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Abstract

SARS-CoV-2 transmission is largely driven by heterogeneous dynamics at a local scale,

leaving local health departments to design interventions with limited information. We ana-

lyzed SARS-CoV-2 genomes sampled between February 2020 and March 2022 jointly with

epidemiological and cell phone mobility data to investigate fine scale spatiotemporal SARS-

CoV-2 transmission dynamics in King County, Washington, a diverse, metropolitan US

county. We applied an approximate structured coalescent approach to model transmission

within and between North King County and South King County alongside the rate of outside

introductions into the county. Our phylodynamic analyses reveal that following stay-at-home

orders, the epidemic trajectories of North and South King County began to diverge. We find

that South King County consistently had more reported and estimated cases, COVID-19 hos-

pitalizations, and longer persistence of local viral transmission when compared to North King

County, where viral importations from outside drove a larger proportion of new cases. Using

mobility and demographic data, we also find that South King County experienced a more

modest and less sustained reduction in mobility following stay-at-home orders than North

King County, while also bearing more socioeconomic inequities that might contribute to a dis-

proportionate burden of SARS-CoV-2 transmission. Overall, our findings suggest a role for

local-scale phylodynamics in understanding the heterogeneous transmission landscape.
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Author summary

State- or county-level data collected as part of routine surveillance often mask significant

local differences in SARS-CoV-2 transmission due to their lack of granularity. This leaves

local public health departments with incomplete information for resource allocation.

Using King County, Washington as an example of a diverse, metropolitan US county, we

leveraged genomic epidemiology to understand differences in transmission between

North and South King County, two adjacent regions within the same county with stark

socioeconomic differences. By combining epidemiological, mobility, and demographic

data, we found that these two regions had divergent SARS-CoV-2 epidemic trajectories

following the start of statewide stay-at-home orders in March 2020. Our approach also

revealed important differences in the role of viral importations and persistence of local

viral transmission on changing SARS-CoV-2 incidence in the background of large-scale

non-pharmaceutical interventions. Our work shows that we can use genomic epidemiol-

ogy to reveal differences in transmission at a local scale, which can inform equitable

resource allocation at a local level to reduce the burden of infectious diseases.

Introduction

The first confirmed SARS-CoV-2 infection in the United States was detected in Washington

State (WA) on January 19, 2020. Since initial detection of the virus, genomic epidemiology has

played a crucial role in identifying and estimating new introductions and community trans-

mission in WA [1–3] and throughout the US [4,5] and has motivated rapid public health inter-

ventions. While international introductions continue to seed new viral lineages into the US,

the majority of transmission is driven by infections and movement at a local scale, wherein

neighboring states, regions, counties, or even zip codes can have vastly different epidemic

dynamics [3,6,7].

In WA, genomic epidemiology has aided in understanding the spatiotemporal variation of

the SARS-CoV-2 epidemic. At a statewide level, previous studies have examined changes in

the relative frequency of variant viruses and the impact of non-pharmaceutical interventions

on the estimated effective population size of the virus [2]. Phylodynamic analyses have esti-

mated the role of introductions in promoting community spread in the state at large and

revealed an asymmetrical interplay between the eastern and western regions of the state,

wherein intra-state transmission accounts for more than half of the introductions into the east-

ern region of WA but only for less than 30% of the introductions into western WA [3].

Even a regional view fails to capture the nuance of epidemic dynamics needed to effectively

curb transmission in the state because neighboring counties and even intra-county areas are

affected by epidemic and demographic heterogeneity. King County, WA is a demographically

diverse, metropolitan US county that has been proactive in promoting testing and vaccination

throughout the SARS-CoV-2 epidemic. Despite these efforts, studies have revealed a large

degree of variation in SARS-CoV-2 infection probability and hospitalization, with communi-

ties of color disproportionately impacted [8].

Previous studies have attributed differences in local case counts to unequal reductions in

mobility [9,10]. When compared to a baseline average from 2019, King County, WA as a

whole shows a large decrease in mobility following the implementation of stay-at-home orders

in March 2020 but differences between within-county regions are salient: North King County

experienced a 60% reduction in mobility compared to the 40% reduction in South King

County (Fig 1A). While South King County eventually returned to baseline levels of mobility
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by the end of 2020, North King County was able to maintain reduced levels through March

2022. The ability to significantly reduce and maintain mobility changes has been previously

attributed to socioeconomic inequities, including geographical differences in income [11] and

percentage of the community that contributes as an essential worker [9]. We see a similar pat-

tern in King County: South King County has a lower median household income, a larger per-

centage of essential workers in the active workforce, and a higher average household size than

North King County (Fig 1B–1D), despite a smaller population size (Fig 1E).

While some studies have used genomic epidemiology to examine transmission between US

counties or boroughs [5–7], here we employ phylodynamic tools to understand the fine scale

spatial and temporal dynamics of SARS-CoV-2 viral transmission both within and between

regions of King County, WA, as a case study of a demographically and socioeconomically

diverse US metropolitan county. Using 11,602 viral sequences sampled from individuals in

King County between January 2020 and March 2022, we examined the role of introductions in

promoting community spread and the impact of non-pharmaceutical interventions on viral

transmission dynamics.

Results

The COVID-19 epidemic in King County, WA shows distinct spatial and temporal patterns

that persisted throughout our study from February 2020 to March 2022. At the PUMA level

(see Methods under Geographical scales), confirmed COVID-19 cases and hospitalizations in

King County are disproportionately higher in more southern PUMAs than in northern

PUMAs (Fig 2A and 2B) during almost every time period analyzed. During the last time

period encompassing the BA.1 Omicron wave, from December 2021 to March 2022, we

observed a more equal geographic distribution of confirmed COVID-19 cases, but COVID-19

hospitalizations continue to disproportionately affect southern regions.

Fig 1. Socioeconomic Characteristics of King County. A. Percent change in mobility from Feb 2020 to March 2022

over time using average mobility in 2019 as baseline for North (blue line) and South (orange line) King County.

Dashed line denotes no change compared to baseline. B,C. Median household income in 2020. (B) Percentage of the

active workforce whose occupation is defined as “essential” from 2015–2020 (C) average household size from 2015–

2020 (D) and population size (E) in King County by Public Use Microdata Area (PUMA). Gray shaded regions above

each figure show the time periods during which ancestral virus, Alpha, Delta, and Omicron respectively represented

greater than 30% of sequenced case. Geojsons for King County PUMAs were made using shapefiles from the US

Census Bureau [12] and can be found here: https://github.com/seattleflu/seattle-geojson/tree/master/seattle_geojsons.

https://doi.org/10.1371/journal.ppat.1012117.g001
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Due to the salient differences between northern and southern PUMAs, we then divided

King County into two regions, North and South, and analyzed COVID-19 cases and hospitali-

zations continuously over time (Fig 2C and 2D). From January 2020 to the end of March 2020,

during the beginning of the epidemic, we see that cases and hospitalizations are slightly higher

in North King County. However, starting in April 2020 soon after a stay-at-home order on

March 23, South King County consistently had higher confirmed cases and hospitalizations

per capita than North King County, a trend that mostly persisted throughout the time period

studied, except during the Omicron wave when cases were similar in both regions. Time series

of cases and hospitalizations replicated the geographical trends seen in Fig 1A and 1B: while

the difference in the number of confirmed cases seemed to contract in during the BA.1 Omi-

cron wave (Dec 2021–March 2022), the magnitude of the difference in hospitalizations

remains roughly constant, with South King County disproportionately burdened.

To investigate transmission dynamics between and within these two King County regions,

we analyzed 11,602 sequenced King County viruses alongside contextual sequences from

around the world. Following the creation of time-resolved phylogenies using Nextstrain [13],

Fig 2. Descriptive Epidemiology of SARS-CoV-2 Epidemic in King County, WA. (A, B) Confirmed positive cases

(A) and hospitalizations (B) per 100,000 individuals of SARS-CoV-2 in King County by Public Use Microdata Area

(PUMA) averaged for each of the six waves of the epidemic up until March 2022. Dark borders denote geographical

boundaries between North and South King County (C, D) Daily positive cases and hospitalizations of SARS-CoV-2

from February 2020 to March 2022 by region of King County smoothed with a 14 day rolling average. Blue denotes

North King County; Orange denotes South King County. Gray shaded regions above each figure show the time periods

during which ancestral virus, Alpha, Delta, and Omicron respectively represented greater than 30% of sequenced case.

Geojsons for King County PUMAs were made using shapefiles from the US Census Bureau [12] and can be found

here: https://github.com/seattleflu/seattle-geojson/tree/master/seattle_geojsons.

https://doi.org/10.1371/journal.ppat.1012117.g002
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we split the sequences into local outbreak clusters using parsimony-based clustering to identify

groups of sequences whose ancestral states were inferred to be in King County (see Methods,

S1 Fig). We identify 5964 clusters and find that the number of clusters increases over the time

in both regions (Fig 3A), most likely due to an increase in the number of cases being sequenced

in WA. Additionally, we find that the majority of clusters are single introductions (n = 5,095),

with larger clusters increasingly rare (Fig 3B, clusters with more than 10 sequences were

excluded for clarity). South King County has a greater mean cluster size (South: 1.87; North:

1.61; two-sample t-test p-value: 0.048) as well as a larger maximum cluster size (max South

cluster size of 280 vs max North cluster size of 150). Fig 3C shows the phylogenetic tree of all

clusters with 5 or more sequences with inferred geographic location as coloring.

We also analyzed the inferred ancestral location for all clusters over time divided out by the

dominant variant waves (S2 Fig). We found that Alpha and Delta arrived first into King

County mainly from other US states before spreading into the larger WA region, with Alpha

also arriving from the UK where it originated. As time progressed, the source of introductions

switched from mainly North America (excluding WA) to predominantly from within Wash-

ington (excluding Omicron which was introduced into King County primarily from WA).

Additionally, we saw that North King County has a larger proportion of viral introductions

coming from outside WA, while the majority of introductions into South King County come

from within the state.

We then employed phylodynamic inference methods on the identified outbreak clusters to

analyze SARS-CoV-2 spread in the county. Following subsampling, we used a MASCOT-GLM

approach with relevant predictors on a random subsample of 3000 sequences from our dataset

of local outbreak clusters to reconstruct SARS-CoV-2 transmission dynamics (S3 Fig). Phylo-

dynamic estimates of the effective population size (Ne) of the virus in both King County

regions over time mirror patterns seen in both confirmed COVID-19 hospitalizations and

cases: while the Ne in North King County is initially greater until the end of March 2020, fol-

lowing WA stay-at-home orders, we find a consistently greater Ne in South King County

throughout the study period (Fig 4A). We also find that hospitalizations one week in the future

was the most informative predictor for effective population size in our model (Fig 4B), while

the migration rate predictors were not significantly informative (Fig 4C).

We next analyzed the posterior set of phylogenies produced by the MASCOT-GLM analysis

to understand viral circulation within and between the two regions. Given the higher esti-

mated Ne in South King County, we quantified the average persistence time of viral transmis-

sion chains in each region (Fig 5A, see Methods). While the average monthly persistence time

remained relatively equal between the two regions during the early stages of the epidemic, fol-

lowing May 2020 up until 2022, we see that transmission chains in South King County consis-

tently have significantly higher persistence times than in North King County, with the mean

local transmission length averaged over the entire time period of 21.5 days in South King

County and 13.5 days in North King County. We see an increase in average persistence times

in both regions during large waves of COVID-19 cases attributable to the introduction of a

new variant with a transmissibility advantage (such as in late 2020- early 2021 with the intro-

duction of Alpha) and the relaxation of stay-at-home order, with South King County consis-

tently having longer persistence times.

To understand if these longer transmission chains in South King County could be due to a

higher number of viral introductions from outside the county, we reconstructed the ancestral

states of each a priori defined King County transmission cluster to quantify the relative num-

ber of introductions into each region (Fig 5B). While greater than 50% of introductions prior

to May 2020 were into South King County, the majority of the time period studied was charac-

terized by a greater relative proportion of introductions from outside into North King County.
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Fig 3. Representative SARS-CoV-2 Clusters by Region in King County. We combined more than 11,500

SARS-CoV-2 genomes from King County with more than 45,000 contextual sequences from around the world and

built a time-resolved phylogeny. King County outbreak clusters were then extracted using a parsimony based

clustering approach. We inferred geographic transmission history between each region using MASCOT-GLM. Here,

we display the number of clusters over time by King County Region (A), the frequency of cluster size by region on a
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These fine scale phylodynamic analyses also allow us to investigate the interplay between

local regions. Introductions from outside regions have been shown to play a driving force in

maintaining local outbreaks [14] but often these introductions are focused on interstate or

international travel. Here we quantify the interplay between two inner-county regions, exam-

ining the number of transmission events that occur between North and South King County

(Fig 5C). By quantifying the number of migration jumps between the two regions, we see a

clear pattern emerge in which prior to June 2020 when WA lifted emergency stay at home

orders, there was little difference in the number of transmission events between regions. Fol-

lowing the elimination of the stay-at-home orders however, transmission events become asym-

metrical, where we consistently see disproportionally more transmission from South King

County to North King County than in the opposite direction, with the largest differences

occurring in the beginning months of 2021.

linear (B left) and log (B right) scale (up to a cluster size of 10. Larger clusters exist but were excluded from the graph

for clarity), and the maximum clade credibility tree of all clusters with five or more sequences (C) where color

represents posterior probability of being in South King County. The x-axis represents the collection date (for tips) or

the inferred time to the most recent common ancestor (for internal nodes). Blue denotes North King County, Orange

denotes South King County.

https://doi.org/10.1371/journal.ppat.1012117.g003

Fig 4. Phylodynamic Analysis via MASCOT-GLM. (A) Estimates of effective population sizes from Feb 2020 to

March 2022 in North (blue) and South (orange) King County using 3000 randomly subsampled sequences. The inner

band denotes the 50% highest posterior density (HPD) interva,l and the outer band denotes the 95% HPD interval.

Vertical gray lines denote dates of non-pharmaceutical interventions in Washington State. (B) Estimates of model

predictor coefficients for Ne estimation and (C) for migration rate estimation. All of the predictors displayed on the x-

axis were included in the analytic model. Dark line represents median estimates, light bands represent 95% HPD. Gray

shaded regions above each figure show the time periods during which ancestral virus, Alpha, Delta, and Omicron,

respectively represented greater than 30% of sequenced case.

https://doi.org/10.1371/journal.ppat.1012117.g004
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Given the higher number of introductions into North King County but the larger Ne and

longer transmission chain length in South King County, we sought to estimate the relative

contribution of introductions versus local community spread in driving the epidemic in both

King County regions. To do so, we calculated the percentage of new cases from introductions

in each region using the estimated changes in Ne over time as well as the estimated rates of

introduction both from outside King County and from the neighboring inner-county region.

We estimated a relatively higher percentage of cases due to introductions in South vs North

King County prior to emergency stay-at-home order in WA on March 23, 2020 (Fig 6A). Fol-

lowing the stay-at-home order, the pattern switched and was largely constant throughout the

epidemic, with North King County averaging about 35% of new cases from introductions

Fig 5. Within and Inter-Regional Dynamics in King County inferred from pathogen genomes and relevant

covariates. A. Persistence time (in days) of local transmission chains over time in both regions of King County.

Accompanying graph showing persistence times averaged over the entire time period for both regions with error bars

denoting 95% CIs. B. Inferred reconstruction of ancestral state for each transmission cluster over time. Blue denotes

initial introduction in North King County and orange denotes initial introduction in South King County. Average

values are normalized to 100% over time. The Accompanying graph showing inferred introductions averaged over the

entire time period for both regions with error bars denoting 95% CIs. C. Number of migration events from North to

South King County (purple) and from South to North King County (green) over time. Bands denote 95% CI. The

accompanying figure shows the number of migration events between the two regions averaged over the entire time

period with error bars denoting 95% CIs. Gray shaded regions above each figure show the time periods during which

ancestral virus, Alpha, Delta, and Omicron respectively represented greater than 30% of sequenced cases.

https://doi.org/10.1371/journal.ppat.1012117.g005
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versus local spread while only about an average of 25% of new cases were estimated to be from

introductions in South King County. To further support this estimate, we calculated the per-

centage of visits to POIs in North and South King County for devices having an outside home

location using SafeGraph mobility data. We find similar estimates ranging from about 25%-

40% throughout time (Fig 6A, black lines).

To better compare transmission dynamics between the two regions, we next used the effec-

tive population size dynamics to compute Rt, the time-varying effective reproductive number

(Figs 6B and S4). Additionally, we also employed our estimates of the percentage of new cases

that are due to introductions to separate out the effects of local transmission and introductions

on Rt. We find that the Rt for both regions closely follows variant waves, with an Rt above 1,

which implies increasing transmission, matching with dates of increased case counts. Addi-

tionally, by separating out contributions into being from local transmission, introductions

from the neighboring King County region, or introductions from outside King County, we

find that local transmission is the main contributor to Rt in both regions but that introductions

have a differential impact. We see that introductions as a whole play a much larger role in pro-

moting and maintaining transmission in North King County, with outside regions being the

Fig 6. Phylodynamic estimates of the differential impact of introductions and local spread on transmission

dynamics of SARS-CoV-2 by region in King County. (A) Percentages of new cases due to introductions were

estimated as the relative contribution of introductions to the overall number of infections in the region. The inner area

denotes the 50% HPD interval and the outer area denotes the 95% HPD interval. Blue = North King County;

Orange = South King County. Black lines represent the same calculation using SafeGraph mobility data as parameter

approximations. Solid black line is for North King County; Dashed black line is for South King County. (B) Estimates

of local Rt highlighting the contribution of introductions from outside King County (red) and from the neighboring

King County region (gold) on local transmission in each King County region. Dashed line denotes an Rt of 1.

Estimates were smoothed using a 7 day rolling average. Estimates higher than 1 suggest an exponentially growing

epidemic. Gray shaded regions above each figure show the time periods during which ancestral virus, Alpha, Delta,

and Omicron respectively represented greater than 30% of sequenced cases.

https://doi.org/10.1371/journal.ppat.1012117.g006
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main contributor of introductions. In South King County, Rt is more driven by local within-

region spread, with introductions from North King County being more influential than intro-

ductions from outside the county.

Phylodynamic estimates of epidemic dynamics were similar regardless of subsampling

strategy used (S5 and S6 Figs).

Discussion

The surge of whole genome sequencing has enabled large-scale investigation into key COVID-

19 epidemiological dynamics. Yet, genomic epidemiology can also be employed to analyze

transmission patterns at a local scale to aid in policy making and intervention evaluation.

Here, we examined fine-scale SARS-CoV-2 transmission dynamics at a sub-county level for

King County, WA, a large metropolitan area with a demographically diverse population.

We used phylodynamic methods to reconstruct the epidemic in King County from January

2020 to March 2022 and examine within-region dynamics and their interplay from pre-identi-

fied local outbreak clusters. We divide King County into North and South, informed by the

clear differences in outcomes (cases and hospitalizations) at the PUMA level, in which South

King County has been disproportionately affected despite having a smaller population size

(673,548 in South versus 1,400,211 in North King County in 2020 [15]). We estimated that for

the majority of the time period studied, introductions accounted for a larger percentage of

new cases in North than in South King County (Fig 5). While a higher proportion of introduc-

tions among new cases can be attributed to either a higher rate of introduction or a lower local

transmission rate, we find evidence of a greater number of viral introductions into North King

County over time, from both outside and within the county, but longer chains of local trans-

mission in South King County (Fig 5). Together, our data suggest a larger impact of introduc-

tions in North King County and a larger role of local community spread in South King County

in driving the respective regional epidemics. This conclusion is supported via our Rt estimates,

or the time-varying estimate of secondary infections, which show that outside introductions

play a significant role in transmission in North King County while local spread is more con-

tributory in South King County (Fig 6). Importantly, cases being driven by a higher percentage

of introductions can be due to either an increase in introductions from outside, a decrease in

local spread, or a combination of both.

Given the smaller population size in South King County, one potential explanation for

higher local spread in that region is reduced access to social and economic capital and health

care resources needed to curb community transmission. Previous studies looking at SARS-

CoV-2 test positivity in King County at a census tract level have found that a higher test posi-

tivity was associated with various socioeconomic indicators including lower educational

attainment, higher rates of poverty, and high transportation costs [16,17]. Additionally, they

found that communities with a higher proportion of people of color, which are more likely to

be located in South King County, were also associated with higher test positivity in 2020. Han-

sen et al. [17], specifically found that having a place of residence in South King County was

associated with SARS-CoV-2 test positivity. The stark contrast in health outcomes between

North and South King County has been previously attributed to historical redlining and sys-

temic racism, whereby decades of racial segregation prevented communities of color from

residing in northern areas of Seattle and were forced into the south into present day South

King County [18,19].

The associations between test positivity and socioeconomic status are not a unique King

County phenomenon; they have been found in various metropolitan areas around the US

[9,10,20]. Similarly, a previous study that used phylodynamics to analyze differences in
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SARS-CoV-2 spread in two Wisconsin counties found that the county with the highest basic

reproductive number, an approximate measure of local spread in a naive population, was also

the county with the higher proportion of people in poverty and lower access to health as well

as with the highest proportion of communities of color, which mimics the transmission

dynamics and demographic differences seen at a within-county level in King County [6].

While we are unable to ascribe causality, our work adds to the growing body of literature

showing a correlation between geographic differences in SARS-CoV-2 transmission and socio-

economic inequities potentially related to the ability to reduce mobility following non-phar-

maceutical interventions.

Our results are not without limitations. Whole genome sequencing in WA is conditional

on laboratory-confirmed testing in which sample quality must meet minimum requirements

in terms of PCR cycle threshold, potentially biasing our dataset towards more symptomatic

cases, although previous studies have found no significant difference in viral load between

symptomatic and asymptomatic individuals [21–23]. Additionally, the changing availability of

genomic sequencing, as well as of at-home testing, is impacting the chance a case shows up in

our data through the period studied (see Fig 4B). In order to limit the impact of the increased

use of at-home antigen testing, we limited our analysis to only include sequences from before

April 2022. Multiple subsampling strategies were considered and implemented in an effort to

account for this variation (S5 and S6 Figs).

Our phylodynamic analyses are conditioned on inferred King County sequence clusters

that are found through the incorporation of contextual sequences from around the world into

a temporally-resolved phylogeny. As such, it is possible that differential sampling from other

locations could impact our identified clusters. Limited SARS-CoV-2 sequence diversity, espe-

cially during periods of rapid transmission, could impact our ability to break up larger clusters

[24], which might lead to collapsing multiple introductions into King County into shared clus-

ters. Prior studies have used GLM approaches to ameliorate this bias [25], similar to our use of

MASCOT-GLM. Optimally, we would like to avoid having to a priori define local outbreak

clusters entirely by, for example, explicitly accounting for locations outside of King County in

the model. This is currently not possible due to the additional computational cost of explicitly

considering an outside deme. Additionally, Bayesian coalescent models assume random sam-

pling of infected individuals, meaning that targeted sampling, such as super spreader events or

contact tracing, could bias our phylodynamic estimations. Such sampling from outbreak anal-

yses may also not be constant through time, complicating Ne inferences. Lastly, our Rt calcula-

tions assume that the change in Ne over time is proportional to the change in the number of

infected individuals over time.

The transmission dynamics of the SARS-CoV-2 pandemic have been highly heterogeneous

across countries. Here we show that even different areas of the same metropolitan region can

have different trajectories. Changes in incidence throughout the course of an epidemic can be

driven by changes in local transmission, importations, or both. Common methods to estimate

incidence and changes in incidence via Rt often ignore or are unable to quantify these differ-

ences [26, 27], leading to situations where local health departments have limited information

with which to tackle growing case counts. Our local scale genomic epidemiology approach can

reveal these differences by quantifying the contribution of importations and local transmission

on Rt (Fig 6B) through the joint integration of genomic and epidemiological information.

Quantifying changes and differences in contribution to incidence can directly lead to tailored

interventions. For example, in an area where incidence is driven mostly by outside viral intro-

ductions, interventions could focus on limiting their impact by implementing testing at the

airport or quarantine for recent travelers. Meanwhile, ramping up testing, vaccination, and

masking as well as providing medical and economic aid to promote quarantine and isolation
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without furthering income inequities could be more impactful for areas where local commu-

nity transmission is the main driver of epidemic growth.

Methods

Ethics statement

The Washington State Institutional Review Board designated this study as exempt. Sequencing

and analysis of samples from the Seattle Flu Study was approved by the Institutional Review

Board (IRB) at the University of Washington (protocol STUDY00006181). Sequencing of rem-

nant clinical specimens at UW Virology Lab was approved by the University of Washington

Institutional Review Board (protocol STUDY00000408).

Experimental design and data sources

For this retrospective phylodynamic study, we aimed to understand local SARS-CoV-2 trans-

mission dynamics in a diverse, metropolitan county. We analyzed 11,602 whole genome

SARS-CoV-2 sequences from King County, WA and 69,588 genome sequences from around

the world downloaded from GISAID [28] with sample collection dates between February 1

2020 and March 6 2022. In order to analyze local scale phylodynamics, ZIP code information

for our primary dataset from King County was obtained from the Washington State Depart-

ment of Health (WADOH) on March 22, 2022. 7289 (62%) of genomes from King County

were sequenced by UW Virology and 2631 (22%) of genomes from King County were

sequenced by Seattle Flu Study / Brotman Baty Institute for Precision Medicine. Three other

laboratories (Altius, CDC and WA PHL) sequenced the remaining 1,917 (16%) of genomes

collectively.

Time series of zip code-aggregated cases and hospitalizations were found on WADOH and

Public Health Seattle King County’s (PHSKC) Covid Data Dashboard [29]. Publicly available

demographic information by ZIP code was obtained through the U.S. Census Bureau’s Ameri-

can Community Survey (ACS). This study utilized both ACS 2015–2019 (5-Year Estimates)

and ACS 2020 [15].

Additionally, we obtained mobile device location data from SafeGraph (https://safegraph.

com/), a data company that aggregates anonymized location data from 40 million devices, or

approximately 10% of the United States population, to measure foot traffic to over 6 million

physical places (points of interest) in the US [30]. We estimated population mobility within

and between North and South King County and the in-flow of visitors residing outside of King

County from January 2019 to March 2022, using SafeGraph’s “Weekly Patterns” dataset,

which provides weekly counts for the total number of unique devices visiting a point of interest

(POI) from a particular home location. Points of interest (POIs) are fixed locations, such as

businesses or attractions. A “visit” indicates that a device entered a building or the spatial

perimeter designated as a POI. A “home location” of a device is defined as its common night-

time (18,00–7,00) census block group (CBG) for the past 6 consecutive weeks.

Geographic scales

To understand local-scale dynamics, most of this study was focused on geographic scales finer

than the county level. We divided King County into both Public Use Microdata Areas

(PUMAs), which are non-overlapping, statistical geographic areas containing no fewer than

100,000 people each, and general regions, North and South. Information as to how we aggre-

gate ZIP codes into PUMAs and PUMAs into North and South can be found in S1 Table.
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Maximum likelihood tree generation

A temporally-resolve phylogeny was created using the Nextstrain [13] SARS-CoV-2 workflow

(https://github.com/nextstrain/ncov), which aligns sequences against the Wuhan Hu-1 refer-

ence using nextalign (https://github.com/nextstrain/nextclade), infers a maximum-likelihood

phylogeny using IQ-TREE [31] with a GTR nucleotide substitution model, and estimates

molecular clock branch lengths using TreeTime [32]. All sequences were downloaded from

the GISAID EpiCoV database on May 26 2022 [28].

In order to capture the SARS-CoV-2 epidemic in King County with high resolution and

computational efficiency, we created four separate temporally resolved phylogenies that span

from February 2020 to March 2022. To do so, we created specific phylogenies for Omicron

(Nextstrain clades 21K, 21L, 21M comprising 2856 King County Sequences and 18,817 contex-

tual sequences from around the world), Delta (Nextstrain clades 21A, 21I, 21J comprising

2955 King County Sequences and 19,197 contextual sequences from around the world), Alpha

(Nextstrain clade 20I comprising 2941 King County Sequences and 15,406 contextual

sequences from around the world), and all other SARS-CoV-2 lineages (2850 King County

Sequences, 16,168 contextual sequences from around the world). These builds provided higher

resolution during epidemic waves while also being mutually exclusive to sequences found in

the alternative builds.

Contextual sequences are needed in order to investigate how King County samples relate to

regional and global viral diversity, and to identify local outbreak clusters specific to King

County. Given that cluster identification is conditional on the number of background

sequences that interdigitate large clades on the phylogeny, we attempted to maximize the num-

ber of contextual sequences within the bounds of reasonable computational efficiency. We pri-

oritized sequences from WA and North America in order to optimize regional context. For

each variant, we specified contextual data sampling to include up to 10,000 genomes per time-

period from WA, sampled from all counties and months, up to 7000 genomes per month from

other US states, and up to 5000 genomes per month from the rest of the world. In each vari-

ant-specific phylogeny, contextual sequences comprise 83–86% of the total number of

sequences. While we expect the number of the clusters to increase with an increasing number

of contextual sequences, prior work has shown that changes in the proportion of background

sequences that make up the analytical dataset above a proportion of 50% have a limited impact

on the number of clusters identified and mean cluster size (S13 Fig in [2]), and downstream

phylodynamic analyses.

Phylogeographic reconstruction of spread around King County was conducted using the

same Nextstrain workflow via ancestral trait reconstruction of PUMAs and North and South

region geographic attributes. Metadata on ZIP code, PUMA, and region was manually added

to the GISAID metadata using the ZIP code information obtained from WADOH as described

above.

Clustering

To identify local outbreak groups in King County, we clustered all King County sequences

based on inferred internal node location. Following Müller et al [2], we used a parsimony-

based approach to reconstruct the locations of internal nodes. Briefly, using the Fitch parsi-

mony algorithm, we inferred internal node locations by considering only two sequence loca-

tions: King County and then anywhere else. We then identified local outbreak clusters by

selecting groups of sequences in which all their ancestral nodes were inferred to be from King

County, up until there was a change in location.
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After identifying relevant King County clusters from each of the four variant Nextstrain

builds, we then annotated the clusters in a combined dataset.

Subsampling

To reduce computation times in subsequent MCMC analyses, we utilized three different sub-

sampling schemes. Three thousand sequences from King County, WA from identified clusters

were chosen either at random, through equal temporal subsampling for every year-week in the

studied time period, or via weighted subsampling informed by daily hospitalization counts

smoothed using a 14-day rolling average. The random subsampling scheme with 3000

sequences was chosen for the main result as it allowed for better resolution during variant

waves.

MASCOT GLM on multiple local outbreak clusters

To analyze the transmission dynamics within and between South and North King County, we

used an adapted version of MASCOT [33] on the 3000 subsampled King County clusters and

sequences. MASCOT is an approximate structured coalescent approach [34] that models how

lineages coalesce (share a common ancestor) within the same locations or migrate between

them. In order to distinguish between local transmission and transmission occurring outside

of King County, we extended MASCOT to jointly infer coalescent and migration rates from

local outbreak clusters [2]. In short, we model the transmission dynamics in King County as a

structured coalescent model. We then model the introduction of lineages into King County

(independent of whether it is North or South King County) as a backwards in time process of

lineages having originated from outside King County. This backwards in time process is

assumed to be independent of the transmission dynamics in King County and occurs at a rate

given by the introduction rate [2]. The rate of introduction that is estimated as part of the

MCMC is allowed to vary over time.

We used generalized log-linear models [35] to estimate whether COVID-19 hospitaliza-

tions, cases, seroprevalence, NPIs, and mobility are predictive of SARS-CoV-2 effective popu-

lation sizes and migration rates over time. The model included error terms to account for

observation noise and omitted predictor variables. We implemented a MASCOT-GLM [35]

analysis on King County transmission clusters with BEAST2 [36] software, allowing the effec-

tive population sizes and the rates of introduction to change every day and every 14 days,

respectively. We performed effective population size and migration rate inference using an

adaptive multivariate Gaussian operator [37] and ran the analyses using an adaptive Metropo-

lis-coupled MCMC [38].

Empirical predictors

We chose several predictors to inform estimates of the migration and effective population size

of SARS-CoV-2 in King County regions. To inform the effective population size, we used daily

COVID hospitalizations (lagged 1–3 weeks), daily confirmed SARS-CoV-2 cases, and percent

immunity against SARS-CoV-2 in Western Washington.

Percent immunity for Western Washington was found via the Nationwide COVID-19

Infection- and Vaccination-Induced Antibody Seroprevalence from the Centers for Disease

Control (CDC) [39]. To include daily values, the monthly seroprevalence surveys estimates

were plotted, fit to a spline and daily percent immunity values based on the fitted spline were

extrapolated for the time period studied to include as a predictor.

We also used dates of non-pharmaceutical interventions (NPIs) in WA and between-region

mobility to inform migration rates between North and South King County. Dates of NPIs
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were found as part of the COVID-19 US State Policy Database [40]. NPIs included are start

and end of emergency stay at home orders as well as closing and reopening of bars and restau-

rants. We chose not to include the opening and closing of public schools due to a high degree

of overlap with the NPIs already included. Washington State closed down public schools on

March 16th, 2020, which was only a week before the statewide shelter in place was issued on

March 23rd, 2020. Similarly, public schools returned to in-person instruction on April 5th,

2021, which is near to the date of restaurant reopening at the end of February 2021.

To measure movement between North and South King County, we extracted the home

CBG of devices visiting either North or South points of interest (POIs) and limited our dataset

to devices with home locations in South King County visiting North King County POIs, or

vice versa, and to POIs that had been recorded in SafeGraph’s dataset since January 2019. For

each POI in each week, we excluded home census block groups with fewer than five visitors to

that POI. To adjust for variation in SafeGraph’s panel size over time, we divided Washington’s

census population size by the number of devices in SafeGraph’s panel with home locations in

Washington state each month and multiplied the number of weekly visitors by that value. To

estimate the total number of visits from each home CBG each week, we multiplied the number

of weekly visitors by the total number of visits divided by the total number of unique visitors

in Washington state each week. For each direction of movement, we summed these adjusted

weekly visits across POIs and measured the percent change in movement from North to South

or South to North over time relative to the average movement observed in all of 2019.

Posterior processing

Parameter traces were visually evaluated for convergence using Tracer (v1.7.1) [41], and 10%

burn-in was applied for all phylodynamic analyses. All tree plotting was performed with baltic

(https://github.com/evogytis/baltic) and data visualizations were done using Altair [42]. We

summarized trees as maximum clade credibility trees using TreeAnnotator and visually

inspected posterior tree distributions using IcyTree [43].

Transmission between regions was calculated by measuring the number of migration

jumps from North to South King County and vice versa walking from tips to root in the poste-

rior set of trees. In order to account for unequal sampling between the two regions, the rate of

migration was estimated as the total number of migration jumps per month in each region

divided by the average branch lengths for that region for the same month.

Persistence time was measured by calculating the average number of days for a tip to leave

its sampled location (North vs South), walking backwards up the phylogeny from the tip up

until node location was different from tip location (following Bedford et al. [44]).

Estimating percentage of new cases due to introductions

We estimated the percentage of new cases due to introductions for both North and South King

County by adapting the methods previously described in Müller et al [2]. The percentage of

cases due to introductions π at time t can be calculated by dividing the number of introduc-

tions at time t by the total number of new cases at time t. We first represented the total number

of new cases in a region as the sum of the number of introductions and the number of new

local infections due to local transmission, resulting in the following equation:

p tð Þ ¼
of introductionsðtÞ

of new local casesðtÞ þ of introductionsðtÞ

We estimated the number of new local cases at time t by assuming the local epidemic in

each King County region follows a simple transmission model, in which we estimate the

PLOS PATHOGENS Local-scale phylodynamics reveal differential impact of SARS-CoV-2 in a metropolitan US county

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012117 March 26, 2024 15 / 22

https://github.com/evogytis/baltic
https://doi.org/10.1371/journal.ppat.1012117


number of new cases at time t as the product of the transmission rate β (new infections per day

per individual) multiplied by the number of people already infected in that region I. For the

number of introductions, we similarly assumed that the number of introductions equals the

product of the rate of introduction (introductions per day, which we refer to as migration rate

m) and the number of people already infected in that region I. We use the number of infected

individuals in the destination region rather than the origin region for calculating the number

of introductions since the approximate structured coalescent approach models epidemic pro-

cesses as backwards-in-time, resulting in the equation containing only information about the

number of infected individuals in the destination region. We then rewrote the above equation

as

p tð Þ ¼
mðtÞIðtÞ

bðtÞIðtÞ þmðtÞIðtÞ
;

where I(t) denotes the number of infected people in that region at time t. Given the presence

of I(t) in every element, we factored out I(t) to arrive at

p tð Þ ¼
mðtÞ

bðtÞ þmðtÞ
:

For each region in King County, we considered introductions at time t to be the sum of the

introductions coming into the region from outside of King County and introductions coming

from the neighboring King County region. Splitting up the introductions by source of contri-

bution, we ultimately defined the percentage of new cases due to introductions π at time t for

region y as

py tð Þ ¼
mb

zyðtÞ þmoutðtÞ
byðtÞ þmb

zyðtÞ þmoutðtÞ
;

where mb
zy denotes the backwards migration rate per day from the neighboring King County

region z into region y, and mout refers to the migration rate per day into region y from outside

of King County.

In a transmission modeling framework, the transmission rate β is equal to the sum of the

growth rate r and the per-day uninfectious rate δ where

b ¼ r þ d

To compute the growth rate in region y, we assume that differences in effective population

size between adjacent time intervals can approximate the growth rate r and thus
dðlogðNeyÞ

dt � r. In

addition, we assumed that dNe/dt is independent from the rate of introduction. We calculated

the growth rate of the effective population size dNe
dt as

dðlogðNeÞÞ
dt

¼
logðNeðt þ DtÞÞ � logðNeðtÞÞ

Dt
;

where Ne(t) denotes the effective population size of a region at time t. We ran our MAS-

COT-GLM analysis using daily time intervals but calculated Ne using a rolling weekly average

in order to smooth our estimates.
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By also assuming an expected time until becoming uninfectious for each individual of 7

days [45], we calculated the transmission rate β at time t in region y as

byðtÞ ¼
dðlogðNeÞÞ

dt
þ d

The rate of introduction per day from outside of King County mout(t) into a King County

region y is a parameter that was directly inferred by MASCOT-GLM for each daily time inter-

val by modeling everything outside of King County as a separate third deme.

To compute the backwards migration rate, we first calculate the forward-in-time varying

migration rate mf
yz(t) for region y into region z over a linear combination of c different predic-

tors:

mf
yzðtÞ ¼ b expð

Xc

i¼1

wisipiðtÞ þ eÞ

where the forward migration rate mf(t) is computed via MASCOT-GLM coefficients wi, indi-

cators σi, log-standardized predictor values pi for predictor i and the respective error parameter

e. The variable b outside the summation refers to the overall migration rate scaler while, wi

refers to the migration rate scalar for each of the individual c predictors.

From the forward-in-time migration rate mf
yz(t), we can then calculate the backwards-in-

time migration rate from state z to state y, mb
zy(t), as the product of the ratio of effective popu-

lation sizes
NeyðtÞ
NezðtÞ

and the calculated forward migration rates:

mb
zy tð Þ ¼

NeyðtÞ
NezðtÞ

mf
yz tð Þ;

Where Ney(t) refers to the effective population size in region y at time t and Nez(t) refers to

the effective population size in the neighboring King County region z at time t.
In addition to the calculation of percentage of new cases due to introductions, we repeated

the above calculation using only SafeGraph mobility data. We used the in-flow of visitors from

outside of King County and movement between each region of King County as approxima-

tions for the number of introductions and within-region mobility as an approximation for the

transmission rate, following the same equation presented above. When estimating in-flows

from outside King County and within-region movement, we applied the same filtering and

normalization methods used when estimating between-region movement.

Estimating the effective reproductive number Rt

We calculated the effective reproductive number Rt, the time-varying average of secondary

infections, in both regions, using both the daily time-varying transmission rate β and the

becoming uninfectious rate δ where Rt ¼ b

d
. Additionally, we sought to separate out the contri-

butions of introductions versus local transmission to the Rt of each region. To do so, we modi-

fied the Rt equation to include the percent of new cases from introductions as an estimate of

local community spread only:Rt ¼ bð1� pÞ

d
, where π refers to the percentage of new cases due to

introductions as described above.

To estimate the contribution of introductions from outside of King County separately from

that of the neighboring King County region, we calculated Rt using the above equation and the

percent of cases from introductions as previously described but omitting introductions from
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outside King County. Briefly:

pyz tð Þ ¼
myzðtÞ

bðtÞ þmyzðtÞ
;

where πyz(t) refers to the percentage of cases in region z due to introductions from region y
into region z at time t, and myz refers to the per-day migration rate from region y to z as

derived above.

Supporting information

S1 Fig. Time-resolved maximum likelihood phylogenies for King County, WA by domi-

nant variant wave with sample collection dates between February 1 2020 and March 6

2022. Trees are filtered to highlight genomes from King County among contextual sequences

from around the globe. Tip color represents the region within King County, with pink corre-

sponding to North King County and blue representing South King County. Branches are col-

ored based on inferred ancestry. Panel A represents all variant clades excluding Alpha, Delta,

and Omicron (the full tree can be explored interactively at https://nextstrain.org/groups/blab/

ncov-king-county/other), the other panels represent Alpha (B, https://nextstrain.org/groups/

blab/ncov-king-county/alpha), Delta (C, https://nextstrain.org/groups/blab/ncov-king-

county/delta), and Omicron (D, https://nextstrain.org/groups/blab/ncov-king-county/

omicron.

(TIF)

S2 Fig. Source of introduction for each identified King County cluster. The left column is

introductions into North King County, the right into South King County. The panels show

how the inferred geographical source of each introduction changes over time as a percentage

of all introductions into the regions for that time period. The top row contains all the introduc-

tions among the four different time-resolved phylogenies. Each subsequent row represents a

different variant studied and is labeled accordingly.

(TIF)

S3 Fig. Number of local outbreak clusters over time by subsampling scheme: random (A,

Blue), equal temporal weighting by year-week (B, Gold), and subsampling weighted by daily

hospitalizations calculated using a 14 day moving average (C, Red).

(TIF)

S4 Fig. Rt estimation using phylodynamic estimates (Blue North King County;

Orange = South King County) and case data (Black lines, solid = North King County,

dashed = South King County) The inner area denotes the 50% HPD interval and the outer

area denotes the 95% HPD interval.

(TIF)

S5 Fig. Phylodynamic estimates of SARS-CoV-2 transmission in King County with equal

temporal subsampling. Results presented above were inferred using 3000 sequences subsam-

pled using equal temporal weighting by year-week. Analyses presented, as defined previously,

are: effective population size over time (A), percent of cases due to introductions (B), and local

Rt estimations divided by region and source of contribution (C). Orange denotes South King

County; blue denotes North King County.

(TIF)

S6 Fig. Phylodynamic estimates of SARS-CoV-2 transmission in King County with sub-

sampling weighted by hospitalizations. Results presented above were inferred using 3000
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sequences subsampled using weighting by hospitalizations over time using a 14 day rolling

average. Analyses presented, as defined previously, are: effective population size over time (A),

percent of cases due to introductions (B), and local Rt estimations divided by region and

source of contribution (C). Orange denotes South King County; blue denotes North King

County.

(TIF)

S1 Table. Geocoding for different geographical scales in King County, WA.

(XLSX)

S2 Table. Sequence Accession IDs and acknowledgements table.

(CSV)

Acknowledgments

We would like to thank Mike Famulare for assembling the geojsons of King County PUMAs

from the US Census Bureau that were used in this study. Clinical and sentinel laboratories

who forwarded specimens for sequencing, and sequencing laboratories that reported data to

WADOH. We gratefully acknowledge all data contributors, ie the Authors and their Originat-

ing laboratories responsible for obtaining the specimens, and their Submitting laboratories for

generating the genetic sequence and metadata and sharing via the GISAID Initiative, on which

this research is based. We have included it in S2 Table. The WADOH Data Science Support

Unit for integrating sequencing data with epidemiologic case data. We also thank SafeGraph

for providing foot traffic data.

Author Contributions

Conceptualization: Miguel I. Paredes, Louise H. Moncla, Nicola F. Müller, Trevor Bedford.

Data curation: Miguel I. Paredes, Amanda C. Perofsky, Lauren Frisbie, Pavitra Roychoudh-

ury, Hong Xie, Shah A. Mohamed Bakhash, Kevin Kong, Isabel Arnould, Tien V. Nguyen,

Seffir T. Wendm, Pooneh Hajian, Sean Ellis, Patrick C. Mathias, Alexander L. Greninger,

Lea M. Starita, Chris D. Frazar, Erica Ryke, Weizhi Zhong, Luis Gamboa, Machiko Threlk-

eld, Jover Lee, Jeremy Stone, Evan McDermot, Melissa Truong, Jay Shendure, Hanna N.

Oltean, Cécile Viboud, Helen Chu.

Formal analysis: Miguel I. Paredes, Amanda C. Perofsky, Nicola F. Müller.

Funding acquisition: Pavitra Roychoudhury, Patrick C. Mathias, Alexander L. Greninger, Lea

M. Starita, Chris D. Frazar, Jay Shendure, Cécile Viboud, Helen Chu, Trevor Bedford.

Investigation: Miguel I. Paredes, Amanda C. Perofsky, Nicola F. Müller, Trevor Bedford.

Methodology: Miguel I. Paredes, Amanda C. Perofsky, Nicola F. Müller, Trevor Bedford.

Resources: Louise H. Moncla, Trevor Bedford.

Software: Jover Lee, Nicola F. Müller.

Supervision: Louise H. Moncla, Lea M. Starita, Hanna N. Oltean, Cécile Viboud, Helen Chu,

Nicola F. Müller, Trevor Bedford.

Validation: Miguel I. Paredes.

Visualization: Miguel I. Paredes, Amanda C. Perofsky, Nicola F. Müller.

PLOS PATHOGENS Local-scale phylodynamics reveal differential impact of SARS-CoV-2 in a metropolitan US county

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012117 March 26, 2024 19 / 22

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1012117.s007
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1012117.s008
https://doi.org/10.1371/journal.ppat.1012117


Writing – original draft: Miguel I. Paredes, Amanda C. Perofsky, Nicola F. Müller, Trevor

Bedford.

Writing – review & editing: Miguel I. Paredes, Amanda C. Perofsky, Lauren Frisbie, Louise

H. Moncla, Pavitra Roychoudhury, Hong Xie, Shah A. Mohamed Bakhash, Kevin Kong,

Isabel Arnould, Tien V. Nguyen, Seffir T. Wendm, Pooneh Hajian, Sean Ellis, Patrick C.

Mathias, Alexander L. Greninger, Lea M. Starita, Chris D. Frazar, Erica Ryke, Weizhi

Zhong, Luis Gamboa, Machiko Threlkeld, Jover Lee, Jeremy Stone, Evan McDermot,

Melissa Truong, Jay Shendure, Hanna N. Oltean, Cécile Viboud, Helen Chu, Nicola F.

Müller, Trevor Bedford.

References
1. Bedford T, Greninger AL, Roychoudhury P, Starita LM, Famulare M, Huang ML, et al. Cryptic transmis-

sion of SARS-CoV-2 in Washington state. Science. 2020 Oct 30; 370(6516):571–5. https://doi.org/10.

1126/science.abc0523 PMID: 32913002

2. Müller NF, Wagner C, Frazar CD, Roychoudhury P, Lee J, Moncla LH, et al. Viral genomes reveal pat-

terns of the SARS-CoV-2 outbreak in Washington State. Sci Transl Med [Internet]. 2021 May 26 [cited

2021 Jun 3];13(595). Available from: https://doi.org/10.1126/scitranslmed.abf0202 PMID: 33941621

3. Tordoff DM, Greninger AL, Roychoudhury P, Shrestha L, Xie H, Jerome KR, et al. Phylogenetic esti-

mates of SARS-CoV-2 introductions into Washington State. Lancet Reg Health–Am [Internet]. 2021

Sep 1 [cited 2022 Aug 3];1. Available from: https://www.thelancet.com/journals/lanam/article/PIIS2667-

193X(21)00010-7/fulltext#seccesectitle0018

4. Deng X, Gu W, Federman S, du Plessis L, Pybus OG, Faria NR, et al. Genomic surveillance reveals

multiple introductions of SARS-CoV-2 into Northern California. Science. 2020 Jul 31; 369(6503):582–7.

5. Lemieux JE, Siddle KJ, Shaw BM, Loreth C, Schaffner SF, Gladden-Young A, et al. Phylogenetic analy-

sis of SARS-CoV-2 in Boston highlights the impact of superspreading events. Science. 2021 Feb 5; 371

(6529):eabe3261. https://doi.org/10.1126/science.abe3261 PMID: 33303686

6. Moreno GK, Braun KM, Riemersma KK, Martin MA, Halfmann PJ, Crooks CM, et al. Revealing fine-

scale spatiotemporal differences in SARS-CoV-2 introduction and spread. Nat Commun. 2020 Nov 3;

11(1):5558. https://doi.org/10.1038/s41467-020-19346-z PMID: 33144575

7. Dellicour S, Hong SL, Vrancken B, Chaillon A, Gill MS, Maurano MT, et al. Dispersal dynamics of

SARS-CoV-2 lineages during the first epidemic wave in New York City. PLOS Pathog. 2021 May 20; 17

(5):e1009571. https://doi.org/10.1371/journal.ppat.1009571 PMID: 34015049

8. Ingram C, Min E, Seto E, Cummings B, Farquhar S. Cumulative Impacts and COVID-19: Implications

for Low-Income, Minoritized, and Health-Compromised Communities in King County, WA. J Racial

Ethn Health Disparities. 2022 Aug 1; 9(4):1210–24. https://doi.org/10.1007/s40615-021-01063-y PMID:

34128216

9. Martinez O, Wu E, Sandfort T, Dodge B, Carballo-Dieguez A, Pinto R, et al. Evaluating the Impact of

Immigration Policies on Health Status Among Undocumented Immigrants: A Systematic Review. J

Immigr Minor Health Cent Minor Public Health. 2015 Jun; 17(3):947–70. https://doi.org/10.1007/

s10903-013-9968-4 PMID: 24375382

10. Kissler SM, Kishore N, Prabhu M, Goffman D, Beilin Y, Landau R, et al. Reductions in commuting mobil-

ity correlate with geographic differences in SARS-CoV-2 prevalence in New York City. Nat Commun.

2020 Sep 16; 11(1):4674. https://doi.org/10.1038/s41467-020-18271-5 PMID: 32938924

11. Weill JA, Stigler M, Deschenes O, Springborn MR. Social distancing responses to COVID-19 emer-

gency declarations strongly differentiated by income. Proc Natl Acad Sci. 2020 Aug 18; 117(33):19658–

60. https://doi.org/10.1073/pnas.2009412117 PMID: 32727905

12. US Census Bureau. 2010_Census_Tract_to_2010_PUMA [Internet]. [cited 2024 Mar 8]. Available

from: https://www2.census.gov/geo/docs/maps-data/data/rel/2010_Census_Tract_to_2010_PUMA.txt

13. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of

pathogen evolution. Bioinformatics. 2018 Dec 1; 34(23):4121–3. https://doi.org/10.1093/bioinformatics/

bty407 PMID: 29790939
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