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Abstract

Genetic drift in infectious disease transmission results from randomness of transmission

and host recovery or death. The strength of genetic drift for SARS-CoV-2 transmission is

expected to be high due to high levels of superspreading, and this is expected to substan-

tially impact disease epidemiology and evolution. However, we don’t yet have an under-

standing of how genetic drift changes over time or across locations. Furthermore, noise that

results from data collection can potentially confound estimates of genetic drift. To address

this challenge, we develop and validate a method to jointly infer genetic drift and measure-

ment noise from time-series lineage frequency data. Our method is highly scalable to

increasingly large genomic datasets, which overcomes a limitation in commonly used phylo-

genetic methods. We apply this method to over 490,000 SARS-CoV-2 genomic sequences

from England collected between March 2020 and December 2021 by the COVID-19 Geno-

mics UK (COG-UK) consortium and separately infer the strength of genetic drift for pre-

B.1.177, B.1.177, Alpha, and Delta. We find that even after correcting for measurement

noise, the strength of genetic drift is consistently, throughout time, higher than that expected

from the observed number of COVID-19 positive individuals in England by 1 to 3 orders of

magnitude, which cannot be explained by literature values of superspreading. Our estimates

of genetic drift suggest low and time-varying establishment probabilities for new mutations,

inform the parametrization of SARS-CoV-2 evolutionary models, and motivate future studies

of the potential mechanisms for increased stochasticity in this system.
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Author summary

The transmission of pathogens like SARS-CoV-2 is strongly affected by chance effects in

the contact process between infected and susceptible individuals, collectively referred to

as random genetic drift. We have an incomplete understanding of how genetic drift

changes across time and locations. To address this gap, we developed a computational

method that infers the strength of genetic drift from time series genomic data that corrects

for non-biological noise and is computationally scalable to the large numbers of sequences

available for SARS-CoV-2, overcoming a major challenge of existing methods. Using this

method, we quantified the strength of genetic drift for SARS-CoV-2 transmission in

England throughout time and across locations. These estimates constrain potential mech-

anisms and help parameterize models of SARS-CoV-2 evolution. More generally, the

computational scalability of our method will become more important as increasingly large

genomic datasets become more common.

Introduction

Random genetic drift is the change in the composition of a population over time due to the

randomness of birth and death processes. In pathogen transmission, births occur as a result of

transmission of the pathogen between hosts and deaths occur as a result of infected host recov-

ery or death. The strength of genetic drift in pathogen transmission is determined by the dis-

ease prevalence, the disease epidemiology parameters [1], the variance in offspring number

(the number of secondary infections that result from an infected individual) [2], as well as host

contact patterns [3]. Many diseases have been found to exhibit high levels of genetic drift, such

as SARS, MERS, tuberculosis, and measles [2, 4, 5]. The strength of genetic drift affects how

the disease spreads through the population [2, 3, 6] how new variants emerge [7–11], and the

effectiveness of interventions [12], making it an important quantity to accurately estimate for

understanding disease epidemiology, evolution, and control.

The effective population size is often used to quantify the strength of genetic drift; it is the

population size in an idealized Wright-Fisher model (with discrete non-overlapping genera-

tions, a constant population size, and offspring determined by sampling with replacement

from the previous generation) that would reproduce the observed dynamics [13]. In a neutral

population, if the effective population size is lower than the true population size, it is an indica-

tion that there are additional sources of stochasticity beyond random sampling with replace-

ment; thus, a lower effective population size indicates a higher level of genetic drift.

Transmission of SARS-CoV-2 has been shown to exhibit high levels of superspreading

(high variance in offspring number) [14–16] and high levels of genetic drift (low effective pop-

ulation sizes) [17–19] (see also S1 Table). However, studies have focused on particular times

and locations, and we lack systematic studies over time and space (see Ref. [20] for a recent

first study that uses contact tracing data to infer changes in SARS-CoV-2 superspreading over

time in Hong Kong). Performing a systematic study may be most feasible with a large-scale

surveillance dataset, such as that from the COVID-19 Genomics UK (COG-UK) consortium,

which has sequenced almost 3 million cases of SARS-CoV-2 in both surveillance and non-sur-

veillance capacities as of October 5, 2022. We focus specifically on this dataset, and specifically

on England, due to its consistently large number of sequenced SARS-CoV-2 cases since early

in the pandemic.

A challenge to performing a systematic study of the strength of genetic drift for SARS-CoV-

2 and other pathogens is how to handle measurement noise, or noise from the data collection
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process [21]. Measurement noise can arise from a variety of factors, including variability in the

testing rate across time, geographic locations, demographic groups, and symptom status, and

biases in contact tracing. Methods exist to infer measurement noise from time-series lineage

or allele frequencies [22–24] (see S1 Appendix for a summary of other methods used for infer-

ring genetic drift and additional references). Intuitively, in time-series frequency data, genetic

drift leads to frequency fluctuations whose magnitudes scale with time, whereas measurement

noise leads to frequency fluctuations whose magnitudes do not scale with time (Fig 1a). Thus,

this system has been mapped onto a Hidden Markov Model (HMM) where the processes of

genetic drift and measurement noise determine the transition and emission probabilities,

respectively [25, 26]. Methods often assume uniform sampling of infected individuals from the

population [22, 23, 27], but this assumption does not usually hold outside of surveillance stud-

ies. A recent study accounted for overdispersed sampling of sequences in the inference of fit-

ness coefficients of SARS-CoV-2 variants, but assumes constant overdispersion over time [28];

in reality, the observation process may change over time due to changes in testing intensity

between locations and subpopulations. Thus, to achieve the goal of systematically assessing the

strength of genetic drift over time and space, there is a need to develop methods that account

for time-varying overdispersed measurement noise to more accurately capture the noise gen-

erated from the observation process.

In this study, we develop a method to jointly infer genetic drift and measurement noise that

allows measurement noise to be overdispersed (rather than uniform) and for the strength of

overdispersion to vary over time (rather than stay constant). This method makes use of all

sequencing data, which is difficult to do with existing phylogenetic methods. By fitting this

model to observed lineage frequency trajectories from simulations, we show that the effective

population size and the strength of measurement noise can be accurately determined in most

situations, even when both quantities are varying over time. We then apply our validated

method to estimate the strengths of genetic drift and measurement noise for SARS-CoV-2 in

England across time (from March 2020 until December 2021) and space using over 490,000

SARS-CoV-2 genomic sequences from COG-UK. We find high levels of genetic drift for

SARS-CoV-2 consistently throughout time that cannot be explained by literature values of

superspreading. We discuss how community structure in the host contact network may par-

tially explain these results. Additionally, we observe that sampling of infected individuals from

the population is mostly uniform for this dataset, and we also find evidence of spatial structure

in the transmission dynamics of B.1.177, Alpha, and Delta.

Results

Scalable method for jointly inferring genetic drift and measurement noise

from time-series lineage frequency data

We first summarize the statistical inference method that we developed to infer time-varying

effective population sizes from neutral lineage frequency time series that are affected by over-

dispersed measurement noise (more variable than uniform sampling). We explain the method

more extensively in the Methods. We infer the effective population size that a well-mixed pop-

ulation would have to have to generate the magnitude of the fluctuations that are observed,

which is the classical definition of effective population size [13]. Briefly, we use a Hidden Mar-

kov Model (HMM) with continuous hidden and observed states (a Kalman filter), where the

hidden states are the true frequencies (ft, where t is time), and the observed states are the

observed frequencies (f obs
t ) (Fig 1b) (see Methods).

The transition probability between hidden states of the HMM is set by genetic drift, where

the mean true frequency is the true frequency at the previous time E(ft+1|ft) = ft, and when the
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frequencies are rare the variance in frequency is proportional to the mean, Varð ftþ1j ftÞ ¼
ft

~Ne ðtÞ
.

~NeðtÞ ¼ NeðtÞtðtÞ where Ne(t) is the effective population size and τ(t) is the generation time,

and both quantities can vary over time; however, we are only able to infer the compound

parameter Ne(t)τ(t).
The emission probability between hidden and observed states of the HMM is set by mea-

surement noise, where the mean observed frequency is the true frequency Eð f obs
t j ftÞ ¼ ft and

when the frequencies are rare the variance in the observed frequency is proportional to the

mean, Varð f obs
t j ftÞ ¼ ct

ft
Mt

. Mt is the number of sequences at time t. ct is the variance over the

mean of the observed number of positive cases of each lineage at time t given the true number

of cases of each lineage at time t (see Materials and methods). ct is expected to equal one if a

random subsample of cases are sequenced, so that the observed number of cases of each line-

age is approximately given by a Poisson distribution with the mean being the true number of

cases of that lineage. In our analyses, we constrain ct� 1 because realistically there must be at

least Poisson sampling of cases for sequencing. Note that the constraint of ct� 1 is still applica-

ble when the number of sequenced cases is large as the variance already accounts for the num-

ber of sequences in the denominator. Our model assumes that the number of individuals and

Fig 1. A Hidden Markov Model with continuous hidden and observed states (a Kalman filter) for inferring genetic drift and measurement noise from

lineage frequency time series. (a) Illustration of how genetic drift and measurement noise affect the observed frequency time series. Muller plot of lineage

frequencies from Wright-Fisher simulations with effective population size 500 and 5000, with and without measurement noise. In simulations with

measurement noise, 100 sequences were sampled per week with the measurement noise overdispersion parameter ct = 5 (parameter defined in text). All

simulations were initialized with 50 lineages at equal frequency. A lower effective population size leads to larger frequency fluctuations whose variances add

over time, whereas measurement noise leads to increased frequency fluctuations whose variances do not add over time. (b) Schematic of Hidden Markov

Model describing frequency trajectories. ft is the true frequency at time t (hidden states) and f obs
t is the observed frequency at time t (observed states). The

inferred parameters are ~Ne ðtÞ � NeðtÞtðtÞ, the effective population size scaled by the generation time, and ct, the overdispersion in measurement noise (ct =

1 corresponds to uniform sampling of sequences from the population). (c-f) Validation of method using Wright-Fisher simulations of frequency

trajectories with time-varying effective population size and measurement noise. (c) Simulated number of sequences. (d) Simulated lineage frequency

trajectories. (e) Inferred scaled effective population size ( ~Ne ðtÞ) on simulated data compared to true values. (f) Inferred measurement noise (ct) on

simulated data compared to true values. In (e) the shaded region shows the 95% confidence interval calculated using the posterior, and in (f) the shaded

region shows the 95% confidence interval calculated using bootstrapping (see Methods).

https://doi.org/10.1371/journal.ppat.1012090.g001
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frequency of a lineage is high enough such that the central limit theorem applies (at least about

20 counts or frequency of 0.01); to meet this condition, we created “coarse-grained lineages”

where we randomly and exclusively grouped lineages together such that the sum of their abun-

dances and frequencies was above this threshold (see Methods). Note that there are still suffi-

ciently many coarse-grained lineages defined in the simulations and empirical analyses such

that the assumption of the coarse-grained lineages being rare is true (needed for the defined

transition and emission probabilities).

Using the transition and emission probability distributions (see Methods) and the HMM

structure, we determine the likelihood function (Eq 13 in Methods) describing the probability

of observing a particular set of lineage frequency time-series data given the unknown parame-

ters, namely the scaled effective population size across time ~NeðtÞ and the strength of measure-

ment noise across time ct. We then maximize the likelihood over the parameters to determine

the most likely parameters that describe the data. Because we are relying on a time-series signa-

ture in the data for the inference, we need to use a sufficiently large number of timesteps of

data; on the other hand, the longer the time series, the more parameters would need to be

inferred (since both ~NeðtÞ and ct are allowed to change over time). To balance these two fac-

tors, we assumed that the effective population size stays constant over a time period of 9 weeks

(a form of “regularization”). We then shift this window of 9 weeks across time to determine

how ~NeðtÞ changes over time (see Methods), but this effectively averages the inferred ~NeðtÞ
over time. ct is still allowed to vary weekly.

To validate our model, we ran Wright-Fisher simulations with time-varying effective popu-

lation size and time-varying measurement noise (Fig 1c–1f). Because a substantial number of

lineages would go extinct over the simulation timescale of 100 weeks, we introduced new line-

ages with a small rate (a rate of 0.01 per week per individual of starting a new lineage) to pre-

vent the number of lineages from becoming too low. We then did inference on the simulated

time-series frequency trajectories (Fig 1d). The inferred ~NeðtÞ and ct closely follow the true val-

ues (Fig 1e–1f), and the 95% confidence intervals (see Methods for how they are calculated)

include the true value in a median (across timepoints) of 95% of simulation realizations (S1

Fig). The error in ct is higher when the variance contributed to the frequency trajectories by

measurement noise is lower than that of genetic drift, which occurs when the effective popula-

tion size is low or number of sequences is high (more clearly seen in S2 Fig, where the effective

population size is held constant). However, the error on ~NeðtÞ seems to be unchanged or even

slightly decrease when the error on ct is increased because the contribution to the variance due

to genetic drift is higher. We also observe that the inferred ~NeðtÞ is smoothed over time due to

the assumption of constant ~NeðtÞ over 9 weeks (S3 Fig); this is a potential drawback when

there are sharp changes in the effective population size over time. Importantly, we observed

that the inferred ~NeðtÞ will be underestimated if sampling is assumed to be uniform when it is

actually overdispersed (Fig 1e). This is because variance in the frequency trajectories due to

measurement noise is incorrectly being attributed to genetic drift. The underestimation is

strongest when the variance contributed due to measurement noise is high, either due to high

measurement noise overdispersion, a low number of sampled sequences, or a high effective

population size. In this situation, joint inference of measurement noise and ~NeðtÞ from the

data is necessary for accurate inference of ~NeðtÞ.
In summary, we developed a method to infer the strength of genetic drift and measurement

noise from lineage frequency time series data and validated the accuracy of the method with

simulations. This method has the potential to scale well with large amounts of genomic data as

it only relies on lineage frequency time series data.
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Inference of genetic drift in SARS-CoV-2 transmission in England

We next applied this method to study the effective population size and strength of measure-

ment noise for SARS-CoV-2 in England, where hundreds of thousands of SARS-CoV-2

genomes have been sequenced. Because our method assumes that lineages are neutral with

respect to one another (no selection), we performed separate analyses on groups of lineages

that have been shown to exhibit fitness differences or deterministic changes in frequency: line-

ages pre-B.1.177, B.1.177, Alpha, and Delta [17, 28–30]. We checked that the assumption of

neutrality within each of these groups does not significantly affect our results, and this is

described below.

To obtain lineage frequency time series data for SARS-CoV-2 in England, we downloaded

genomic metadata from the COVID-19 Genomics UK Consortium (COG-UK) [31] (Fig 2b)

and the associated phylogenetic trees that were created at different points in time. To minimize

potential bias, we used only surveillance data (labeled as “pillar 2”). For sequences pre-B.1.177,

we used the pangolin lineages assignments from COG-UK [32, 33]. However, B.1.177, Alpha,

and Delta were subdivided into only one or a few pangolin lineages, since a new lineage is

defined by sufficiently many mutations and evidence of geographic importation. However, for

our purposes we only need resolution of neutral lineages within a variant. Thus, we created

additional neutral lineages by cutting the phylogenetic tree at a particular depth and grouping

Fig 2. The inferred effective population size and overdispersion of measurement noise in England compared with the number of positive individuals.

(a) Schematic of lineage construction for B.1.177, Alpha, and Delta from the COG-UK phylogenetic tree. The filled circles represent the sequences of a focal

variant sampled in England, while the unfilled squares represent other sequences, which are of other variants or sampled in other countries. The

phylogenetic tree is cut at a certain depth d = dcut, and each branch cut by the line d = dcut defines a lineage. Lineages pre-B.1.1.7 are defined using the

pango nomenclature. (b) Muller plot of lineage frequency time series for lineages pre-B.1.177, of B.1.177, of Alpha, of Delta. (c) Inferred scaled effective

population size ( ~Ne ðtÞ � NeðtÞtðtÞ) for pre-B.1.177 sequences, B.1.177, Alpha, and Delta, compared to the estimated number of people testing positive for

SARS-CoV-2 in England at the community level, as measured by the COVID-19 Infection Survey, for all lineages and by variant or group of lineages. To

simplify the plot, only data where the number of positive individuals for a given variant or group of lineages was higher than 103 in a week are shown. The

inferred ~Ne ðtÞ is considerably lower than the number of positive individuals for all times and for all variants or group of lineages. (d) Inferred measurement

noise overdispersion (ct) for pre-B.1.177 sequences, B.1.177, Alpha, and Delta.

https://doi.org/10.1371/journal.ppat.1012090.g002
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sequences downstream of the branch together into a lineage (see Fig 2a and Methods). Note

that as a result, the “lineages” that we define here are not necessarily the same as the lineages

defined by the Pango nomenclature. The trees were created by COG-UK and most sequenced

samples were included in the trees (S4 Fig). However, in some instances downsampling was

necessary when the number of sequences was very large. In these situations, any downsam-

pling (performed by COG-UK) was done by trying to preserve genetic diversity. Most

sequences in the tree were assigned to lineages (see Methods), and we corrected for the fraction

of sequences that were not assigned to lineages in our inference of ~NeðtÞ (see Methods). This

yielded 486 lineages for pre-B.1.177, 4083 lineages for B.1.177, 6225 lineages for Alpha, 24867

lineages for Delta.

The inferred scaled effective population size ( ~Ne ¼ Net, effective population size times gen-

eration time, where the generation time is the time between infections in infector-infectee

pairs) is shown in Fig 2c. The generation time is around 4–6 days (0.6–0.9 weeks) depending

on the variant [34, 35], but we leave the results in terms of the scaled effective population size

(rather than effective population size) because the generation time may change over time [34],

has a high standard deviation [34], and is close to one week so is expected to not drastically

change the result; additionally, as we show below, the null model estimate that we compare to

is also multiplied by the generation time, which cancels when we look at the ratio (described

below). The scaled inferred effective population size was lower than the number of positive

individuals in the community (estimated by surveillance testing from the COVID-19 Infection

Survey [36] and see Methods) by a factor of 20 to 1060 at different points in time. The most

notable differences between the changes over time in the number of positives in the commu-

nity and that of the scaled effective population size were: the inferred scaled effective popula-

tion size of lineages pre-B.1.177 peaked slightly before the number of pre-B.1.177 positives

peaked, the inferred scaled effective population size of Alpha decreased slower than the num-

ber of positives decreased after January 2021, and the shoulder for the inferred scaled effective

population size of Delta occurred earlier than in the number of positives. We checked that the

inferred scaled effective population size is not sensitive to the depth at which the trees are cut

to create lineages (S5, S6 and S7 Figs), the threshold counts for creating coarse-grained lineages

(S8 Fig), or the number of weeks in the moving time window (S9 Fig). Additionally, we

checked that the gaussian form of the transition and emission probabilities in the HMM are a

good fit to the data (S10 Fig).

The inferred measurement noise for each group of lineages is shown in Fig 2d. The inferred

measurement noise overdispersion was mostly indistinguishable from 1 (uniform sampling),

but at times was above 1 (sampling that is more variable than uniform sampling). There were

also at times differences in the strength of measurement noise between variants when they

overlapped in time. In particular, measurement noise for lineages pre-B.1.177 peaked in Octo-

ber 2020 despite measurement noise being low for B.1.177 at that time.

To better interpret the observed levels of genetic drift, we compared the inferred ~NeðtÞ to

that of an SIR null model, which includes a susceptible, infectious, and recovered class. The

~NeðtÞ for an SIR model was derived in Ref. [37–39] and is given by

~Ne
SIR
ðtÞ ¼

IðtÞ
2RtgI

ð1Þ

where I(t) is number of infectious individuals, Rt is the effective reproduction number, and γI

is the rate at which infectious individuals recover. For the number of infectious individuals, we

used the number of positive individuals estimated from the UK Office for National Statistics’

COVID-19 Infection Survey [36], which is a household surveillance study that reports positive
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PCR tests, regardless of symptom status. We used the measured effective reproduction number

in England reported by the UK Health Security Agency [40]. We used g� 1
I ¼ 5:5 days [41, 42],

and our results are robust to varying γI within a realistic range of values (S11 Fig). We found

that ~Ne
SIR
ðtÞ is very similar to the number of positives because the effective reproduction num-

ber in England was very close to 1 across time and γI is also very close to 1 in units of weeks−1.

To calculate ~Ne
SIR
ðtÞ for each variant or group of lineages, we rescaled the population-level I(t)

and Rt based on the fraction of each variant in the population and the relative differences in

reproduction numbers between variants (see Methods). We then calculated the scaled true

population size, ~NðtÞ � NðtÞtðtÞ, for the SIR model by multiplying by the variance in off-

spring number, σ2, for the SIR model [43]

~N SIRðtÞ ¼ ~Ne
SIR
ðtÞfs2g

SIR ð2Þ

fs2g
SIR
¼ 2: ð3Þ

Overall, the inferred ~NeðtÞ is lower than ~N SIRðtÞ by a time-dependent factor that varies

between 20 and 590 (Fig 3c and S12 Fig), suggesting high levels of genetic drift in England

across time. We find similar results when using an SEIR rather than an SIR model which addi-

tionally includes an exposed class and may be more realistic (Methods, S1 Appendix, and S13

Fig). The ratio of ~N SIRðtÞ to the inferred ~NeðtÞ was similar across variants and across time,

except that for Alpha the ratio initially peaked and then decreased over time.

Because non-neutral lineages could potentially bias the inferred effective population size to

be lower in a model that assumes all lineages are neutral, we checked the assumption that line-

ages are neutral with respect to one another within a group or variant (pre-B.1.177, B.1.177,

Alpha, and Delta) by detecting deterministic changes in lineage frequency. We used a conser-

vative, deterministic method that ignores genetic drift, which is expected to overestimate the

number of non-neutral lineages. We found that 50% of lineages had absolute fitness above

0.09 (above the 50th percentile) and 10% of lineages had absolute fitness above 0.27 (above the

90th percentile). Very likely, some of these lineages are detected as having non-zero fitness

simply because the model does not correctly account for strong genetic drift which would also

lead to changes in lineage frequency. Excluding non-neutral lineages with absolute fitness val-

ues above the 50th (|s|> 0.09), 75th (|s|> 0.16), and 90th (|s| > 0.27) percentiles, leads to only

slight changes in the inferred effective population size (S14 Fig). This result shows that conser-

vatively excluding lineages that could be non-neutral does not change the result that the

inferred effective population size is one to two order of magnitudes lower than the SIR or SEIR

model effective population size.

We also tested whether background selection (selection against deleterious mutants) in

SARS-CoV-2 could be responsible for a substantial fraction of the reduction in effective popu-

lation size. We simulated the lineage frequency dynamics using the empirically estimated dis-

tribution of deleterious fitness effects from Ref. [44] (S15 Fig and Methods) and found that the

inferred effective population size is consistent with the true effective population size to within

the error bars (S16 Fig) and lower than the inferred effective population size in a simulation

with only neutral mutations (S17 Fig) by no more than a factor of 2 (S18 Fig). Analytical esti-

mates for the expected decrease in effective population size due to the empirical distribution of

deleterious fitness effects also predict at most a factor of at most 2 decrease in effective popula-

tion size that is not sufficient to explain the two orders of magnitude lower effective population

size that we observe compared to the expectation (S1 Appendix).
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We also probed the spatial structure of transmission by inferring the scaled effective popu-

lation size separately for each region within England. We find that the scaled effective popula-

tion size in the regions of England is substantially smaller than that in England as a whole for

B.1.177, Alpha, and Delta (S19 Fig), suggesting that the transmission was not well-mixed at

that time. Additionally, the discrepancy between the inferred regional scaled effective popula-

tion size and the observed number of positive individuals in a region was comparable to that

seen in England as a whole (S20 Fig), which is consistent with spatially segregated dynamics

with similar levels of genetic drift in each region. We further describe these results in the S1

Appendix.

Discussion

Here, we systematically studied the strength of genetic drift of SARS-CoV-2 in England across

time and spatial scales. To do this, we developed and validated a method for jointly inferring

Fig 3. Potential mechanisms that can generate a low effective population size. (a) Superspreading, where the distribution of the number of secondary

cases (Z) from a single infected individual is broadly distributed (variance greater than mean). The superspreading individuals are indicated in blue. (b)

Deme structure without superspreading, due to heterogeneity in the host network structure, where the distribution of the number of secondary cases is not

broadly distributed (variance approximately equal to mean). (c) The ratio between the ~N SIRðtÞ (the scaled population size calculated from an SIR model

using the number of observed positive individuals and the observed effective reproduction number) and the inferred ~Ne ðtÞ for each variant. Only data

where the error in the SIR model ~N SIRðtÞ is less than 3 times the value are shown, because larger error bars make it challenging to interpret the results. The

inferred ~Ne ðtÞ is lower than the ~N SIRðtÞ (which assumes well-mixed dynamics and no superspreading) by a factor of 16 to 589, indicating high levels of

genetic drift. The variance in offspring number from the literature does not entirely explain the discrepancy between the true and effective population sizes.

(d) Simulations of deme structure without superspreading can generate high levels of genetic drift via jackpot events. SEIR dynamics are simulated within

demes (with Rt = 10, i.e. deterministic transmission) and Poisson transmission is simulated between demes (Rt� 1, i.e. stochastic transmission) such that

the population Rt* 1 (see Methods). Simulation parameters are: mean transition rate from exposed to infected γE = (2.5 days)−1, mean transition rate from

infected to recovered γI = (6.5 days)−1, total number of demes Dtotal = 5.6 × 105. The ratio between the number of infected individuals and the inferred

effective population size is found to scale linearly with the deme size and not with the number of infected demes. This scaling results because of jackpot

events where a lineage that happens to infect a susceptible deme grows rapidly until all susceptible individuals in the deme are infected.

https://doi.org/10.1371/journal.ppat.1012090.g003

PLOS PATHOGENS Elevated levels of genetic drift in SARS-CoV-2 transmission in England

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012090 April 15, 2024 9 / 37

https://doi.org/10.1371/journal.ppat.1012090.g003
https://doi.org/10.1371/journal.ppat.1012090


time-varying genetic drift and overdispersed measurement noise using lineage frequency time

series data (Fig 1), allowing these two effects to be disentangled, which overcomes a major

challenge in the ability to infer the strength of genetic drift from time-series data. Additionally,

this method makes use of all sequencing data, overcoming the need to subsample data, which

is a challenge with current phylogenetic methods. Our approach was able to reproduce the

expected decrease in effective population size during the decline of pre-B.1.177, B.1.177, and

Alpha, as well as the increase in effective population size during the emergence of B.1.177,

Alpha, and Delta (Fig 2c). We did not have enough sequences during the time when Delta was

going extinct to infer the effective population size during that time period.

We find that the effective population size of SARS-CoV-2 in England was lower than that of

an SIR null model true population size (using the observed number of positives) by a time-

dependent factor ranging from 20 to 590 (Fig 3c), suggesting that there were higher levels of

genetic drift than expected from uniform transmission. We also find evidence for spatial struc-

ture in the transmission dynamics during the B.1.177, Alpha, and Delta waves, as the inferred

~NeðtÞ was substantially lower in regions compared to that of all England (S19 Fig). These find-

ings are consistent with other studies that have found spatial structure in transmission of

B.1.177 [45], Alpha [46], and Delta [47].

We observed that with a few exceptions, the amount by which genetic drift was elevated

compared to the number of positives did not change substantially over time or across variants

outside the range of the error bars (Fig 3c), despite changes in lockdowns and restrictions

(which we may expect to decrease behavior that leads to superspreading). This may be due to

not having enough statistical power due to the dataset size. On the other hand, we note that

restrictions affect the mobility network structure in a complex way, decreasing some types of

mobility while increasing others [48], so lockdowns and restrictions may not affect the effec-

tive population size in a predictable way. One exception was that Alpha had significantly

higher genetic drift compared to Delta and the strength of genetic drift in Alpha first peaked

then slowly decreased over time. This may be either due to differences in the properties of the

virus or differences in host behavior. For instance, it may suggest that the stochasticity in the

transmission of Alpha sharply increased then slowly decreased over time. Alternatively, this

may be driven by Alpha’s expanding geographic range combined with reimported cases of

Alpha into the UK (observed from February 2021 onwards), which could both also decrease

the effective population size [49].

It is important to distinguish measurement noise from genetic drift as measurement noise

is a function of the observation process and will not affect disease spread, extinction, and estab-

lishment of new mutations. We observe that measurement noise of SARS-CoV-2 is mostly

indistinguishable from uniform sampling, but data from some variants at some times do

exhibit more elevated measurement noise than uniform sampling. Thus, we expect that assum-

ing uniform sampling, as many methods do, or constant overdispersion will lead to accurate

estimates for this dataset [22, 23, 27, 28]. The number of SARS-CoV-2 sequences from England

is extremely high and sampling biases are expected to be low, because of efforts to reduce sam-

pling biases by sampling somewhat uniformly from the population through the COVID-19

Infection Survey [36] (from which a subset of positives are sequenced and included in the

COG-UK surveillance sequencing data that we use). On the other hand, other countries may

have higher sampling biases, so jointly estimating measurement noise and genetic drift may be

more crucial in those settings. It may also be interesting to use this method to test whether

genomics data taken from wastewater has lower levels of measurement noise as compared to

sequenced cases.
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We find that constant selection is unlikely to explain our results, as liberally excluding

potentially non-neutral lineages does not significantly change the inferred effective population

size. Our method is not able to precisely pinpoint how many lineages are under selection, but

it appears that there is relatively little within-variant selection in the time period we investi-

gated, and our method is robust to slight deviations from neutrality. Additionally, background

selection is unlikely to explain our results as the empirically estimated distribution of deleteri-

ous fitness effects for SARS-CoV-2 decreased the effective population size by at most a factor

of 2 from that of the completely neutral scenario.

Accurately estimating the strength of genetic drift allows us to better understand disease

spread and extinction, as well as to better parameterize evolutionary models and understand

how mutations will establish in the population. The establishment probability is the probability

that a new mutation will rise to a high enough frequency to escape stochastic extinction. For

weakly beneficial mutations, the establishment probability is linearly related to the effective

population size [50]. For strongly beneficial mutations, the impact of the effective population

size on the establishment probability is quantitatively less straightforward and depends on the

host network structure [3]. In the absence of clonal interference, the fixation probability, or

the probability that the mutation will fix in a population, is the same as the establishment prob-

ability; if there is clonal interference, the fixation probability will depend on additional factors

like the mutation rate [51, 52]. The low effective population sizes that we observe suggest low

establishment probabilities; the probability that any newly arisen beneficial mutant rises to a

significant frequency will be small. More generally, our results give an order of magnitude esti-

mate for the effective population sizes that can be used to more accurately parameterize evolu-

tionary models for SARS-CoV-2 as well as an approach to infer the effective population size in

more specific contexts.

Potential mechanisms that can contribute to the high levels of genetic drift

Two potential mechanisms that can contribute to the observed high levels of genetic drift are:

(1) variability at the individual level through superspreading (Fig 3a), and (2) host population

structure (Fig 3b). We investigate each of these mechanisms in turn and compare it to our

results. While in reality, both mechanisms (and others not explored here) are likely at play, it is

challenging to tease them apart given our limited data. Therefore, in order to gain intuition

about how each of these phenomena drives the strength of genetic drift in this system, we con-

sider each in turn.

Infected individuals that cause an exceptional numbers of secondary cases (superspreaders)

are one reason for an increased level of allele frequency fluctuations. The expected decrease in

effective population size is given by the per-generation variance in secondary cases, which is

sensitive to superspreaders broadening the tail of the offspring distribution. Direct measure-

ments of the offspring distribution through contact tracing yield variances substantially

smaller than our inferred reduction in effective population size [53–57] (S1 Table and Fig 3c).

This could indicate that the tail of the offspring distribution is not well measured by contact

tracing efforts or that other factors are at play that could decrease the effective population size.

Primary factors that could further increase fluctuations are selection and spatial structure.

While both positive and background selection have some effect, we estimate their contribution

to not exceed a factor of 2 (see above and S1 Appendix). We now show that, by contrast, a pro-

nounced host deme structure can easily decrease the effective population size by orders of

magnitude, even without individual super spreaders.

Consider a model in which individuals within a deme are very well-connected to one

another (i.e. households or friend groups, also known as “communities” in network science
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[58]), but there are few connections between demes (Fig 3b). It is possible for deme structure

to occur without superspreading. Because individuals are very well-connected within a deme,

once the pathogen spreads to a susceptible deme, it will spread rapidly in a deme until all indi-

viduals are infected (a jackpot event). In this way, deme structure can lower the effective popu-

lation size by lowering the effective number of stochastic transmissions events. For instance, in

the example in Fig 3b, there are 20 individuals, but only 3 potential stochastic transmissions

events. Deme structure may also arise from correlations in the number of secondary infections

over a series of hosts (i.e. a series of high numbers of secondary infections in a transmission

chain, or conversely low numbers of secondary infections in a transmission chain) [59]. This

may arise, for instance, if individuals in a transmission chain have similar behavior, due to geo-

graphical proximity, or similar value systems on risk aversion. A recent study has found that

individuals infected by superspreading tend to be superspreaders themselves more often than

expected by chance [60], which would be consistent with this phenomenon.

To check our intuition that deme structure can decrease the effective population size and

increase genetic drift, we ran simulations of a simplified deme model (see Methods): all demes

have the same number of individuals, and there is a sufficiently large enough number of demes

that the total number of demes does not matter. Initially a certain number of demes are

infected, and transmission occurs such that the overall effective reproduction number in the

population is around 1. From our simulations, we find that when the number of individuals in

a deme increases, the ratio between the number of infected individuals and the inferred effec-

tive population size increases (Fig 3d); in other words, the more individuals there are in a

deme, the higher the level of genetic drift we observe compared what is expected from the

number of infected individuals. This is because while the number of infected individuals

increases when the deme size increases (S21a Fig), the inferred effective population size (and

thus the level of stochasticity) stays the same as a function of deme size (it is more dependent

on the number of infected demes) (S21b Fig). However, the exact ratio of the number of

infected individuals to the inferred effective size depends on the parameters of the model.

Studies that inferred the overdispersion parameter for the offspring number distribution

using modeling rather than direct contact tracing and found a high variance in offspring num-

ber (see S1 Table; for example, Ref. [61]) may actually be consistent with our results as the high

variance may be partly due to superspreading events from, for example, host deme structure.

In reality, both superspreading and host structure are likely at play. Additionally, they could

interact with each other. For instance, there could be superspreading within a deme. Future

work can try to tease apart the contribution of these two mechanisms, which for instance may

be possible with better transmission network data, building on previous work on transmission

networks [62], or with time-resolved contact tracing data [20]. This will be important because

the relative contributions of the two mechanisms of superspreading and host population struc-

ture to genetic drift can affect the establishment of new variants in the population in different

ways [3]. If our interpretation is correct that deme structure and jackpot events strongly affect

the effective population size, then managing superspreading events will be important to

decrease the strength of genetic drift; nonpharmaceutical interventions should try to reduce

these types of events.

Limitations of the study and opportunities for future directions

First, the quantity of effective population size is a summary statistic that is influenced by many

factors, making its interpretation challenging. The effective population size describes the popu-

lation size under a well-mixed Wright-Fisher model, whereas in reality, this assumption is bro-

ken by selection, migration, host structure, broad offspring number distributions, mutation,
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within-host evolution, and many other evolutionary and demographic processes. While many

of these processes jointly contribute to the strength of genetic drift at the transmission level

(broad offspring number distributions, host structure), which is what we are interested in

inferring in this study, some other processes may confound the inference of genetic drift at the

transmission level (selection, migration, within-host evolution, etc). While it would have been

computationally intractable to jointly infer all possible processes, we addressed the processes

that we thought were most likely to affect the effective population size in this system besides

genetic drift at the transmission level.

We checked that constant selection could not lower the effective population size as much as

we observed. We did not test for more complex forms of selection, such as fluctuating selec-

tion, because including more complex forms of selection quickly increases the number of

parameters in the model such that it becomes intractable. However, we note that fluctuating

selection that occurs on a fast enough time scale will act effectively like genetic drift in increas-

ing stochasticity in transmission. We ignored importation of SARS-CoV-2 into England and

exportation of SARS-CoV-2 out of England. Migration can substantially change frequencies

that are locally rare, but we expect importations to only weakly influence the frequency fluctu-

ations of abundant variants, on which we have focused in this work. Host migration within the

population can lead to gene flow; however, this will only affect the effective population size if it

results in jackpot events [13]. Our model of host deme structure does indeed incorporate gene

flow within the population with jackpot events, and we find that this type of host deme struc-

ture can substantially decrease the effective population size.

Empirically measured SARS-CoV-2 offspring distributions that take into account super-

spreaders (see references in S1 Table) have been described by a negative binomial distribution,

which has a finite mean and variance and thus can be described by the Wright-Fisher model.

We focused on standing variation that existed at a particular depth in the phylogenetic tree

and ignored de novo mutations subsequently arising during the time series. However, we

don’t think this should substantially affect our results because introducing mutations in the

form of new lineages with a small rate in the simulations did not have a large effect on the

method performance (Fig 1e). While within-host dynamics may in principle impact the line-

age frequency trajectories, this effect is likely small for our analysis because we focus on acute

infections (infections in the community rather than in hospitals and nursing homes). Acute

infections of SARS-CoV-2 are thought to generate little within-host diversity that is passed on

due to the short infection duration and small bottleneck size between hosts [63, 64]; while new

mutations arising within acute hosts have been observed to be transmitted, these events are

rare [63].

Thus, we think to the best of our knowledge that the low effective population sizes that we

observe are due to increased levels of genetic drift at the transmission level, which can be due

to a variety of mechanisms, including the two that we highlight above, superspreading and

host deme structure. However, future work should explore joint inference of selection, migra-

tion, and/or mutation in the model, as is appropriate for the pathogen of interest, building on

previous work in this area [26, 65–67].

Second, there may be biases in the way that data are collected that are not captured in our

model. While our method does account for sampling biases that are uncorrelated in time, sam-

pling biases that remain over time cannot be identified as such (i.e. if one geographical region

was dominated by a particular lineage and it consistently had higher sequencing rates com-

pared to another geographical region), and this can potentially bias the inferred effective popu-

lation size; although, this is also a problem in phylogenetic methods. One approach to this

problem that was utilized by some early methods during the pandemic is to develop sample

weights based on geography, time, and number of reported cases. Future work should study
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the effect of different sampling intensities between regions on uncorrelated and correlated

sampling noise. Additionally, we assume that the measurement noise overdispersion is identi-

cal for all lineages within a variant; in reality, there may be differences in sampling between lin-

eages. However, we do not expect this to have a large effect on our results as we observed that

measurement noise overdispersion was close to 1 for most timepoints in this dataset. Future

work can test the effect of lineage-specific measurement noise overdispersion on overall

method performance across different datasets.

Third, the use of a sliding window of 9 weeks on the lineage frequency data will lead to

smoothing of sharp changes in effective population size. In our analysis, shortening the time

window did not substantially affect our results. It may be interesting in future work to develop

a continuous method that uses a prior to condition on changes in effective population size,

similar to those that have been developed for coalescence-based methods [1, 68]. This would

allow us to infer continuous changes in effective population size without needing to use a slid-

ing window.

Fourth, we have defined lineages by cutting the phylogenetic tree at a particular depth; we

chose this approach because a tree available for these sequences from COG-UK and we wanted

to be somewhat consistent with the existing pango nomenclature for SARS-CoV-2 lineages,

which were defined using a tree. One concern is that errors in the constructed tree may intro-

duce additional fluctuations to the lineage frequencies. This may particularly be a problem for

SARS-CoV-2 given the low mutation rate. As one check, we tested that cutting the tree at dif-

ferent depths did not affect the results (S5 Fig), suggesting that our results were not sensitive to

differences in lineage definitions at those depths. However, lineages defined using the two cut

depths may both have errors in the groupings, so to be more robust, future work could system-

atically investigate the sensitivity of our method to errors in the tree or compare the results

using lineage frequencies and allele frequencies (defined using mutations). Recent advances

have made building trees for large datasets more tractable [69], but we can potentially increase

the scalability of our approach even further by making the method tree-free. For example, one

idea is to cluster the sequences based on a distance metric and use cluster frequencies over

time or another idea is to use allele frequencies (the frequencies of individual mutations).

Future work should evaluate the feasibility and accuracy of using these different approaches to

process the data for inferring the effective population size.

While we have focused on SARS-CoV-2 in this study, our simulations point to the gener-

alizability of our approach, and the method developed here can be extended to study genetic

drift in other natural populations that are influenced by measurement noise and where geno-

mic frequency data are available. We think that this approach would be best suited for large

datasets with a long period of sampling, and for pathogens this includes HIV, Ebola, and

potentially seasonal influenza. It may also be interesting to adapt this approach to study data

from field studies and ancient DNA [70–72]. More generally, ongoing methods development

that integrates genomics, epidemiological, and other data sources is crucial for being able to

harness the large amounts of data that have been generated to better understand and predict

evolutionary dynamics.

Materials and methods

Data sources and processing

We downloaded sequence data from the COVID-19 Genomics UK Consortium (COG-UK)

[31]. We only used surveillance data (labeled as “pillar 2”); this dataset is composed of a ran-

dom sample of the positive cases from the COVID-19 Infection Survey, which is a surveillance

study of positive individuals in the community administered by the Office for National
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Statistics (see below). For lineages that appeared before B.1.177, we downloaded the metadata

from the COG-UK Microreact dashboard [73], which included the time and location of sam-

ple collection (at the UTLA level), as well as the lineage designation using the Pango nomen-

clature [32, 33]. For B.1.177, Alpha, and Delta sequences, because the Pango nomenclature

classified them into very few lineages, we created our own lineages from the phylogenetic trees

(see below). We downloaded the publicly available COG-UK tree on February 22, 2021 for

B.1.177; June 20, 2021 for Alpha; and January 25, 2022 for Delta. Additional sensitively analy-

ses shown in S5, S6 and S7 Figs used trees downloaded on June 1, 2021 for Alpha and March

25, 2022 for Delta. The publicly available trees were created by separating sequences into

known clades, running fasttree [74] separately for each clade, grafting together the trees of dif-

ferent clades, and then using usher [69] to add missing samples (code available at https://

github.com/virus-evolution/phylopipe). We also downloaded the COG-UK metadata for all

lineages on January 16, 2022, which included the time and location (at the UTLA level) of sam-

ple collection. Additional sensitivity analyses shown in S6 and S7 Figs used metadata down-

loaded on March 25, 2022. For the data of B.1.177, Alpha, and Delta, the data was deduplicated

to remove reinfections in the same individual by the same lineage, but reinfections in the same

individual by a different lineage were allowed. This yielded a total of 490,291 sequences.

The lineage frequency time-series is calculated separately for each variant or group of line-

ages (pre-B.1.177, B.1.177, Alpha, and Delta). First, the sequence metadata are aggregated by

epidemiological week (Epiweek) to average out measurement noise that may arise due to varia-

tions in reporting within a week. Then, the lineage frequency is calculated by dividing the

number of sequences from that lineage in the respective tree by the total number of sequences

of that variant (or group of lineages) that were assigned to any lineage in the respective tree.

Because our model describes birth-death processes when the central limit theorem can be

applied, we need the lineage frequencies to be sufficiently high. Thus, we randomly combine

rare lineages into “coarse-grained lineages” that are above a threshold number of counts and

threshold frequency in the first and last timepoint of each trajectory. The motivation of having

a cutoff for both counts and frequency is to account for the fact that the total number of counts

(number of sequences) varies over time. For the threshold, we chose 20 counts and frequency

of 0.01. The motivation for combining lineages together randomly was to further remove any

potential effects due to selection. We also tested that creating lineages by cutting the tree closer

to the root of the tree did not substantially affect the results (S5 and S6 Figs); this shows that

grouping lineages together based on genetic similarilty would not have had a substantial affect

on our results. Sensitivity analyses showed that the choice of the coarse-grained lineage count

threshold does not substantially affect the results (S8 Fig). Coarse-grained lineages are non-

overlapping (i.e. each sequence belongs to exactly one coarse-grained lineage).

The estimated number of people testing positive for COVID-19 in England and each region

of England was downloaded from the UK Office for National Statistics’ COVID-19 Infection

Survey [36]. The COVID-19 Infection Survey includes households that are semi-randomly

chosen, and individuals are tested regardless of whether they are reporting symptoms. Infec-

tions reported in hospitals, care homes, and other communal establishments are excluded.

Thus the dataset provides a representative number of positive individuals in the community

setting. The reported date of positive cases is the date that the sample was taken. The error on

the number of positive individuals from April 17, 2020 to July 5, 2020 is reported as the 95%

confidence interval, and after July 5, 2020 is reported as the 95% credible interval. The regional

data reported the positivity rate over two week intervals. To get the number of positives, we

multiplied by the number of individuals in the community setting in the region (excluding

hospitals, care homes, and other communal establishments). As the data was reported over
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two week intervals, we obtained the number of positives for each week using linear

interpolation.

The observed effective reproduction numbers for England and each region of England were

downloaded from the UK Health Security Agency [40]. Only times where the certainty criteria

are met and the inference is not based on fewer days or lower quality data are kept. The error

on the effective reproduction number is reported as the 90% confidence interval. Although not

reported in the dataset, we choose the point estimate of the effective reproduction number to

be the midpoint between the upper and lower bounds of the 90% confidence interval.

Creating lineages in B.1.177, Alpha, and Delta

For B.1.177, Alpha, and Delta, we divided each of them into neutral lineages based on phyloge-

netic distance. Specifically, for B.1.177 and Alpha, we cut a phylogenetic tree (in units of num-

ber of mutations from the root of the tree) at a certain depth, d = dcut. Each of the internal or

external branches that are cut by the line d = dcut defines a lineage (Fig 2a). The (observed) fre-

quency of a lineage at a given time point in England was computed by counting the number of

England sequences (leaf nodes) belonging to the lineage and by normalizing it by the total

number of sequences in all assigned lineages of the focal variant in England at that time point.

Lineage frequencies at the regional level were similarly computed by counting the number of

sequences separately for each region.

The choice of dcut is arbitrary to some extent. Because we wanted a sufficiently high resolu-

tion of lineages from the early phase of spreading of a variant and because the evolutionary dis-

tance correlates with the actual sample date (S22 Fig), for each focal variant, we chose the

depth dcut that roughly corresponds to the time point when it began to spread over England.

For the Delta variant, the sequences form two distinct groups along the depth direction, as

seen from the last panel of S22 Fig. Therefore, to divide the Delta variant into lineages with

small frequencies, we cut the phylogenetic tree at two depths sequentially; we first cut the tree

at dð1Þcut , which resulted in lineages with small frequencies plus a lineage with Oð1Þ frequency.

Then, to divide the latter lineage further, we took the subtree associated with this lineage and

cut the subtree at dð2Þcut .

For the results presented in the main text, we used (in units of substitutions per site, with

the reference d = 0 being the most recent common ancestor) dcut = 2.323 � 10−2 for B.1.177,

dcut = 2.054 � 10−3 for Alpha, and dð1Þcut ¼ 1:687 � 10� 3 and dð2Þcut ¼ 1:954 � 10� 3 for Delta. We con-

firmed that our results are robust to the choice of dcut as well as the choice of the phylogenetic

tree data we used (S5, S6 and S7 Figs).

Model for inferring effective population size from lineage frequency time

series

We use a Hidden Markov Model with continuous hidden and observed states to describe the

processes of genetic drift and sampling of cases for sequencing (a Kalman filter) (Fig 1A). The

hidden states describe the true frequencies of the lineages and the observed states describe the

observed frequencies of the lineages as measured via sequenced cases. We adopt Gaussian

approximations for the transmission and emission probabilities developed in [75] in order to

get analytically tractable forms for the likelihood function, which will greatly speed up our

computations.

The transition probability between the true frequencies ft (the hidden states) due to genetic

drift when 1
~Ne ðtÞ
� f � 1 has been shown in [75] to be well-described by the following
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expression, which we use as our transition probability,

pð ftþ1j ft; ~NeðtÞÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f 1=2
t

pf 3=2

tþ1 ð ~NeðtÞÞ
� 1

s

exp �
2ð

ffiffiffiffiffiffiffi
ftþ1

p
�

ffiffiffi
ft

p
Þ

2

ð ~NeðtÞÞ
� 1

 !

: ð4Þ

~NeðtÞ � NeðtÞtðtÞ where Ne(t) is the time-dependent effective population size and τ(t) is the

time-dependent generation time, which is defined as the mean time between two subsequent

infections per individual (i.e. the time between when an individual becomes infected and

infects another individual, or the time between two subsequent infections caused by the same

individual). This transition probability gives the correct first and second moments describing

genetic drift when f� 1, E( ft+1| ft) = ft and Varð ftþ1j ftÞ ¼
ft

~Ne ðtÞ
, and is a good approximation

when the central limit theorem can be applied, which is the case when f� 0. By assuming that

ft+1� ft, and defining �t �
ffiffiffi
ft

p
, Eq 4 can be approximated as a simple normal distribution

pð�tþ1j�t;
~NeðtÞÞ ¼ N �t;

1

4 ~NeðtÞ

� �

: ð5Þ

We describe the emission probability from the true frequency ft to the observed frequency

f obs
t (the observed states), defining �

obs
t �

ffiffiffiffiffiffi
f obs
t

p
, as

pð�obs
t j�t; ctÞ ¼ N �t;

ct

4Mt

� �

ð6Þ

where Mt is the number of input sequences. Again, this distribution is generically a good

description when the number of counts is sufficiently large such that the central limit theorem

applies (above approximately 20). The first and second moments of this emission probability

are Eð f obs
t j ftÞ ¼ ft and Varð f obs

t j ftÞ ¼
ct
Mt

ft, or equivalently considering the number of

sequences nobs
t ¼ f obs

t Mt and the true number of positive individuals nt, Eðnobs
t jntÞ ¼ nt and

Varðnobs
t jntÞ ¼ ctnt. Thus, ct describes the strength of measurement noise at time t. When ct =

1, the emission probability approaches that describing uniform sampling of sequences from

the population of positive individuals (i.e. can be described by a Poisson distribution in the

limit of a large number of sequences), namely Varðnobs
t jntÞ ¼ nt or equivalently

Varð f obs
t j ftÞ ¼

ft
Mt

. This is the realistic minimum amount of measurement noise. When ct> 1,

it describes a situation where there is bias (that is uncorrelated in time) in the way that

sequences are chosen from the positive population. The case of 0< ct< 1 describes underdis-

persed measurement noise, or noise that is less random than uniform sampling. The case of ct
= 0 describes no measurement noise (for instance, when all cases are sampled for sequencing).

These last two situations are unlikely in our data, and thus as we describe below, we constrain

ct� 1 in the inference procedure. In addition to being a good description of measurement

noise, defining the emission probability in the same normal distribution form as the transmis-

sion probability allows us to easily derive an analytical likelihood function, described below

(Note: see Ref. [26] for a method to derive an analytical likelihood function for arbitrary forms

of the transition and emission probabilities).

We derive the likelihood function (up to a constant) for the Hidden Markov Model using

the forward algorithm, although it can alternatively be derived by marginalizing over all hid-

den states. We assume an (improper) uniform prior on ϕ0 (i.e. no information about the initial
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true frequency of the lineage).

pð�0; �
obs
0
; y0Þ ¼ pð�obs

0
j�0; c0Þpð�0Þ ð7Þ

pð�0Þ / 1 ð8Þ

pð�t; �
obs
0:t ; y0:tÞ ¼ pð�obs

t j�t; ctÞ

Z 1

� 1

pð�tj�t� 1;
~NeðtÞÞpð�t� 1; �

obs
0:t� 1

; y0:t� 1Þd�t� 1; 0 < t � T ð9Þ

pð�obs
0:T; y0:TÞ ¼

Z 1

� 1

pð�T; �
obs
0:T; y0:TÞd�T ð10Þ

Lð~�obs
0:Tjy0:TÞ ¼

Y

a

pðf�obs
0:Tga; y0:TÞpðy0:TÞ ð11Þ

pðy0:TÞ / 1 ð12Þ

Lð~�obs
0:T jy0:TÞ ¼

Y

a

pðf�obs
0:Tga; y0:TÞ ð13Þ

where �
obs
0:t � f�

obs
0
; . . . ; �

obs
t g, y0:t � f

~Neð0Þ; . . . ; ~NeðtÞ; c0; . . . ; ctg, and the subscript α indi-

cates a particular lineage. We use a uniform prior on the parameters. The parameters θ0:T are

inferred by maximizing the likelihood (described below).

The forward algorithm has an analytical form for the simple case of Gaussian transition and

emission probabilities. We use the identity for the product of two normal distributions N(x, μ,

v), where μ is the mean and v is the variance:

Nðx; m1; v1ÞNðx; m2; v2Þ ¼ Nðm1; m2; v1 þ v2ÞNðx; m12; v12Þ ð14Þ

m12ðm1; m2; v1; v2Þ ¼
m1v2 þ m2v1

v1 þ v2

ð15Þ

v12ðv1; v2Þ ¼
1

1

v1
þ 1

v2

: ð16Þ

Solving the forward algorithm recursively, we have

pð�obs
0:T ; y0:TÞ ¼

YT

i¼1

N �
obs
i ; mi;

ci

4Mi
þ vi

� �

ð17Þ
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where

m1 ¼ �
obs
0

ð18Þ

v1 ¼

1
~Ne ðtÞ
þ

c0

M0

4
ð19Þ

miþ1 ¼ m12 mi; �
obs
i ; vi;

ci

4Mi

� �

ð20Þ

viþ1 ¼ v12

ci

4Mi
; vi

� �

þ
1

4 ~NeðtÞ
: ð21Þ

Eq 17 can be substituted into Eq 13 to obtain the full analytical likelihood function.

Fitting the model to data

We split the time series data into overlapping periods of 9 Epiweeks, over which the effective

population size is assumed to be constant. We first use the moments of the probability distri-

butions combined with least squares minimization to get an initial guess for the parameters.

Then, we perform maximum likelihood estimation using the full likelihood function. To cap-

ture uncertainties that arise from the formation of coarse-grained lineages from lineages, we

create coarse-grained lineages randomly 100 times (except where indicated otherwise). We

infer the strength of measurement noise and the effective population size for each coarse-

grained lineage combination (described below).

Determining the initial guess for the parameters using method of moments approach.

Combining the transition and emission probabilities, and marginalizing over the hidden states

we have

pð f obs
j j f

obs
i Þ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð f obs
j Þ

3=2

s

exp �
2
� ffiffiffiffiffiffi

f obs
j

q
�

ffiffiffiffiffiffi
f obs
i

p �2

4ki;j

0

B
@

1

C
A ð22Þ

pð�obs
j j�

obs
i Þ ¼ N ð�obs

i ; ki;jÞ ð23Þ

ki;j �
ci

4Mi
þ

cj

4Mj
þ
ðj � iÞ
4 ~NeðtÞ

: ð24Þ

The first two terms of κi,j are the contribution to the variance from measurement noise at

times i ad j, and the third term is the contribution to the variance from genetic drift.

We calculate the maximum likelihood estimate of κi,j, k̂i;j, which is simply the mean squared

displacement

k̂ i;j ¼
D
ð�

obs
j � �

obs
i Þ

2
E
: ð25Þ
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The standard error is given by

Dk̂i;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h½ð�
obs
j � �

obs
i Þ

2
� k̂ i;j�

2
i

Z

s

ð26Þ

where Z is the number of coarse-grained lineages.

By looking across all pairs of timepoints i and j, we get a system of linear equations in κi,j

that depend on the parameters ct and ~NeðtÞ. To determine the most likely values of the parame-

ters, we minimize

ln
X

i;j

ðk̂i;j � ki;jÞ
2

Dk̂i;j
ð27Þ

using scipy.optimize.minimize with the L-BFGS-B method and the bounds 1� ct� 100 and

1 � ~NeðtÞ � 107. While underdispersed measurement noise (ct< 1) is in principle possible,

we constrain ct� 1 because realistically, the lowest amount of measurement noise will be from

uniform sampling of sequences. An example of inferred parameters using the methods of

moments approach on simulated data is shown in S23 Fig.

Maximum likelihood estimation of the parameters. For each set of coarse-grained line-

ages, we use the inferred measurement noise values (ct) and inferred scaled effective popula-

tion size from above ( ~NeðtÞ) as initial guesses in the maximization of the likelihood function in

Eq 13 over the parameters. For the optimization, we use scipy.optimize.minimize_scalar with

the Bounded method and the bounds 1� ct� 100 and 1 � ~NeðtÞ � 1011. The time t in the

inferred ~NeðtÞ is taken to be the midpoint of the 9 Epiweek period. The reported ~NeðtÞ is the

median inferred ~NeðtÞ across all coarse-grained lineage combinations where ~NeðtÞ < 105 (val-

ues above 105 likely indicate non-convergence of the optimization, because most values above

105 are at 1011, see S24 Fig). The reported errors on ~NeðtÞ are the 95% confidence intervals

(again taking the median across all coarse-grained lineage combinations where ~NeðtÞ < 105)

which are calculated by using the likelihood ratio to get a p-value [76, 77]. We replace the like-

lihood with the profile likelihood, which has the nuisance parameters c0:T profiled out:

p > 0:05 ð28Þ

p ¼
Z

I
L ~Ne
ðĉ0:Tj

~�obs
0:TÞ

L ~N 0e
ðĉ0:Tj

~�obs
0:TÞ

> 1

" #

P ~N 0e
ðĉ0:Tj

~�obs
0:TÞd ~N 0e ð29Þ

ĉ0:T ¼ arg max
c0:T

L ~Ne
ðc0:Tj

~�obs
0:TÞ ð30Þ

P ~N 0e
ðĉ0:T j

~�obs
0:TÞ / L ~N 0e

ðĉ0:Tj
~�obs

0:TÞpð ~NeÞ ð31Þ

pð ~NeÞ / 1 ð32Þ

where I is an indicator function that equals one when the argument is true and zero otherwise,

L ~Ne
ðĉ0:Tj

~�obs
0:TÞ is the profile likelihood with the nuisance parameters (in this case) c0:T profiled

out, P ~N 0e
ðĉ0:Tj

~�obs
0:TÞ is the posterior where we have used a uniform prior. We also tried a Jeffreys

prior which is used for variance parameters, but it gave similar results on simulated data

because it looked relatively flat over the values of ~NeðtÞ of interest. As the Jeffreys prior was
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more computationally expensive than the uniform prior and the two priors gave similar

results, we used the uniform prior for the analyses.

The reported values of ct are the median across all coarse-grained lineage combinations and

across all time series segments where the timepoint appears. The reported errors on ct are the

95% confidence intervals as calculated by the middle 95% of values across coarse-grained line-

age combinations and time series segments.

We checked that if we allow ct� 0, the results are similar to if we constrain ct� 1 (compare

Fig 2 and S25 Fig).

An example of inferred parameters on simulated data using the maximum likelihood esti-

mation approach, compared to the initial guesses of the parameters from the methods of

moments approach, is shown in S23 Fig.

Correcting for the number of sequences assigned to lineages

Because some sequences occur before the cut point in the tree that is used for creating lineages,

they are not included in any lineages. As a result, the number of sequences assigned to lineages

is lower than the number of sequences in the tree (S26 Fig). This will bias the inferred ~NeðtÞ to

be lower than in reality when the omitted sequences are from a particular part of the tree even

when the dynamics are neutral (i.e. a certain part of the population is being left out of the anal-

ysis). To correct for the bias in inferred effective population size that results from leaving out

sequences from parts of the tree, we divide the inferred effective population size by the fraction

of sequences in the tree that are assigned to a lineage. We note that while the number of

sequences in the tree is less than the total number of sampled sequences, the sequences in the

tree were chosen to be a representative fraction of the total sampled sequences. Thus, we do

not need to additionally correct for the downsampling of sequences that were included in the

tree. To test that randomly subsampling sequences for the analysis does not affect the results,

we randomly subsampled half of the Delta sequences, and reran the analyses; the inferred

effective population size was very similar to that from the full number of sequences (S27 Fig).

Simulations for validating method

For the model validation, we perform simulations of the lineage trajectories using a discrete

Wright-Fisher model. 500 lineages are seeded initially, and the initial frequency of lineages is

taken to be the same across all lineages. In each subsequent Epiweek, the true number of

counts for a lineage is drawn from a multinomial distribution where the probabilities of differ-

ent outcomes are the true frequencies of the lineages in the previous Epiweek and the number

of experiments is the effective population size. The true frequency is calculated by dividing the

true number of counts by N. The observed counts are drawn from a negative binomial distri-

bution,

pðnobs
t jftÞ ¼ NBðr; qÞ �

nobs
t þ r � 1

r � 1

 !

qrð1 � qÞn
obs
t ð33Þ

r ¼
ftMt

ct � 1
ð34Þ

q ¼
1

ct
ð35Þ

which has the same mean and variance as the emission probability in Eq 6. The total number
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of observed sequences in each timepoint is calculated empirically after the simulation is com-

pleted, as it may not be exactly Mt. The simulation is run for 10 weeks of “burn-in” time before

recording to allow for equilibration. Coarse-grained lineages are created in the same way as

described above.

For long time series simulations, some lineages will go extinct due to genetic drift, making

it challenging to have sufficient data for the analysis. To be able to have a high enough number

of lineages for the entire time series, we introduce mutations that lead to the formation of a

new lineage with a small rate μ = 0.01 per generation per individual.

Simulations for testing the effect of balancing selection

For the simulations that test for the effect of balancing selection, the simulations described

above were modified as follows. Initially, each individual has a fitness drawn from the empiri-

cal distribution of deleterious fitness effects. Additionally, each individual forms a single line-

age. To model selection, the probability of being drawn in the multinomial distribution is

weighted by es, where s is the fitness coefficient. Mutations occur on the background of each

individual in each generation with probability 0.01 and the mutants have a fitness that is the

sum of that of the parent and a newly drawn fitness from the distribution of deleterious fitness

effects. The burn-in period ends when the number of lineages reaches the threshold of 100 lin-

eages, and recording begins. No new lineages are created in the simulation, so lineages are

defined as the descendants of the individuals that are initially in the simulation.

Calculating the effective population size for an SIR or SEIR model

The effective population size times the generation time in an SIR model is given by Refs. [37,

43]

~Ne
SIR
ðtÞ � NSIR

e ðtÞtðtÞ ¼
IðtÞ

2RtgI
: ð36Þ

The variance in offspring number for an SIR model is approximately 2.

For an SEIR model, we calculated ~NeðtÞ following the framework from Ref. [38]. Using this

framework, we were only able to consider a situation where the epidemic is in equilibrium.

We test how well this approximates the situation out of equilibrium using simulations (see S1

Appendix).

We first considered how the mean number of lineages, A, changes going backwards in

time, s, which is given by

dA
ds
¼ � fpc ð37Þ

where f is the number of transmissions per unit time and pc is the probability that a transmis-

sion results in a coalescence being observed in our sample. pc is given by the number of ways

of choosing two lineages divided by the number of ways of choosing two infectious individuals

pc ¼

A sð Þ
2

 !

N sð Þ

2

 ! ¼
limN sð Þ!1

A sð Þ
2

 !
2

N sð Þ2
: ð38Þ

where the limit assumes that the number of infectious individuals, N(s), is large. In the
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Kingman coalescent we also have

dA
ds
¼ �

A sð Þ
2

 !
1

~NeðtÞ
: ð39Þ

Combining Eqs 37, 38 and 39, we have

~NeðtÞ ¼
NðsÞ2

2f
: ð40Þ

Thus by determining the number of transmissions per unit time, f, and the number of infec-

tious individuals, N(s), in an SEIR model, we can find an expression for ~NeðtÞ.
These quantities can be derived from the equations describing the number of susceptible

(S), exposed (E), infectious (I), and recovered (R) individuals in an SEIR model

dS
dt
¼ � bI

S
NH

ð41Þ

dE
dt
¼
bIS
NH
� gEE � dEE ð42Þ

dI
dt
¼ gEE � gII � dII ð43Þ

dR
dt
¼ gII ð44Þ

where β is the number of transmissions per infectious individual per unit time (the number of

contacts made by an infectious individual per unit time multiplied by the probability that a

contact results in a transmission), NH is the total population size (NH = S + E + I + R), γE is the

rate that an exposed individual becomes infectious, δE is the rate of death for an exposed indi-

vidual, γI is the rate than an infectious individual recovers, and δI is the rate of death for an

infectious individual.

The number of infectious individuals in a generation, N(s), is given by the instantaneous

number of infectious individuals plus the number of exposed individuals that will become

infectious in that generation [43]. Thus,

NðsÞ ¼
gE

gE þ dE
Eþ I: ð45Þ

The number of transmissions per unit time is given by

f ¼ bI
S

NH
: ð46Þ

We rewrite f in terms of the effective reproduction number (for which data are available)

which is given by the number of transmissions per unit time (f) divided by the number of

recoveries and deaths per unit time

Rt ¼
f

ðgI þ dIÞI þ dEE
: ð47Þ
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Putting everything together, we have that ~NeðtÞ for an SEIR model in equilibrium is given

by

~Ne
SEIR;eqðtÞ ¼

gE
gEþgI

� �
Eþ I

h i2

2Rt½ðgI þ dIÞI þ dEE�
: ð48Þ

For SARS-CoV-2, the death rates are much lower than the rate at which exposed individuals

become infectious and the rate at which infectious individuals recover (δE, δI� γE, γI). In this

limit, Eq 48 simplifies to

~Ne
SEIR;eq
ðtÞ ¼

ðEþ IÞ2

2RtgII
: ð49Þ

To calculate the ~Ne for an SIR or SEIR model, we use the estimated number of positives

from the COVID-19 Infection Survey for I(t). This number is an estimate of the number of

positive individuals in the community as measured by surveillance and includes both symp-

tomatic and asymptomatic individuals. While the estimated number of positives does not

include cases from hospitals, care homes, and other communal establishments, community

cases likely contribute the most to transmission. We used the measured effective reproduction

number from the UK Health Security Agency for Rt.

To calculate the number of exposed individuals for the SEIR model, we solved for E in Eq

43 (taking δE� γE)

E ¼
1

gE

dI
dt
þ gII

� �

: ð50Þ

dI
dt was calculated numerically as

IðtþDtÞ� Iðt� DtÞ
2Dt where Δt = 1 week. The parameter values used

were g� 1
E ¼ 3 days and g� 1

I ¼ 5:5 days [41, 42]. We checked that varying the value used for γI

does not substantially affect the results (S11 Fig). The error on E was calculated by taking the

minimum and maximum possible values from the combined error intervals of I(t + Δt) and I(t
− Δt) (note that this does not correspond to a specific confidence interval size).

The error on ~NeðtÞ for the SIR or SEIR model was calculated similarly by taking the mini-

mum and maximum possible values from the combined error intervals of E, I, and Rt. Only

time points where the error interval of ~NeðtÞ was less than 3 times the point estimate were

kept.

Calculating the effective population size for an SIR or SEIR model by

variant

To calculate the effective population size for an SIR or SEIR model by variant, we needed to

determine the variant-specific: number of infectious individuals I(t), number of exposed indi-

viduals E(t), effective reproduction number Rt, and rate than an infectious individual recovers

γI. We assumed that γI is constant between variants. We calculated the number of infectious

individuals I(t) by multiplying the total number of positives by the fraction of each variant in

the reported sequences. This should be a good representation of the fraction of the variant in

the population as the sequences are a random sample of cases detected via surveillance. We cal-

culated the number of variant-specific exposed individuals E(t) in the same way as described

above using the variant-specific number of infectious individuals. We assumed that the rate an

exposed individual becomes infectious γE is constant between variants.
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We calculated the variant-specific effective reproduction number by rescaling the measured

effective reproduction number for the whole population

Rv
t ¼ Rt

Rv
0P

w Rw
0
f w ð51Þ

where Rw
0

is the basic reproduction number of the variant w and fw is the fraction of the infec-

tious population with variant w. The values of R0 when rescaled to Rpre� B:1:177

0 that are used for

the data presented in the main text are
Rpre� B:1:177

0

Rpre� B:1:177

0

¼
RB:1:117

0

Rpre� B:1:177

0

¼ 1,
RAlpha

0

Rpre� B:1:177

0

¼ 1:7 (Ref. [17]),

RDelta
0

Rpre� B:1:177

0

¼ 1:97 (Ref. [78]). We assumed the same R0 for pre-B.1.177 and B.1.177 since the

B.1.177 variant was shown to have increased in frequency due to importations from travel

rather than increased transmissibility [45]. Varying the variant R0 within the ranges reported

in the literature does not substantially affect the results (S28 Fig).

Inference of fitness from lineage frequency time series

We sought to infer the fitness effects of individual lineages, so that we could then determine if

putatively selected lineages are influencing the estimation of the time-varying effective popula-

tion sizes. We used a deterministic method to estimate lineage fitness effects, similar to the

method described in [79].

On average, when the frequency of lineage i is sufficiently small ft,i� 1, the frequency

dynamics will exponentially grow/decay according to the lineage fitness effect, si,

h ft;ii ¼ f0;iesit

The two sources of noise–genetic drift and measurement noise–both arise from counting

processes, so the combined noise will follow var (ft,i)/ hft,ii. To account for the inherent dis-

creteness of the number of cases in a lineage–especially important to accurately model lineages

at low frequencies–we modeled the observed counts at Epiweek t of lineage i, rt,i, as a negative

binomial random variable,

rt;ijsi; f0;i � NB ðmt;i; ztÞ ð52Þ

hrt;ii ¼ mt;i ð53Þ

var ðrt;iÞ ¼ zthrt;ii ð54Þ

mt;i ¼ Mt f0;iesit ð55Þ

Where Mt is the total number of sequences, and zt is a dispersion parameter. We took zt as the

total marginal variance at a given time-point, i.e. zt = ct + Mt/Ne(t), where we computed esti-

mates of ct and Ne as previously described (section “Maximum likelihood estimation of the

parameters”). The final likelihood for the fitness, si, of lineage i is obtained by combining the

data from all the relevant the time-points,

Pðrijsi; f0;iÞ ¼
Y

t

G rt;i þ
mt;i
zt � 1

� �

G
mt;i
zt � 1

� �
G rt;i þ 1
� �

ðzt � 1Þ
rt;i

z
rt;iþ

mt;i
zt � 1

t

ð56Þ
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The point estimate of the lineage fitness, ŝ i, is then numerically computed as the maximum

likelihood,

ŝ i ¼ argmax
si

log Pðrijsi; f0;iÞ: ð57Þ

Stochastic simulations of SEIR model

The stochastic simulations of an SEIR model were performed using a Gillespie simulation with

4 states: susceptible, exposed, infectious, and recovered, where the number of individuals in

each state are denoted by S(t), E(t), I(t), and R(t) respectively. There are 3 types of events that

lead to the following changes in the number of individuals in each state

1. Infection of an susceptible individual with probability
bIðtÞSðtÞ

NðtÞ

SðtÞ ¼ SðtÞ � 1 ð58Þ

EðtÞ ¼ EðtÞ þ 1 ð59Þ

2. Transition of an exposed individual to being infectious with probability γEE(t)

EðtÞ ¼ EðtÞ � 1 ð60Þ

IðtÞ ¼ IðtÞ þ 1 ð61Þ

3. Recovery of an infectious individual with probability γII(t)

IðtÞ ¼ IðtÞ � 1 ð62Þ

RðtÞ ¼ RðtÞ þ 1 ð63Þ

where β� R0γI, R0 is the basic reproduction number, γE is the rate that exposed individuals

become infectious, and γI is the rate that infectious individuals recover. As in the rest of this

work, we assume that the birth rate of susceptible individuals, background death rate, and the

death rate due to disease are much slower compared to the rates of the above processes and

thus can be neglected from the dynamics.

The time until the next event is drawn from an exponential distribution with rate given by

the inverse of the sum of the above probabilities, and the type of event is randomly drawn

weighted by the respective probabilities.

Because the time of the events occurs in continuous time, but the inference method of the

effective population size works in discrete time, we must convert from continuous to discrete

time. To perform this conversion, we calculate the net number of events of each type in each

chosen unit of discrete time (1 week) and perform the changes in the number of individuals of

each state as described above. Thus, for example, if within the same week an individual

becomes exposed and then becomes infectious, it will cause the number of susceptible individ-

uals to decrease by 1, no change in the number of exposed individuals, and the number of

infectious individuals to increase by 1.
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The infected (or infected and exposed) individuals are randomly assigned a lineage at a

given time after the start of the epidemic. For our simulations, we chose the lineage labeling

time as 75 days or 10.7 weeks since the approximate number of infectious individuals was high

enough at that time to generate sufficient diversity in lineages, and we chose the number of dif-

ferent types of lineages as 100. The other parameters that we used for the simulations were R0

= 2, g� 1
E ¼ 3 days, g� 1

I ¼ 5:5 days, N(t) = S(t) + E(t) + I(t) + R(t) = 106. The initial condition of

the simulation is S(t) = N(t) − 1, E(t) = 1, and I(t) = R(t) = 0.

To test the sensitivity of the results to whether the reported PCR positive individuals are

infectious or whether they can also be from the exposed class, we recorded the results in two

ways. In the first case, only the infectious individuals we recorded as positive (S29 Fig), and in

the second case both the exposed and infectious individuals were recorded as positive (S30

Fig). Inference of ~NeðtÞ was subsequently done on the lineage frequency trajectories of the

recorded positive individuals. The SIR or SEIR model ~NeðtÞ were calculated analytically using

the true numbers of infectious and exposed individuals and numerically using the number of

positive individuals as described above in “Calculating the effective population size for an SIR

or SEIR model”.

Deme simulations

To better understand the effect of host population structure on the effective population size,

we simulated a simple situation where there are “demes”, or groups, of individuals with very

high rates of transmission between individuals in that deme, but the rate of transmission

between individuals from different demes is very low. In a given simulation, all demes have the

same number of individuals (10, 50, 100, or 200). The total number of demes is chosen to be

very high (5.6 × 106). Initially, a certain number of demes (100, 1000, 2000, or 5000) are each

seeded by a single infectious individual infected by a randomly chosen lineage (200 different

lineages). We simulated deterministic SEIR dynamics within demes with R0 = 10, γE = (2.5

days)−1, γI = (6.5 days)−1. We simulated Poisson transmission dynamics between demes. In

order to calibrate the overall population dynamics to be roughly in equilibrium (the number of

infectious individuals is not deterministically growing or shrinking), we draw the number of

between-deme infections caused by a given deme from a Poisson distribution with mean 1.

The time of the between-deme infection event is randomly chosen, weighted by the number of

infected individuals within a deme at a given time. The number of infectious individuals in

each lineage is recorded every 1 week, and the frequency of the lineage is calculated by dividing

by the total number of infectious individuals from all lineages in that week. The lineage fre-

quency data from a period of 9 weeks starting in week 42 is used for the inference of effective

population size. In this time period, only a small number of demes have been infected such

that the total number of demes did not matter. The effective population size inference is per-

formed as above except in the absence of measurement noise, so there is no emission step in

the HMM.

Supporting information

S1 Acknowledgments. Membership of the COVID-19 Genomics UK (COG-UK) Consor-

tium.
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S1 Appendix. Supplementary information.

(PDF)
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S1 Table. Overdispersion values from the literature ordered from highest to lowest vari-

ance in offspring number. Any error intervals that are reported are taken from the reference

(sometimes defined differently). The estimate taken from Ref. [57] assumes no self-isolation

upon symptom onset and no testing; lifting these assumptions leads to similar or lower over-

dispersion.

(PDF)

S1 Fig. The fraction of simulations (20 total) where the inferred 95% confidence interval

for ~NeðtÞ or ct included the true value (left) by timepoint and (right) for all timepoints.

(Right) Boxes indicate the quartiles and the line inside the box (and number above) indicates

the median. Whiskers indicate the extreme values excluding outliers. Simulation parameters

are specified in the Methods and Fig 1, which shows a single simulation instance. For the infer-

ence, we created coarse-grained lineages randomly 20 times.

(PDF)

S2 Fig. Wright-Fisher simulations where ~NeðtÞ is constant over time, and the inferred

~NeðtÞ and ct. (a) Number of sequences sampled. (b) Simulated lineage frequency trajectories.

(c) Inferred effective population size ( ~NeðtÞ) on simulated data compared to true values. (d)

Inferred measurement noise (ct) on simulated data compared to true values. In (c) the shaded

region shows the 95% confidence interval calculated using the posterior, and in (d) the shaded

region shows the 95% confidence interval calculated using bootstrapping (see Methods).

(PDF)

S3 Fig. Wright-Fisher simulations where ~NeðtÞ changes over time according to a rectangu-

lar function, and the inferred ~NeðtÞ and ct. (a) Number of sequences sampled. (b) Simulated

lineage frequency trajectories. (c) Inferred effective population size ( ~NeðtÞ) on simulated data

compared to true values. (d) Inferred measurement noise (ct) on simulated data compared to

true values. In (c) the shaded region shows the 95% confidence interval calculated using the

posterior, and in (d) the shaded region shows the 95% confidence interval calculated using

bootstrapping (see Methods).

(PDF)

S4 Fig. Total number of surveillance sequences of each variant in the metadata from

COG-UK downloaded on January 16, 2022 and the number of sequences used in the analy-

sis for each variant or group of lineages (determined by the number of sequences included

in the tree, and the number of sequences which could be grouped into lineages based on

the procedure described in the Methods).

(PDF)

S5 Fig. Varying the date of the tree downloaded from COG-UK and the depth at which the

tree is cut for creating lineages (dcut, which is defined as the number of mutations from the

root of the tree, see Methods) does not substantially change the inferred scaled effective

population size. The tree date and depth used in the main text are{2021-02-22, B.1.177, dcut =

2.323 � 10−2}, {2021-06-20, Alpha, dcut = 2.054 � 10−3}, {2022-01-25, Delta, dð1Þcut ¼ 1:687 � 10� 3,

dð2Þcut ¼ 1:954 � 10� 3}. The color of the lines for the parameters that were used in the main text

are the same as those shown in Fig 2.

(PDF)

S6 Fig. The inferred effective population size when cutting the tree at different depths to

test the effect of combining lineages with other more closely related lineages in forming
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the coarse-grained lineages.

(PDF)

S7 Fig. The lineage frequency time series using the tree cut depths shown in S6 Fig.

(PDF)

S8 Fig. Varying the threshold counts for forming coarse-grained lineages (see Methods)

does not substantially change the inferred scaled effective population size. The coarse-

grained lineage threshold counts used in the main text is 20.

(PDF)

S9 Fig. Varying the number of weeks in the moving window does not substantially change

the inferred scaled effective population size. The size of the moving window used in the

main text is 9 weeks.

(PDF)

S10 Fig. The distribution of square root observed frequency displacements

(
ffiffiffiffiffiffiffi
f obstþ1

p
�

ffiffiffiffiffiffiffi
f obst

p
) across all time points normalized by the inferred variance due to genetic

drift and measurement noise (kt;tþ1 ¼
ct

4Mt
þ

ctþ1

4Mtþ1
þ 1

~Ne ðtÞ
, see Eq 24). The orange line is a plot

of a normal distribution with mean 0 and variance 1.

(PDF)

S11 Fig. Varying the rate of transitioning from infected to recovered within literature

ranges (γI = 3 to 14 days) used for calculation of the SIR model ~NeðtÞ (Methods) does not

substantially decrease the observed ratio ~Ne
SIRðtÞ= ~Ne

infðtÞ.
(PDF)

S12 Fig. Inferred scaled effective population size compared to the SIR model scaled popu-

lation size calculated using the observed number of positive individuals in England (see

Methods).

(PDF)

S13 Fig. Inferred scaled effective population size compared to the SEIR model scaled popu-

lation size calculated using the observed number of positive individuals in England (see

Methods).

(PDF)

S14 Fig. The inferred effective population size when excluding beneficial lineages whose

inferred absolute fitness value are above the 50th (|s|> 0.09), 75th (|s| > 0.16), and 90th (|

s|> 0.27) percentiles compared to that when all lineages are included.

(PDF)

S15 Fig. The distribution of deleterious fitness effects from Ref. [44]. The orange vertical

line indicates 1

N, which is the threshold in fitness above which selection dominates over genetic

drift. Here, N is set to 104, which is the order of magnitude of the census population size of

SARS-CoV-2 in England.

(PDF)

S16 Fig. Simulated lineage frequency dynamics where deleterious mutations occur at rate

0.01/genome/generation and the distribution of deleterious fitness effects is taken from

the empirically estimated values in Ref. [44]. The inferred effective population size and mea-

surement noise are shown.

(PDF)
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S17 Fig. The same simulation as in S16 Fig but as a control, where the fitness of new muta-

tions is always 0. The inferred effective population size and measurement noise are shown.

(PDF)

S18 Fig. The cumulative mean ratio of the point estimates of the inferred effective popula-

tion size in the simulations using the empirical distribution of deleterious fitness effects

and the neutral simulations.

(PDF)

S19 Fig. Inferred effective population size in regions of England. (Top panels) Inferred

~NeðtÞ of pre-B.1.177 lineages, B.1.177, Alpha, and Delta for each region of England. The

inferred ~NeðtÞ for England as a whole is shown for reference. Shaded regions show 95% confi-

dence intervals (see Methods). (Bottom panels) The ratio between the inferred ~NeðtÞ of

England and that of the region for each variant. A horizontal dashed line indicates a ratio of 1

(i.e. ~NeðtÞ is the same in that region of England and England as a whole). Shared regions show

the minimum and maximum possible values of the ratio from the combined error intervals of

the numerator and denominator (thus, not corresponding to a specific confidence interval

range).

(PDF)

S20 Fig. Inferred scaled effective population size by region in England, compared to num-

ber of positives at the community level in that region reported by the COVID-19 Infection

Survey [36].

(PDF)

S21 Fig. Simulations of deme structure (described in main text and Methods). (a) The

mean number of infected individuals per week from Weeks 42 to 50. (b) The inferred ~NeðtÞ
using lineage trajectories from Weeks 42 to 50.

(PDF)

S22 Fig. Sample epiweeks versus tree depths. In a phylogenetic tree, the number of sequences

(leaf nodes) of a focal variant that fall within specific epiweek and tree depth ranges is counted

and summarized as a two-dimensional histogram. The tree depth is the substitution rate mea-

sured in units of substitutions per site, with respect to the most recent common ancestor.

From left to right, the phylogenetic tree (specified by date created by COG-UK, using the

sequences available at the time) and focal variant are {2021-02-22, B-1-177}, {2021-06-01,

Alpha}, {2021-06-20, Alpha}, and {2022-01-25, Delta}. Weeks are counted from 2019-12-29.

The dashed horizontal lines indicate the values of dcut (dð1Þcut and dð2Þcut for the Delta variant) used

for the results presented in the main text, except for the 2021–06-01 Alpha tree, where they

indicate the value of dcut tested in S5 Fig.

(PNG)

S23 Fig. Comparing the inferred ~NeðtÞ and ct in Wright-Fisher simulations using the

method of moments and maximum likelihood estimation approaches (see Methods). (a)

Number of sequences sampled. (b) Simulated lineage frequency trajectories. (c) Inferred effec-

tive population size ( ~NeðtÞ) on simulated data using the method of moments (MSD, for mean

squared displacement) and maximum likelhood (HMM, for Hidden Markov Model) estima-

tion approaches compared to true values. The shaded region shows the 95% confidence inter-

val of the inferred values. The confidence interval using the method of moments approach was

calculated by taking the middle 95% of values when bootstrapping over the coarse-grained lin-

eages. The confidence interval using the maximum likelihood estimation approach was
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determined using the posterior (see Methods) and takes into account joint errors in ct and

~NeðtÞ. (d) Inferred measurement noise (ct) on simulated data using the method of moments

and maximum likelihood estimation approaches compared to true values. The shaded region

shows the 95% confidence interval calculated using bootstrapping (see Methods).

(PDF)

S24 Fig. Inferred effective population size from different times and coarse-grained lineage

combinations. The vertical dashed line indicates 105 which is the value above which results in

the text were thrown away due to non-convergence (these only include values at 1011).

(PDF)

S25 Fig. The inferred measurement noise overdispersion parameter for England as a whole

when changing the lower bound of the overdispersion parameter from 1 to 0.

(PDF)

S26 Fig. The fraction of sequences in the tree that are assigned to a lineage. The blue shad-

ing indicates the period of time in the data that was used for the inference analysis.

(PDF)

S27 Fig. Randomly subsampling half of the Delta sequences used for the analysis does not

substantially change the inferred scaled effective population size.

(PDF)

S28 Fig. Varying the values of the basic reproduction number within literature ranges

(
RAlpha

0

Rpre� B:1:1:7
0

¼ 1:1 � 2:7 [17],
RDelta

0

Rpre� B:1:1:7
0

¼ 1:76 � 2:17 [78]) used for calculation of the SIR

model ~NeðtÞ by variant (Methods) does not substantially affect the calculated ~N SIRðtÞ.
(PDF)

S29 Fig. Simulations of stochastic SEIR dynamics without measurement noise, and com-

parison of the inferred ~NeðtÞ to Eqs 1 and 49 when the reported positive individuals

include only the infectious individuals. (Top) Muller plot of simulated infectious individuals’

lineage trajectories (simulations described in Methods). Infectious individuals are randomly

assigned a lineage in week 11, and individuals that they transmit to are infected with the same

lineage. The blue lineage before week 11 indicates the infectious individuals that existed before

lineages were assigned. (Bottom) Comparison of the inferred ~NeðtÞ using the lineage trajecto-

ries shown in the top panel to the number of infectious individuals I(t), Eq 49 (SEIR model

~NeðtÞ at equilibrium), and Eq 1 (SIR model ~NeðtÞ) calculated analytically or numerically as

described in the Methods. The numerical solutions give the same results as the analytical solu-

tions.

(PDF)

S30 Fig. Simulations of stochastic SEIR dynamics without measurement noise, and com-

parison of the inferred ~NeðtÞ to Eqs 1 and 49 when the reported positive individuals

include both infectious and exposed individuals. (Top) Muller plot of simulated infectious

and exposed individuals’ lineage trajectories (simulations described in Methods). Infectious

and exposed individuals are randomly assigned a lineage in week 11, and individuals that they

transmit to are infected with the same lineage. The blue lineage before week 11 indicates the

infectious and exposed individuals that existed before lineages were assigned. (Bottom) Com-

parison of the inferred ~NeðtÞ using the lineage trajectories shown in the top panel to the num-

ber of infectious individuals I(t), the sum of the number of infectious and exposed individuals

I(t)+ E(t), Eq 49 (SEIR model ~NeðtÞ), and Eq 1 (SIR model ~NeðtÞ) calculated analytically or
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numerically as described in the Methods. The numerical solutions give slightly higher ~NeðtÞ as

compared with the analytical solutions; however, the numerical solutions to the SEIR and SIR

models bound the inferred ~NeðtÞ.
(PDF)

S31 Fig. The effect of the empirically estimated distribution of deleterious fitness effects in

SARS-CoV-2 [44] on the effective population size using the analytical theory derived in

Ref. [80] (Equation 4 in S1 Appendix). In this calculation, the effective population size in the

absence of background selection is 104, the clock rate is 31 substitutions per year, and the gen-

eration time is 5.1 days.

(PDF)

S32 Fig. Inferred scaled effective population size by region in England, compared to that

of an SIR model as calculated using the observed number of positives at the community

level in that region reported by the COVID-19 Infection Survey [36] and the observed

effective reproduction number in that region reported by the UK Health Security Agency

[40].

(PDF)

S33 Fig. Inferred measurement noise by region in England.

(PDF)

S34 Fig. Same as Fig 3c, but plotting the overdispersion parameter, k ¼ Rt
s2

Rt
� 1

, where Rt is the

effective reproduction number and σ2 is the variance in offspring number. The circles show

the inferred overdispersion parameter if we assume there is only superspreading and no deme

structure. For the inferred overdispersion parameter, the estimated effective reproduction

number in England by variant (see Methods) is used for Rt, and the ratio between the SIR

model population size and the inferred effective population size is used for σ2. The shaded area

for the inferred overdispersion parameter k gives an estimate of the error and is calculated by

combining minimum or maximum values of the individual parameters; note that this does not

correspond to a particular confidence interval.

(PDF)
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