAC, 50- CAAACCACCCAATTTCCAATTCC) and the flaB
gene to control for B. burgdorferi chromosomal DNA contamination (50-TCTTTTCTCTGGTG
AGGGAGCT, 50- TCCTTCCTGTTGAACACCCTCT) [96] at an empirically determined anneal-

ing temperature of 55˚C. Absolute cp32 and flaB copy numbers were calculated from a standard

curve generated using a cloned copy of the target sequences. To estimate phage number for CA-

11.2A and correct for any remaining unpackaged cp32 plasmids, five times the number of

detected flaB copies was subtracted from the absolute cp32 starting quantity.

ϕBB-1 virion purification for DNA extraction

Centrifuged, filtered phage supernatants were treated with 1/10th volume of chloroform to lyse

any remaining cells and chloroform was allowed to separate at 4˚C overnight. The aqueous

layer was transferred to a new vessel and mixed with saturated ammonium sulfate to a final
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concentration of 50%. NaOH was slowly added during ammonium sulfate addition to main-

tain pH based on the BSK-II phenol red indicator and the final pH was adjusted to 7.5. Precipi-

tations were incubated overnight 4˚C and then centrifuged at 10,000 × g for 30 minutes (4˚C)

to collect phage pellets. Precipitated phages were gently resuspended in SM buffer (100 mM

NaCl, 8 mM MgSO4, 50 mM Tris-HCl, pH 7.5) overnight at 4˚C.

ϕBB-1 electron microscopy imaging

Purified virions (3–4 μL) were absorbed to the surface of freshly glow-discharged, formvar-

coated 200 mesh copper grids and negatively stained with 5 μl of 2% methylamine vanadate

(Nanoprobes, Yaphank, NY) prior to viewing on a Hitachi HT7700 transmission electron

microscope (Hitachi-High-Technologies Corporation, Tokyo, Japan).

ϕBB-1 virion proteomics

Purified virions (200 μg total protein) were reduced, alkylated, and purified by chloroform/

methanol extraction prior to digestion with sequencing grade modified porcine trypsin (Pro-

mega). Peptides were separated on an Acquity BEH C18 column (100 x 1.0 mm, Waters) using

an UltiMate 3000 UHPLC system (Thermo). Peptides were eluted by a 50 min gradient from

99:1 to 60:40 buffer A:B ratio (Buffer A = 0.1% formic acid, 0.5% acetonitrile. Buffer B = 0.1%

formic acid, 99.9% acetonitrile). Eluted peptides were ionized by electrospray (2.4 kV) fol-

lowed by mass spectrometric analysis on an Orbitrap Eclipse Tribrid mass spectrometer

(Thermo) using multi-notch MS3 parameters. MS data were acquired using the FTMS ana-

lyzer over a range of 375 to 1500 m/z. Up to 10 MS/MS precursors were selected for HCD acti-

vation with normalized collision energy of 65 kV, followed by acquisition of MS3 reporter ion

data using the FTMS analyzer over a range of 100–500 m/z. Proteins were identified and quan-

tified using Mascot [97] with a parent ion tolerance of 2.5 ppm and a fragment ion tolerance of

0.5 Da. Peptides with a probability score [-10Log10(P)] >70 were considered significant.

Packaged ϕBB-1 DNA purification

For DNA extractions, phage were collected and precipitated as described above, with the addi-

tion of a DNase treatment prior to ammonium sulfate precipitation. The aqueous phage of

chloroform supernatants were mixed with 1/100th volume 100X DNAse buffer and 1U/mL

DNase I followed by incubated at 37˚C for 3 hours and by 4˚C overnight. For samples sub-

jected to population sequencing, high molecular-weight salmon sperm DNA (1.7 μg/mL, a

concentration that approximates the amount of DNA released by 3 × 108 lysed bacterial cells

per milliliter of media) was added prior to DNase digestion to assess carryover of DNA con-

tained outside of phage capsids.

After ammonium sulfate precipitation and resuspension of phage pellets in SM buffer,

EDTA was added to a final concentration of 5 mM and SDS to a final concentration of 0.5%.

After addition of 20 μg/mL RNase and incubation at room temperature for 20 minutes, phage

capsids were digested with 200ug/mL proteinase K at 55˚C for 1 hour. Samples were extracted

twice with an equal volume of phenol-chloroform-isoamyl alcohol (25:24:1) followed by a sin-

gle extraction with an equal volume of chloroform-isoamyl alcohol (24:1) using Qiagen Max-

tract High Density medium (Qiagen, Hilden, Germany). NaCl was added to 300 mM and

DNA was precipitated with 2.5 volumes of 100% EtOH at -20˚C overnight. DNA was pelleted

by centrifugation (14,000 × g for 20 min at 4˚C), washed 3X with 70% EtOH and re-spun for

20 min, at 14,000 × g 4˚C. The DNA pellet was gently air-dried followed by resuspension in

10mM Tris-HCl, pH 8.5 at 4˚C overnight.
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Nanopore sequencing

Sequencing libraries were prepared according to manufacturer’s instructions using library kit

SQK-LSK112, native barcoding kit SQK-NBD112.24 and 500 ng of purified phage DNA

(Oxford Nanopore, Oxford, UK). Libraries were sequenced on a MinION MK1-B using a

FLO-MIN112 flowcell and default settings until pores were exhausted. Basecalling and demul-

tiplexing was performed with Guppy 6.4.6 using the super high accuracy (SUP) model

(dna_r10.4_e8.1_sup.cfg) and default parameters. Run quality control measures were checked

with MinIONQC (v1.4.1) [98] and FastQC (v0.11.9). Adaptor trimming was performed using

s (v0.2.4) [99]. Reads were deposited in the NCBI BioProject database accession

PRJNA1059007 and in S2 Data.

Sequence analysis pipeline

Adapter-trimmed long-reads with quality scores�7 were used to isolate� 5kb reads using

Filtlong (v0.2.1).�5kb reads were mapped to the reference B. burgdorferi CA-11.2A genome

(RefSeq assembly: GCF_000172315.2) with minimap2 (v2.26-r1175) [100]. Primary mapping

reads with MAPQ >20 were isolated by contig, filtered, and converted to final file formats

using Samtools (v1.17) [101] and SeqKit (v2.5.1) [102]. Read statistics for each replicate were

graphed and viewed using GraphPad Prism (v10.1.1). For each contig, de novo assemblies

were created using Trycycler (v0.5.4) [103], which relied on input assemblies from Flye

(v2.9.2-b1786) [104], Raven (v1.8.3) [105], and Minimap2/Miniasm/Minipolish (v2.26-r1175/

v0.3-r179/v0.1.2) [100,106]. The long-read de novo assemblies were then polished with short

reads using Minipolish (v0.1.2) [106]. The telomeres of the linear chromosome and linear plas-

mids were manually identified in SnapGene (v5.3.3), and the hairpin structures were predicted

by the Mfold webserver (http://www.unafold.org/mfold/applications/dna-folding-form.php)

[107]. The terminal ends of the cp32 prophage genomes were predicted using PhageTerm

through the Galaxy webserver (https://galaxy.pasteur.fr/) [51], via input of the�5kb long-read

sequences. Coverage maps of the primary mapping or primary and supplementary mapping

reads were created by mapping� 5kb long-reads to the de novo assembled CA-11.2A genome

or the reference B. burgdorferi CA-11.2A genome with Minimap2, converted to final file for-

mats using Samtools, and viewed using R (v4.3.2) and ggplot2 (v3.4.4).

Pac site cloning and qPCR

The putative pac region from CA-11.2A genomic DNA was amplified using primers 50-TAGA

CATGAGCGGCCGCAAGACAAGCTCCTTATAAGTGTTACT-30 and 50-ATAGCTAGAT

GCGGCCGCTTACTCCGTAACTCTAAAGAATAATGC-30, purified and digested with NotI

and cloned into Not-I-digested pBSV2_2 [52] to create a shuttle vector in which the CA-11.2A

pac region is maintained but cannot be expressed. Vector sequences were verified using long-

read sequencing and transformed into CA-11.2A via electroporation [108]. Clones were PCR-

screened for maintenance of resident plasmids as previously described using published prim-

ers for B. burgdorferi cp32-1, cp26, cp32-3 (which target CA-11.2A cp32-5), cp32-6 (which tar-

get CA-11.2A cp32-3), lp28-3, lp17, lp54, lp28-4 [109] and CA-11.2A-specific primers for

cp32-3 (50-TGGGTTGTAGAGTGGCTGTG-30, 50-TCACCACTTGCGTAATTCTTGC-30),

cp32-10 (50-TAGAGCAAAGTCTTGAAAAGACAAC-30, 50-CCCACGCTTTGTTGAGACC-

30) and cp32-13 (50- AATCTGGGCTGTAGAGCAGG-30, 50-CTGCTCCTGAGGCTCATCC-

30). Clones transformed with pac plasmids or the empty vector were grown in triplicate to late-

log phase in BSK-II and used to generate phage as described above. Encapsidated vector was

measured directly from DNase-treated culture supernatants as described above using qPCR

primers that target the kan resistance gene on pBSV2_2 (50-CACCGGATTCAGTCGTCACT-
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30, 50-GATCCTGGTATCGGTCTGCG-30, 120 bp product). A cloned copy of the kan PCR

product was used to generate a standard curve for absolute quantification.

Identification of conserved motifs in B. burgdorferi cp32 isoforms

The roughly 430 nucleotides upstream of the erp26, erpK, erpG, ospE and erpK genes of the B.

burgdorferi CA-11.2A cp32 isoforms cp32-1, cp32-3, cp32-5, cp32-10 and cp32-13 respectively

were used as queries for a discontinuous MegaBLAST against the NCBI Nucleotide collection

database. The results from these first five BLASTs were combined and sequence hits with more

than 80% identity were removed with CD-HIT [110]. The resulting representative sequences

were used as queries for discontinuous MegaBLAST against the NCBI Nucleotide collection

database, and sequence hits with more than 80% identity were removed with CD-HIT [110].

This process was iterated twice more for a total of three MegaBLAST searches with a represen-

tative list of 80% identity query sequences. The sequence hits from the final MegaBLASTs were

combined and sequences with more than 95% identity were removed with CD-HIT [110], gen-

erating a list of 178 sequences. These 178 sequences were used as an input dataset for the

MEME webserver [53], with custom parameters of “Maximum Number of Motifs” set to “10”,

and “Motif Site Distribution” set to “Any number of sites per sequence”. MEME identified

motifs in 160 of the input sequences. The Position Weight Matrices (PWMs) of the 10 motifs

identified by MEME were used as inputs for FIMO [111] to search for significant sequence

matches (q-value < 0.001) in the B. burgdorferi chromosome and the B. burgdorferi cp32-1,

cp32-3, cp32-5, cp32-10, cp32-13, cp26, lp17, lp54 plasmid DNA sequences. The cp32 isoforms

had nine highly conserved sequence motifs, some motifs present in multiple copies and

arranged in a conserved architecture. The cp26, lp17, lp54 and chromosome sequences did not

contain this conserved architecture of nine motifs (see S1 Data). The sequence logo of each

motif was generated by taking the sequence fragments that MEME used to make each PWM,

and submitting these sequence fragments to the WebLogo 3.0 webserver [112]. The iterative

discontinuous MegaBLAST searches had introduced eukaryotic sequence fragments into the

list of 178 non-redundant sequences, suggesting that the search likely reached an endpoint and

found most of the related sequences in the NCBI database. To generate a phylogenetic tree,

eukaryotic sequence fragments were first removed, and the remaining 149 non-redundant

sequences were aligned using the MAFFT webserver [113], with custom parameters of “Direc-

tion of nucleotide sequences” set to “Adjust direction according to the first sequence”, and

“Strategy” set to E-INS-2. The resulting alignment was used as input for the IQ-TREE webser-

ver [114,115], with the following command-line: path_to_iqtree -s *.fasta -st DNA -m TEST

-bb 1000 -alrt 1000. TreeViewer was used to display the phylogenetic tree [116].

Supporting information

S1 Fig. Packaged read depth across the de novo CA-11.2A genome assembly. De novo
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