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Abstract

Lipids stored in lipid-bodies (LBs) in host cells are potential sources of fatty acids for patho-

gens. However, the mechanism of recruitment of LBs from the host cells by pathogens to

acquire fatty acids is not known. Here, we have found that Leishmania specifically upregu-

lates the expression of host Rab18 and its GEF, TRAPPC9 by downregulating the expres-

sion of miR-1914-3p by reducing the level of Dicer in macrophages via their metalloprotease

gp63. Our results also show that miR-1914-3p negatively regulates the expression of Rab18

and its GEF in cells. Subsequently, Leishmania containing parasitophorous vacuoles (Ld-

PVs) recruit and retain host Rab18 and TRAPPC9. Leishmania infection also induces LB

biogenesis in host cells and recruits LBs on Ld-PVs and acquires FLC12-labeled fatty acids

from LBs. Moreover, overexpression of miR-1914-3p in macrophages significantly inhibits

the recruitment of LBs and thereby suppresses the multiplication of parasites in macro-

phages as parasites are unable to acquire fatty acids. These results demonstrate a novel

mechanism how Leishmania acquire fatty acids from LBs for their growth in macrophages.

Author summary

Leishmania donovani which causes fatal disease known as visceral leishmaniasis, is depen-

dent on its host to scavenge fatty acids for its survival. But, how Leishmania get fatty acids

from host macrophages is not known. Lipid bodies are unique organelles that contain

neutral lipids and fatty acids, therefore, LBs in macrophages could be the potential source

of fatty acids for parasites. We have found that Leishmania upregulate the expression of

host Rab18 and its GEF by downregulating the expression of miR-1914-3p in infected

macrophages via the Ld-gp63-mediated inhibition of dicer expression. As biogenesis of

LBs is shown to be regulated by Rab18, we have found that Leishmania infection induces

LB biogenesis in macrophages and subsequently recruits LBs along with Rab18 and its

GEF on Leishmania containing parasitophorous vacuoles. Finally, parasites-containing
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vacuoles acquire FLC12-labeled fatty acids from LBs to meet their nutritional requirement.

We have also shown that overexpression of miR-1914-3p in macrophages significantly

inhibits the recruitment of LBs and thereby suppresses the growth of parasites in macro-

phages as parasites are unable to acquire nutrients from LBs. These results demonstrate

how Leishmania acquire nutrients like fatty acids from LBs for their proliferation in

macrophages.

Introduction

Pathogens use various strategies to acquire essential nutrients from host cells by hijacking host

trafficking pathways to ensure their survival. LBs are unique organelles that contain neutral

lipids and fatty acids [1,2]. It has been shown that intracellular pathogens like Mycobacterium,

Salmonella, Coxiella, Leishmania etc. [3–5] containing phagosomes move in close vicinity of

LBs in the host cells, but the functional significance and mechanism of their close proximity

still remain unknown [6–8].

Incidentally, LB biogenesis has been shown to be regulated by various Rab proteins [9]

namely, Rab18, Rab1, Rab5, Rab7, Rab8a and Rab32 in mammalian cells. Among them, Rab18

is the best characterized in regulating the trafficking of LBs from endoplasmic reticulum

[10,11]. Similarly, it has been shown that mammalian TRAPPII specific subunits TRAPPC9

and TRAPPC10 act as GEF for Rab18 and activate LB biogenesis [10]. Rab GTPases are master

regulators of intracellular trafficking pathways [12–14]. We and others have shown that vari-

ous intracellular pathogens like Salmonella [15–17], Mycobacterium [18], Legionella [19,20]

etc. modulate or mimic the functions of Rab GTPases in host cells for their survival [21,22].

Thus, it is tempting to speculate that Leishmania may modulate the function or expression of

host Rab18 and its GEF to recruit LBs on PV. In addition, several intracellular pathogens mod-

ulate the expression of host miRNAs to modify the functions of host proteins for their advan-

tage [23–26]. Concurrently, we have shown that Leishmania avoid their transport to the

lysosomes by inducing the expression of host Rab5a by downregulating the expression of miR-

494 in infected macrophages [25]. Therefore, it is possible that Leishmania might target the

host miRNA to modulate the expression of Rab18 and its GEF in macrophages for acquiring

essential nutrients from LBs.

Here, we have shown that L. donovani upregulate the expression of Rab18 and TRAPPC9

in macrophages by inhibiting the expression of miR-1914-3p which enhances the LB biogene-

sis in infected cells and consequently recruit them on PV. The enhanced recruitment of host

Rab18 and its GEF on Ld-PVs facilitate to acquire LBs and thereby parasites obtain fatty acids

from LBs for their proliferation in macrophages.

Results

Leishmania induce the expression of Rab18 in macrophages and recruit

Rab18 on Ld-PVs

As Rab18 predominantly regulates the biogenesis and maturation of LBs in mammalian cells

[10,11], we compared the expression of host Rab18 along with other Rabs in Leishmania
infected and uninfected macrophages by Western blot analysis using specific antibodies. Inter-

estingly, we found that L. donovani induce more than 2-fold expression of Rab18 in macro-

phages after 24 h of infection compared to uninfected control (Fig 1A). Rab5a was used as

positive control as we showed previously that Leishmania enhance the expression of Rab5a in
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Fig 1. Expression and recruitment of host Rab18 in L. donovani infected macrophages. a, To determine the levels

of different host Rab GTPases in L. donovani infected and uninfected macrophages, cells were lysed at indicated time

points and Western blot analysis was carried out using specific human antibodies as mentioned in Materials &

Methods. Actin was used as loading control. Right panel indicates the quantitation of the respective host Rab proteins.

b, Levels of different host Rabs in L. donovani infected and uninfected differentiated macrophages at respective time

points were determined by qPCR as described in Materials & Methods. The respective gene amplification was

normalized using 18s rRNA as an internal control. All results are represented as mean ± S.D. of three independent

experiments and normalized to uninfected control of respective Rabs arbitrarily chosen as one unit. Results of the

indicated groups were analyzed by paired t test and levels of significance are indicated by P value. c, Levels of host

mRNA of Rab18 in L. donovani infected and uninfected macrophages by limited dilution semi-quantitative RT-PCR.

18s rRNA was used as a control. d, Differentiated THP-1 macrophages were infected with L. donovani and recruitment

of host Rab18 on LAMP1 labelled Ld-PVs were determined by immunostaining after 24 h of infection using specific

antibody against human Rab18 (1:50) as described in Materials & Methods. THP-1 cells incubated with dead parasites

and latex beads were used as control. e, Kinetics of host Rab18 recruitment on Ld-PVs was determined at indicated

times as described in Materials & Methods. Right panel indicates the quantitation of host Rab18 recruitment on Ld-

PVs at different time points. Leishmania and macrophage nuclei were stained with DRAQ5 (Blue). All results are

representative of three independent experiments.

https://doi.org/10.1371/journal.ppat.1012024.g001
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infected macrophages [25]. No significant changes in the levels of expression of Rab4, Rab8

and Rab7 in infected macrophages were observed. Subsequently, we determined the transcript

levels of different Rabs in host cells by Real-Time PCR (qPCR) and our results also showed

about 2-fold induction in the levels of Rab18 and Rab5a transcripts in infected macrophages

after 24 h compared to uninfected control cells (Fig 1B). Enhanced expression of Rab18 in L.

donovani infected macrophages was further confirmed by limited dilution semi-quantitative

RT-PCR (Fig 1C). These results indicated that Leishmania overproduce Rab18 in macrophages

possibly by transcriptional activation.

L. donovani not only enhanced the expression of host Rab18 in infected macrophages, but

we also found that parasites recruit Rab18 in/on LAMP1 positive Ld-PVs by confocal micros-

copy (Fig 1D). Recruitment of host Rab18 on PVs required the presence of live parasites as

dead parasite containing PV and latex bead containing phagosomes were unable to recruit

Rab18 on PVs in macrophages (Fig 1D). However, our results showed that Ld-PV does not

recruit Rab7, Rab8 and Rab27 from macrophages (S1 Fig.). Further quantitation revealed that

more than 90% of Ld-PVs recruit Rab18 from macrophages whereas less than 10% of PVs

recruit other indicated Rabs (S1 Fig). Kinetic analysis of Rab18 recruitment on Ld-PV from

macrophages revealed that parasites recruit Rab18 on Ld-PVs in a time dependent manner

and retained Rab18 on PVs throughout the experimental period (Fig 1E). About 90% Ld-PVs

were found to be positive for Rab18 after 24 h infection in macrophages.

Leishmania overexpress Rab18 specific GEF in macrophages and recruit it

on Ld-PVs

Rab GTPases cycle between an inactive GDP-bound form and active GTP bound form. This

switch is controlled by guanine nucleotide exchange factors and GTP bound form is recruited

on target membrane [14] and promotes transport by fusion between specific donor and accep-

tor vesicles [27,28]. As Rab18 was found to be recruited on Ld-PVs, we evaluated the levels of

Rab18 specific GEF in L. donovani infected macrophages. A recent study showed that mam-

malian TRAPPII complex acts as a GEF for Rab18 [10], therefore, we compared the expression

of TRAPPII-specific subunits TRAPPC9 and TRAPPC10 in L. donovani infected and unin-

fected macrophages. Our results showed that L. donovani induce the expression of both

TRAPPC9 and TRAPPC10 in infected macrophages in a time dependent manner in compari-

son to uninfected cells (Fig 2A). We also found that parasites induce about 2-fold expression

of transcripts of both subunits of TRAPPII complex in infected macrophages compared to

uninfected cells (Fig 2B). However, parasite mediated enhanced expression of TRAPPC9 in

infected macrophages was more pronounced than TRAPPC10. Subsequently, our results

showed that Ld-PVs recruit TRAPPC9 in infected macrophages (Fig 2C). Thus, parasites

induce the expression of TRAPPC9 in infected macrophages by transcriptional activation and

recruit it on Ld-PVs.

Mechanism of overexpression of Rab18 and TRAPPC9 by Leishmania in

infected macrophages

To understand the mechanism of upregulation of Rab18 and TRAPPC9 expression in L. dono-
vani infected macrophages, we focused on the modulation of miRNA expression as several

intracellular pathogens alter the expression of host miRNAs to establish infection [23–26].

Therefore, we compared the miRNA profile of uninfected and infected macrophages [25]. Fur-

ther analysis of previously identified miRNA profile data showed that L. donovani infection

upregulate the expression of 55 miRNAs and 40 miRNAs are downregulated in infected mac-

rophages in comparison to uninfected cells (Fig 3A). Subsequent screening of these miRNAs
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revealed that the seed region (3/-UGGGGAG-5/) of miR-1914-3p contains 7-mer target site

(5/-ACCCCUC-3/) in 3/-UTR of both Rab18 and TRAPPC9 (Fig 3B). Therefore, we deter-

mined the level of expression of miR-1914-3p in L. donovani infected macrophages. Our

results showed about 45% inhibition of miR-1914-3p expression in parasite infected macro-

phages after 12 h of infection compared to uninfected cells (Fig 3C).

To determine the regulation of Rab18 expression by miR-1914-3p, we made a chimeric

construct by ligating 3/-UTR of Rab18 with luciferase as heterologous reporter using pmir-

GLO vector. We also made another chimeric construct of 3/-UTR of Rab18 containing muta-

tion in miR-1914-3p recognition element (5/-GAAAAGAC-3/) to determine the specificity.

The chimeric construct of 3/-UTR of Rab18 or its mutant was co-transfected with miR-1914-

3p mimic into HeLa cells and firefly luciferase reporter activity was measured after 48 h of

transfection. Nonspecific miR mimic was used as a control. Our results showed (Fig 3D) that

transfection with the miR-1914-3p (40 nM) inhibited about 50% luciferase activity of Rab18

3/-UTR reporter, whereas no inhibition was detected with mutant Rab18 3/-UTR reporter. To

understand how miR-1914-3p expression was downregulated in L. donovani infected

Fig 2. Expression and recruitment of host TRAPPC9 in L. donovani infected macrophages. a, To determine the

levels of host TRAPPC9 and TRAPPC10 in L. donovani infected and uninfected macrophages, cells were lysed at

indicated time points and Western blot analysis was carried out using specific human antibodies as mentioned in

Materials & Methods. Actin was used as loading control. Lower panel indicates the levels of the host Trappc9 and

Trappc10 proteins at indicated time points. b, Levels of TRAPPC9 and TRAPPC10 in infected and uninfected

differentiated macrophages at respective time points were determined by qPCR as described in Materials & Methods.

The respective gene amplification was normalized using 18s rRNA as an internal control. All results are represented as

mean ± S.D. of three independent experiments and normalized to uninfected control of respective Rabs arbitrarily

chosen as one unit. Results of the indicated groups were analyzed by paired t test and levels of significance are

indicated by P value. c, Differentiated THP-1 macrophages were infected with L. donovani and recruitment of

TRAPPC9 on LAMP1 labelled Ld-PVs was determined by immunostaining after 24 h of infection using TRAPPC9

specific antibody. Leishmania and macrophage nuclei were stained with DRAQ5 (Blue). All results are representative

of three independent experiments.

https://doi.org/10.1371/journal.ppat.1012024.g002
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Fig 3. Mechanism of overexpression of host Rab18 by Leishmania in infected macrophages. a, Modulation of the

expression of several host miRNAs in L. donovani infected macrophages was revealed by microarray analysis. Relative

expression of miRNAs in infected cells was determined in comparison to uninfected control. The whole microarray

data have been submitted in Gene Expression Omnibus database (accession number GSE89529). b, Sequence

alignment of 3/-UTR of host Rab18 and TRAPPC9 containing 7-mer target site with the seed region of miR-1914-3p

predicted by TagetScan tool. Mutation in the target site of 3/-UTR of Rab18 is highlighted in bold. c, Expression of

miR-1914-3p in L. donovani infected and uninfected THP-1 macrophages was determined 12 h post infection using

qPCR as described in Materials & Methods. d, miR-1914-3p mediated regulation of Rab18 expression was determined

by co-transfecting pmir-GLO chimeric construct containing Rab18 3/-UTR or its mutant with miR-1914-3p (40 nM)

or control mimic miR into semiconfluent HeLa cells. Luciferase activity was determined from lysed cells after 48 h of

transfection as described in Materials & Methods. Results are expressed as relative luciferase activity. Untreated control

cells were arbitrarily chosen as one unit. e, THP-1 differentiated macrophages were infected with L. donovani and

expression level of Dicer in infected cells was determined at indicated time points using specific antibody against

human Dicer. Uninfected cells were used as control. Actin was used as loading control. Right panel indicates the

quantitation of host Dicer level at different time points. f, Expression of Dicer was determined in HeLa cells transfected

with plasmid containing Flag tagged Ld-gp63 by Western blot analysis using specific antibody against Dicer. Level of

gp63 in untransfected and vector transfected cells were also determined by Western blot analysis using anti-Flag

antibody. Actin was used as loading control. g, Differentiated THP-1 macrophages were transfected with control miR

or miR-1914-3p at indicated concentrations and expression of Rab18 was measured by qPCR as described in Materials

& Methods. h, Levels of host Rab18 and Rab5 proteins in control miR or miR-1914-3p (10 nM or 20 nM) transfected

THP-1 cells was determined by Western blot analysis using specific antibodies against human Rab18 and Rab5. Actin

was used as loading control. i, Similarly, level of TRAPPC9 protein in control miR or miR-1914-3p (10 nM or 20 nM)

transfected THP-1 cells was determined by Western blot analysis using human anti-TRAPPC9 antibody. Actin was

PLOS PATHOGENS Leishmania acquire fatty acids from host lipid bodies

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012024 February 27, 2024 6 / 22

https://doi.org/10.1371/journal.ppat.1012024


macrophages, we compared the level of Dicer in infected and uninfected macrophages. We

found that Leishmania infection reduces the level of Dicer in infected macrophages (Fig 3E).

Consequently, our result showed that overexpression of Ld-gp63, a metalloprotease in

Leishmania, also reduces the Dicer expression in HeLa cells (Fig 3F). To demonstrate the regu-

lation of the expression of Rab18 by miR-1914-3p in macrophages, cells were transfected with

indicated concentrations of miR-1914-3p or control miR (S2 Fig) and level of Rab18 was deter-

mined by qPCR. We found that miR-1914-3p (100 nM) specifically inhibited about 50%

expression of Rab18 mRNA compared to the control (Fig 3G). In addition, we found signifi-

cant inhibition of Rab18 (Fig 3H) and TRAPPC9 protein (Fig 3I) expression in miR-1914-3p

(20 nM) transfected macrophages compared to the control-miR transfected cells.

Ld-PV specifically recruits LBs in infected macrophages

Rab18 and its GEF play major role in trafficking and biogenesis of LBs from endoplasmic retic-

ulum [10,11], therefore, we analyzed the association of LBs with Ld-PVs in infected macro-

phages. To determine the recruitment of LBs on Ld-PVs, cells were infected with L. donovani
promastigotes and LBs were stained with BODIPY 493/503 or LipidTOX 24 h post-infection.

Our results showed that LBs stained by BODIPY are scattered throughout the cell cytosol in

the uninfected macrophages whereas they are found to be recruited on LAMP1 positive Ld-

PVs in infected macrophages (Fig 4A). In contrast, latex bead containing phagosomes were

unable to recruit LBs. The recruitment of LBs on Ld-PVs was also confirmed by staining the

neutral lipids in LBs in macrophages by LipidTOX (Fig 4B). However, vacuoles containing

dead parasites were unable to recruit LBs (Fig 4B). In addition, parasites also acquired Rab18

interacting lipid droplet-associated protein (perilipin) on its PV from infected macrophages

(Fig 4C). Further quantitation revealed that about 80% of Ld-PVs recruit LBs whereas only

20% latex bead or dead parasite containing phagosomes are associated with LBs (Fig 4D). We

also compared the number of LBs and their size in 50 infected and uninfected macrophages.

Our results showed that the average number of LBs in uninfected control cells is 88±41

whereas the average number of LBs in infected cells is found to be 228±111 (Fig 4E). However,

average size of LBs in infected (0.45±0.35μm2) and uninfected (0.43±0.30 μm2) cells was simi-

lar (Fig 4E). These results indicated that L. donovani possibly induce LB biogenesis in the host

cells by overexpressing Rab18 and TRAPPC9. Moreover, our results showed that Ld-PVs con-

tain both Rab18 and LBs in infected macrophages (S3 Fig). In addition, we found that cal-

nexin-labelled ER membrane from host cells is also recruited on PVs in infected cells (Fig 4F).

Leishmania containing vacuoles acquire fatty acid from LB for its survival

in macrophages

LBs are unique organelles that contain neutral lipids, fatty acids, triglycerides, along with other

molecules such as cholesterol, phospholipids [1,2]. To determine the functional significance of

recruitment of LBs by Ld-PVs, we analyzed the trafficking of fatty acids (FAs) from LBs to Ld-

PVs in the present study because FAs are largely stored in LBs [29]. Therefore, FAs present in

LBs in macrophages were pre-labeled with BODIPY-FL-C12 (FLC12) and then the cells were

infected with L. donovani. Subsequently, transport of labelled FAs from LBs to LAMP1 positive

Ld-PVs was determined. Confocal analysis of L. donovani infected macrophages showed that

Ld-PVs acquire FLC12-labelled FAs (Fig 5A). We also analyzed about 100 Ld-PVs in infected

used as loading control. All results represented as mean ± S.D. of three independent experiments. Results of the

indicated groups were analyzed by paired t test and levels of significance are indicated by P value.

https://doi.org/10.1371/journal.ppat.1012024.g003
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Fig 4. Leishmania-containing PV specifically recruits LBs. a, Differentiated THP-1 human macrophages were

infected with L. donovani and recruitment of Bodipy 493/503 stained LBs (Green) by LAMP1 stained Ld-PVs (Red)

were detected by confocal microscopy after 24 h of infection as described in Materials & Methods. Uninfected cells and

cells incubated with latex beads or dead parasite were used as control. b, Recruitment of LipidTOX labelled LBs (Red)

by LAMP1 stained Ld-PVs (Green) were determined after 24 h of infection as mentioned in Materials & Methods.

Infection with dead parasites was used as control. Leishmania and macrophage nuclei were stained with DRAQ5

(Blue). c, To determine the recruitment of Perilipin by LAMP1 stained Ld-PVs (Red), Perilipin was immunostained

with specific antibody (Green) in L. donovani infected and uninfected macrophages as described in Materials &

Methods. Leishmania and macrophage nuclei were stained with DRAQ5 (Blue). d, Percentage of recruitment of

different LBs on PVs containing live or fixed parasites were analyzed. All results are represented as mean ± S.D. of

three independent experiments. Results of the indicated groups were analyzed by paired t test and levels of significance

are indicated by P value. e, Determination of the number and size of LBs in L. donovani infected and uninfected

macrophages were determined using appropriate software as described in Materials & Methods. Results are

representative of mean±SE of 50 macrophages. f, Recruitment of ER membrane marker on LB and Ld-PV in L.

donovani infected macrophages were determined by immunostaining the cells with calnexin specific antibody at

indicated time points and analyzed by confocal microscopy. Uninfected cells and cells infected with dead parasite were

used as control. Leishmania and macrophage nuclei were stained with DRAQ5 (Blue). All results are representative of

three independent experiments.

https://doi.org/10.1371/journal.ppat.1012024.g004
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Fig 5. Leishmania acquire fatty acids from LBs for their proliferation in macrophages. a, Differentiated THP-1

macrophages were incubated with BODIPY-FL-C12 to label the fatty acids in LBs and subsequently cells were infected

with L. donovani as described in Methods. Infected cells prelabeled with BODIPY-FL-C12 were chased for indicated

time points and appearance of BODIPY-FL-C12 (Green) from LBs in Ld-PVs (Red) was determined. Cells were

immunostained with LAMP-1 specific antibody to mark the PVs. Leishmania and macrophage nuclei were stained

with DRAQ5 (Blue). Uninfected cells were used as control. Right panel shows the quantitation of Ld-PVs acquiring

BODIPY-FL-C12 fatty acids in a time dependent way. b, Differentiated THP-1 macrophages were transfected with

Rab18 specific siRNA, control siRNA or miR-1914-3p followed by infection with Leishmania. Lipid bodies were

stained using Bodipy 493/503 as described above. Cells were fixed and immunostained with LAMP-1 to label the Ld-

PVs. Leishmania and macrophage nuclei were stained with DRAQ5 (Blue). Right panel shows the quantitation of Ld-

PVs acquiring Bodipy 493/503 stained LBs under indicated conditions. All results are representative of three

independent experiments. c, Similarly, miR-1914-3p or Rab18 specific siRNA transfected macrophages were infected

with L. donovani promastigotes and parasite load in the infected macrophages was microscopically estimated at

indicated time. Leishmania and macrophage nuclei were stained with propidium iodide (Red). Results are expressed in

the right panel as number of parasites present in 100 macrophages ± S.D. from three independent experiments. Results

of control (*) and Rab18 siRNA/miR-1914-3p overexpressed cells were analyzed by paired t test and levels of

significance are indicated by P value. d, Similarly, miR-1914-3p transfected and L. donovani infected macrophages

were incubated in the presence or absence of fatty acids supplements. Parasite load in the infected macrophages was

estimated at 96 h post infection. Untransfected infected cells were used as control. Results are expressed in the right

panel as number of parasites present in 100 macrophages ± S.D. from three independent experiments. Results were

analyzed by paired t test and levels of significance are indicated by P value.

https://doi.org/10.1371/journal.ppat.1012024.g005
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macrophages and determined the presence of FLC12-labelled FAs in/on the LAMP1 stained

Ld-PV at different time points. Our results showed that about 90% of Ld-PVs acquired FLC12-

labelled FAs after 24 h in infected macrophages (Fig 5A). To evaluate whether Ld-PV acquire

FAs from LBs by overexpression of Rab18 via down-regulation of miR-1914-3p, we deter-

mined recruitment of LBs in miR-1914-3p overexpressed macrophages as well as in Rab18

knock-down cells by specific siRNA (S4 Fig). Our results showed that transfection of Rab18

specific siRNA or overexpression of miR-1914-3p specifically downregulated the expression of

Rab18 in macrophages (Fig 3H) and significantly inhibited the recruitment of LBs labelled

with BODIPY 493/503 (Fig 5B) or perilipin (S5 Fig) on Ld-PVs in macrophages. To determine

the function of Rab18 in the proliferation of L. donovani in macrophages, Rab18 knock-down

or miR-1914-3p overexpressed cells were infected with Leishmania and parasite load was

determined at indicated time points. Our results showed that parasite infection in macro-

phages were not compromised in these cells as similar number of parasites were observed in

both Rab18 knock-down and miR-1914-3p overexpressed cells at 0 h. However, more than

50% inhibition of parasite load was observed in miR-1914-3p (50 nM) overexpressed macro-

phages in comparison to control cells after 96 h of infection (Fig 5C). Similar results were also

obtained in Rab18 knock-down macrophages by siRNA under identical conditions (Fig 5C).

Interestingly, we found that miR-1914-3p mediated inhibition of parasite growth in macro-

phages is significantly reversed when infected macrophages are incubated in medium contain-

ing fatty acids supplements like oleic and linoleic acids (90 ng/ml each) for 96 h (Fig 5D).

Discussion

Leishmania donovani is a protozoan parasite that causes fatal disease known as visceral leish-

maniasis that affects annually about 12 million people worldwide [30]. Drugs used for chemo-

therapy of leishmaniasis are toxic and no licensed vaccine is available [31]. Thus, the major

thrust is to identify new chemotherapeutic targets against Leishmania. Leishmania do not have

fully characterized biosynthetic pathways for heme [32,33], purine [34], folate [35], fatty acids

[36–38] and depend on the host to scavenge these nutrients for their intracellular survival [39–

42]. Thus, understanding the mechanism of acquisition of essential nutrient like fatty acids,

heme, folate etc. by the parasite is an attractive area to identify the chemotherapeutic target

[43].

Intracellular pathogens have evolved various strategies to acquire essential nutrients from

host cells for their survival by manipulating host trafficking pathways [21,22]. It is emerging

from recent studies that intracellular pathogens also alter host lipid and carbohydrate meta-

bolic pathways [44,45]. LBs are highly dynamic cytoplasmic organelles which are composed of

hydrophobic core of neutral lipids surrounded by a phospholipid monolayer [1,2]. Inciden-

tally, large numbers of intracellular pathogens like Mycobacterium, Salmonella, Toxoplasma,

Coxiella, Leishmania, Trypanosoma etc. are found to be in close association with host LBs

[3,46,47]. However, mechanism of their association with host LBs by phagosomes containing

intracellular pathogens and its functional significance are not well established. Here, we have

tried to understand how Ld-PVs recruit LBs to acquire essential nutrients like fatty acids from

the host cells for the proliferation of parasites in macrophages.

As biogenesis and maturation of LBs in mammalian cells is predominantly regulated by

Rab18 and its GEF [10,11], thus, we have compared the expression of Rab18 along with other

Rabs in L. donovani infected and uninfected macrophages. Interestingly, we have found that

the expression of host Rab18 is specifically upregulated in L. donovani infected macrophages

by transcriptional activation as higher level of Rab18 transcript is detected by qPCR in infected

macrophages. Similarly, we have found that L. donovani induce the expression of Rab18
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specific GEF, TRAPPII subunits TRAPPC9 and TRAPPC10 in infected macrophages. How-

ever, enhanced expression of TRAPPC9 by L. donovani in infected macrophages is found to be

more pronounced than TRAPPC10, therefore, we have further analyzed the mechanism of

upregulation and recruitment of TRAPPC9 in infected cells. L. donovani not only overproduce

Rab18 and TRAPPC9 in infected macrophages, but parasites also specifically recruit them on

LAMP1 positive Ld-PVs and retain them throughout experimental period of 24 h. Taken

together, these results suggest that Ld-PVs possibly recruit GTP form of Rab18 from infected

cells as Rab GTPases are predominantly associated with target membrane in GTP form [12].

To understand how L. donovani induce the expression of Rab18 and TRAPPC9 in infected

macrophages, we have analyzed miRNA profiles in L. donovani infected and uninfected mac-

rophages as we have reported previously [25]. Interestingly, we have found that miR-1914-3p

has target site in 3/-regulatory region of Rab18 and TRAPPC9 in mammalian cells. Subse-

quently, we have shown that transfection of miR-1914-3p specifically inhibits the expression of

Rab18 and TRAPPC9 in cells. These results are confirmed by using chimeric construct con-

taining 3/-UTR of Rab18 with luciferase as heterologous reporter. These results indicate that

miR-1914-3p binds with recognition element present in the 3/-UTR of Rab18 and TRAPPC9;

thereby, negatively regulates the expression of Rab18 and TRAPPC9 in macrophages. Subse-

quently, we have addressed how L. donovani upregulates the expression of Rab18 and

TRAPPC9 in infected macrophages. Our results have shown that L. donovani infection down-

regulates the expression of miR-1914-3p by reducing the expression of Dicer in infected mac-

rophages via its Ld-gp63, a metalloprotease in Leishmania [48]. These results are supported by

previous studies that L. donovani targets Dicer to downregulate the expression of miR-122

[49]. Moreover, it has been shown previously that Ld-gp63 secreted by Leishmania into host

cells hijacks macrophage signaling by degrading several critical serine/threonine kinases and

several transcription factors to alter gene expression [48]. Thus, L. donovani infection reduces

the expression of Dicer in infected macrophages possibly by degrading it via their Ld-gp63. In

addition, it has been shown that silencing of Dicer reduces the level of miR-1914-3p expression

in cancer cells [50]. As we and others have shown that L. donovani infection reduces the

expression of Dicer in the host cells; thus, Leishmania infection may downregulate the expres-

sion of other Dicer-dependent miRNAs in infected cells. This is supported by the fact that L.

donovani infection downregulate the expression of 40 other miRNAs including miR-494

which parasite uses to upregulate the expression of Rab5a in infected macrophages [25]. We

have also found that parasite upregulates the expression of about 55 miRNAs in infected mac-

rophages. The expression of these miRNAs may be regulated by non-canonical miRNA bio-

genesis pathways which are possibly independent of Drosha/DGCR8 and Dicer pathways

[51,52]. Currently, we are evaluating the role of other miRNAs which are downregulated in L.

donovani infected macrophages. Consistent with our finding, it has been shown that Leish-
mania infection downregulates miR-122 expression to lower serum cholesterol [49] and over-

express Rab5a in infected macrophages by downregulating the expression of miR-494 [25].

Taken together, our results indicate that L. donovani infection reduces the expression of Dicer

by Ld-gp63 which suppresses the expression of miR-1914-3p to upregulate the levels of host

Rab18 and TRAPPC9 in infected macrophages. Our results also suggest that upregulation of

Rab18 and TRAPPC9 induce the biogenesis of LBs in infected cells. These results are sup-

ported by previous studies that LB biogenesis in cells is regulated by Rab18 and its GEF

[10,11].

The fatty acid biosynthetic pathway in Leishmania is not fully characterized [36–38]. Since

Leishmania belongs to the trypanosomatid family, it is predicted that this parasite may also

possess the ability of de novo biosynthesis of fatty acids. However, some molecules of this path-

way present in Trypanosoma are absent in Leishmania [37]. Though, Leishmania encode for
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type II fatty acid synthase (FASII) as well as the fatty acid elongase (FAE) but their role in fatty

acid biosynthesis in Leishmania is not yet characterized [53]. Thus, Leishmania depends on its

host to scavenge fatty acids for its intracellular survival [42,54]. As LBs are major source of lip-

ids and FAs [1], therefore, we have analyzed the recruitment of LBs on Ld-PVs. We have

found that BODIPY 493/503 and LipidTOX stained LBs from macrophages are recruited on

Ld-PVs and recruitment of LBs by PVs require the presence of live parasites. Previous studies

have shown that Rab18 regulates the association of LBs with ER membranes [55] and also

mediates the direct interactions between LBs with mitochondria and peroxisome [56]. In addi-

tion, Rab18 also regulates the translocation of LBs from ER by binding with lipid droplet-asso-

ciated protein, perilipin-2 [57]. We have found that Ld-PVs also acquire perilipin which may

facilitate the interaction of LBs with Ld-PVs by Rab18. Recent studies have shown that the

GTP form of Rab18 interacts with the NAG-RINT1-ZW10 tethering complex and their associ-

ated SNAREs (Syntaxin18) to mediate the fusion between ER and LBs [11]. Moreover, mam-

malian TRAPPII complex, consisting of TRAPPC9 and TRAPPC10 subunits, activates Rab18

by acting as GEF and recruits it on the LB surface [10]. We have found that parasites also

induce expression of TRAPPC9 and TRAPPC10 subunits of TRAPPII complex in infected

macrophages. Thus, it is possible that Leishmania infection catalyzes the activation of Rab18 to

GTP form in infected macrophages and recruits Rab18 on Ld-PVs. Our results have shown

that Ld-PVs also recruit calnexin-labelled ER membrane. Previous studies have shown that

Ld-PVs acquire ER membrane by fusion through Sec22b regulated process [58]. Hence, the

recruitment of LBs by Ld-PVs may be mediated by similar process as LBs bear the calnexin-

labelled ER membrane. Moreover, it has been shown that Rab18 serves as a contact point

and facilitates the fusion of ER membrane with LBs [59]. Thus, our results suggest that LBs are

possibly recruited on Ld-PVs while obtaining new membrane from ER during maturation of

PVs.

Fatty acids are not freely available in cell cytoplasm as they are mainly stored as triglycerides

in LBs. Therefore, we have investigated whether Ld-PVs acquire fatty acids from LBs using

well established method to determine the transport of fatty acids from LBs to the target organ-

elles by labelling the FAs in LBs with FLC12 [29,60]. Therefore, we have first labelled the FAs in

LBs in macrophages by FLC12 followed by infection of the cells with Leishmania, and analyzed

the recruitment of FLC12-labelled FAs by Ld-PVs. Interestingly, we have found that FLC12-

labelled FAs are recruited in/on LAMP1 stained Ld-PVs. Similarly, it has been shown that

Toxoplasma acquires FLC12-labelled FAs in their PV from LB by Rab7 mediated activation of

lipophagy [29]. However, our results have shown that Leishmania enhance the expression of

host Rab18 and its GEF in infected macrophages to induce LB biogenesis in the host cells and

subsequently Ld-PVs recruit LBs possibly to acquire FLC12-labelled FAs by the parasites. Pre-

vious studies have shown that single amastigote of L. donovani resides in individual PV tightly

wrapped by the PV membrane [58,61–63]. Thus, it is possible that FLC12-labelled FAs

acquired by LdPVs are sequestered in the parasites. Moreover, our results are also supported

by the fact that trafficking of FAs from LBs to mitochondria and peroxisomes also requires

Rab18 [56,60]. In addition, several other intracellular pathogens accumulate LBs near their

phagosomes/PV but their functional significance is not clearly demonstrated [3–5]. Neverthe-

less, lipidome analysis of intracellular Trypanosoma cruzi and their mammalian host cells

reveals that the FAs signatures in the triacylglycerol pools are very similar between them indi-

cating parasite may acquire fatty acids from host triacylglycerol [64] by some unknown mecha-

nism. Interestingly, Mycobacterium induces the expression of miR-33 in infected macrophages

to inhibit autophagy and modulates host lipid metabolism for its intracellular survival [65].

Furthermore, Mycobacterium [4] and Salmonella [5] containing phagosomes are also found in

close association with LBs in host cells possibly to suppress host immune response. Thus, it is
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possible that Leishmania may also deactivate host immune response by recruiting LBs. As LBs

also contain other molecules, such as cholesterol, phospholipids, and even some proteins, it

may be possible that Ld-PVs also salvage other nutrients from LBs which need to be evaluated

in future studies. We have also shown that selective depletion of Rab18 by specific siRNA or

overexpression of miR-1914-3p in macrophages significantly inhibits the recruitment of LBs

in infected cells and considerably suppresses the proliferation of intracellular amastigotes in

macrophages. Interestingly, we have found that addition of fatty acids supplements like oleic

and linoleic acids in the growth medium significantly reversed miR-1914-3p mediated inhibi-

tion of parasite growth in macrophages suggesting that parasites possibly acquire fatty acids

from LBs. These results indicate that enhanced expression of Rab18 via the inhibition of miR-

1914-3p by L. donovani is essential to scavenge the FAs from host LBs for the optimal growth

of the parasites in macrophages.

In conclusion, this is the first demonstration that L. donovani enhances the expression of

host Rab18 and its GEF in infected macrophages to recruit LBs for scavenging essential nutri-

ents like FAs from LBs for its intracellular growth. To understand the mechanism of LB

recruitment, we have shown that Leishmania upregulate the expression of Rab18 and

TRAPPC9 in infected macrophages by inhibiting the synthesis of miR-1914-3p via Ld-gp63

mediated reduction of Dicer expression. Enhanced expression of Rab18 and its GEF facilitates

LB biogenesis in infected macrophages and subsequently parasites recruit LBs on Ld-PVs to

acquire FAs for its proliferation in host cells (Fig 6). These results also suggest the possibility of

modulating host cell Rab18 or TRAPPC9 expression by miR-1914-3p or other small molecules

to block the acquisition of FAs from LBs which may be exploited for developing potential ther-

apeutic application against leishmaniasis.

Fig 6. Schematic representation of mechanism of acquiring fatty acids from LBs by Leishmania in macrophages.

L. donovani after entering into human macrophages secretes gp63 which degrades dicer to downregulate the

expression of host miR-1914-3p and thereby induces the expression of host Rab18 and TRAPPC9 in the infected cells.

Thus, parasites trigger LB biogenesis in the infected cells. Subsequently, Ld-PVs recruit LBs along with ER membrane

and acquire fatty acids from LBs for their proliferation in macrophages.

https://doi.org/10.1371/journal.ppat.1012024.g006
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Materials and methods

Materials

Unless otherwise stated, all reagents were obtained from Sigma Chemical Co. (St.Louis, MO).

Tissue culture supplies were obtained from the Grand Island Biological Co. (Grand Island,

NY). Lipofectamine 3000 and Lipofectamine RNAi max reagent were purchased from Thermo

Fisher Scientific. pmirGLO Dual-Luciferase miRNA Target Expression Vector and Dual-

Luciferase Reporter Assay System were purchased from Promega Life Science (Madison, WI).

Anti-Rab18 antibody and microRNA mimics were obtained from Sigma Aldrich (St. Louis,

MO). Antibodies against Perilipin, Rab5a, Rab27 were purchased from Abcam (Cambridge,

England). Anti-actin antibody was obtained from Santa Cruz Biotechnology (Santa Cruz, CA).

Antibodies against Lamp1, Rab7, Rab9 and Dicer were obtained from Cell Signalling Technol-

ogies (Danver, MA). Anti-Rab4 and anti-Rab8 antibodies were acquired from BD Biosciences,

USA. All HRP-conjugated secondary antibodies were purchased from Jackson Immuno-

Research Laboratory (West Grove, PA) and ECL was obtained from Amersham Biosciences,

UK. Alexa labelled secondary antibodies for immunofluorescence studies, BODIPY 493/503

and LipidTOX were purchased from Molecular Probes (Eugene, OR). Linolenic acid-oleic

acid-albumin (100x) was obtained from Sigma Aldrich (St. Louis, MO). All other reagents

used were of analytical grade.

Cells

Human acute monocytic leukemia-derived cell line (THP-1) was obtained from American

Type Culture Collection, Manassas, Virginia. Cells were routinely cultured in complete RPMI

(RPMI-1640 containing 10% FCS and 50 μg/ml gentamycin) at 37˚C in a humidified incubator

with 5% CO2. THP-1 cells were differentiated into macrophages in the presence of Phorbol

12-myristate 13-acetate (100 ng/ml) for 24 h. Cells were washed and incubated for another 24

h in complete RPMI without PMA and used for all experimental procedures.

Infection

Differentiated THP-1 human macrophages were infected with L. donovani promastigotes as

described previously [25]. Leishmania donovani Bob strain (LdBob strain/MHOM/SD/62/

1SCL2D) was used for all experiments. To maintain the virulence, parasites were repeatedly

passaged in BALB/c mice. Parasite culture was maintained in complete M199 medium supple-

mented with HEPES (40mM) containing FCS (10%), Penicillin-Streptomycin (100U/ml) and

Hemin (10 μg/ml) at 23˚C. THP-1 differentiated human macrophages were infected with

Leishmania promastigotes in serum free RPMI medium at multiplicity of infection (20:1; para-

site/macrophage) for 3 h at 37˚C followed by 3 washes with plain RPMI to remove uninterna-

lized parasites. Infected cells were incubated in complete RPMI at 37˚C for indicated time

points.

Immunofluorescence microscopy

For immunofluorescence studies, L.donovani infected or uninfected cells were fixed with 4%

PFA (for 20 min) or ice-cold methanol (10 min). After fixation, cells were washed with PBS

and permeabilized with permeabilization buffer (PBS containing 0.1% Triton X-100 for 10

min) at 24˚C. Subsequently, cells were blocked with blocking buffer (PBS containing 3% BSA,

0.1% Triton X-100, 10 μg/ml RNase A) for 2 h at 37˚C. Permeabilized cells were further probed

with specific antibodies against indicated protein in blocking buffer for 1 h at 24˚C. Finally,

cells were washed three times with PBS and incubated with Alexa Fluor labelled secondary
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antibody (1:1000) for 1 h at 24˚C in blocking buffer. Propidium iodide (1:50) or Draq5 (1:100)

was used to label the host and parasite nuclei. Cells were mounted in Prolong gold antifade

mounting reagent and viewed in Leica confocal microscope (DMi8) using an oil immersion

63X objective. A sequential scan was done for visualizing two or more fluorophores within the

same sample and similar settings were used for different replicates of the same experiment.

Lipid bodies staining

Lipid bodies in infected and uninfected cells were stained using Bodipy 493/503 or LipidTOX

as per manufacturer’s protocol. Briefly, Leishmania infected and uninfected THP-1 cells were

fixed using 4% paraformaldehyde (PFA) at 24˚C for 20 min. Cells were permeabilized using

0.1% Saponin and incubated with Bodipy 493/503 (15 nM for 30 min) or LipidTOX (1:500 for

20 min) at 24˚C. To check the trafficking of fatty acids in Leishmania, THP-1 cells were prela-

belled with BODIPY FLC12 and subsequently infected with Leishmania. Briefly, differentiated

THP-1 cells were incubated with BODIPY FLC12 (1 μM) for 18 h and subsequently infected

with Leishmania promastigotes (20:1; parasite/macrophage) for 3 h at 37˚C as described in

previous section. Infected cells were incubated in complete RPMI at 37˚C for indicated time

points. After washing the cells, parasites nuclei were stained by Draq5 (1:100) and PVs were

immune-stained using anti-LAMP1 (1:50) antibody. Coverslips were mounted in ProLong

gold antifade reagent (Molecular Probes) and viewed in a Leica confocal microscope (Leica

DMi8) using an oil immersion objective (63X).

Detection of levels of various proteins in infected and uninfected cells

To detect the levels of various proteins in Leishmania infected and uninfected cells, cells were

lysed using cell lysis buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM

EGTA, 1% NP-40 and 1% sodium deoxycholate) containing protease inhibitors cocktail for 60

min at 4˚C and centrifuged at 15000 x g for 15 min. Subsequently, cellular proteins (40 μg)

were resolved on a 12% SDS–PAGE and Western blot analyses were carried out using specific

antibodies and probed with respective HRP-labeled secondary antibodies. All blots were quan-

tified using ImageJ software.

Detection of the expression of various proteins in infected and uninfected

macrophages by Real-time PCR

To compare the levels of different Rab GTPases and Rab18 specific GEF in infected and unin-

fected human macrophages, cells were lysed using TRIzol reagent and total RNA was isolated

using standard procedure. Subsequently, cDNA was synthesized using Thermo Script RT-PCR

kit (Invitrogen) according to the manufacturer’s instructions. Real-time PCR (qPCR) was car-

ried out using respective specific forward and reverse primers and 18s rRNA was used as an

internal control. The final volume of reaction mixture for qPCR was 35 μl (17.5 μl of SYBR

Green, 3 μl of cDNA and 1 μl of each forward and reverse primer). The samples were run in

triplicate in an ABI 7500 Fast Real-Time PCR detection system using following thermal condi-

tions: 50˚C for 20 sec followed by 10 min at 95˚C, then 40 cycles at 95˚C for 15 sec and 60˚C

for 1 min. The results were analyzed using comparative Ct method (2-ΔΔCt). The respective

gene amplification was normalized using 18s rRNA as an internal control and expressed as rel-

ative unit compared to uninfected control arbitrarily chosen as 1 unit. Primer sequences used

in qPCR are indicated below

a. hRab18: Forward 5/- GAGGCAAGTGCAAAAACCTG-3/ and Reverse 5/- CACAGAGCA

ATAACCACCACAG -3/;
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b. hRab5a: Forward 5/-TATTGGCCCCTTGAATTCTG-3/ and Reverse 5/-TTAGAAAAGCA

GCCCCAATG-3/;

c. hRab7: Forward 5/-GCGGAGCTTTTTCCTCTTTT-3/ and Reverse 5/-TTTTATTGGCATT

GCGTTCA-3/;

d. hRab4: Forward 5/-AGGACCTGGATGCAGATCGT-3/ and Reverse 5/-TCCCCTGTGAG

CGCACTT-3/;

e. hRab8: Forward 5/-TCCTGTTCCGCTTCTC-3/ and Reverse 5/ GCTGTGTCCCATATCT

G -3/;

f. hTRAPPC9: Forward 5/-TCGCTGGATCCCAAAGATTT-3/ and Reverse 5/- TCTAGGCT

TTGGGCCACATC -3/;

g. hTRAPPC10: Forward 5/-AGCTGTCTGGAGGTGTTGCA-3/ and Reverse 5/- CCCAAAC

CTGCCAAAAGGT -3/;

h. h18s rRNA: Forward 5/-CGAAAGCATTTGCCAAGAAT-3/ and Reverse 5/-AGTCGGCA

TCGTTTATGGTC-3/

Microarray analysis of infected and uninfected macrophages

Microarray analysis was previously done using total RNA isolated from Leishmania infected

and uninfected THP1 differentiated macrophages from commercial facility (Genotypic Tech-

nology, Bengaluru, India) as described [25]. Differential expression was further analyzed to

determine relative expression of miRNAs in infected cells in comparison to uninfected

control.

Determination of miR-1914-3p level in infected and uninfected

macrophages

To determine the expression levels of miR-1914-3p in L. donovani infected and uninfected

cells, qPCR was done using TaqMan miRNA assays (Life Technologies, 4427975). Briefly,

miRNAs were reverse transcribed to cDNA using TaqMan miRNA Reverse Transcription kit

(Life Technologies, 4366596). The qPCR was carried out using master mix containing 10 μl of

TaqMan Universal PCR master mix, 1 μl of the miRNA specific primers, 1.33 μl of cDNA, and

final volume was adjusted to 20 μl with nuclease-free water. U6 snoRNA amplification was

used as the internal control (U6 small nucleolar RNA, Life Technologies, 4427975). The PCR

was carried out in triplicates in an ABI 7500 Fast Real-Time PCR detection system using fol-

lowing thermal conditions: 10 min at 95˚C followed by 40 cycles at 95˚C for 15 sec and exten-

sion for 1 min at 60˚C. Results were analyzed using comparative Ct method (2-ΔΔCt) and

expressed as relative expression compared to uninfected control arbitrarily chosen as 1 unit.

Determination of the regulation of expression of Rab18

To determine the regulation of expression of host Rab18, we cloned the 3/ regulatory region of

human Rab18 in pMIR-GLO vector and measured the expression of luciferase after transfect-

ing the chimeric construct in cells as described previously [25]. Briefly, the 3/ untranslated reg-

ulatory region (UTR) (500 bp) of human Rab18 was PCR amplified from cDNA synthesized

from THP-1 macrophages by using appropriate forward (5/- GTGAGCTCATGTGTGAGG-

GAAAATACTG-3/) and reverse primer (5/- GTCTC GAGAGTAGTAAATCTTGTATATT-

TAGTAAAAGC-3/) and cloned in pMIR-GLO vector in SacI/XhoI restriction sites. In order
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to validate the role of miR-1914-3p binding to its predicted binding site in the 3/-UTR of Rab18, a

mutant UTR lacking miRNA binding site was cloned by megaprimer based approach. To gener-

ate the mutant UTR containing desired mutations in the full-length background, a megaprimer

was made using WT forward and mutant reverse primer (5/-AATACTGGAATCTTACG

TCTTTTCATTATAGTAAC-3/). A second round of PCR amplification was carried out to

amplify the full-length amplicon with desired mutation using mutant megaprimer as forward

primer and UTR specific WT reverse primer. Mutant UTR was also cloned in pMIR-GLO vector

as described above. To determine miR-1914-3p mediated regulation of hereterologous expression

of Rab18 chimeric construct, these chimeric reporter constructs (300ng) were co-transfected with

indicated concentration of miR-1914-3p or control mimic miR into semiconfluent HeLa cells

using Lipofectamine 3000 reagent (Invitrogen) as per manufacturer’s protocol. After 48 h, cells

were lysed in 1X passive lysis buffer (Promega) and the lysates were used to measure Firefly and

Renilla luciferase activity by Dual-Luciferase reporter assay kit (Promega). Renilla luciferase activ-

ity was used as a control reporter for normalization. Results were expressed as relative luciferase

activity compared to untreated control cell arbitrarily chosen as 1 unit.

Determination of Rab18 and TRAPPC9 expression in miR-1914-3p

overexpressed macrophages

To overexpress miR-1914-3p mimic in THP-1 macrophages, 0.5 × 106 cells were plated in

each well of a 6 well tissue culture plate and differentiated as mentioned earlier. After differen-

tiation, cells were transfected with control or experimental miRNA mimic at the indicated

concentrations using Lipofectamine RNAi MAX (Invitrogen) according to the manufacturer’s

instruction. Finally, level of Rab18 and TRAPPC9 were determined after 48 h by q PCR and

western blot analysis as described above. Results were expressed as relative expression com-

pared to the untreated control arbitrarily chosen as 1 unit.

Determination of parasite survival in miR-1914-3p overexpressed

macrophages

Differentiated THP-1 cells were transfected with miR-1914-3p (50 nM) or Rab18 specific siRNA

(50 nM) using RNAi MAX transfection reagent (Invitrogen) as per manufacturer’s protocol.

Control siRNA transfected cells were used as control. Cells were infected with Leishmania pro-

mastigotes as described earlier [25,66] and chased for indicated periods of time. To understand

the role of fatty acids in miR-1914-3p mediated inhibition of parasite growth in macrophages,

infected macrophages transfected with miR-1914-3p were incubated in the medium containing

fatty acids supplements like Linolenic acid-oleic acid-albumin (1x). At respective time point, cov-

erslips containing infected cells were washed three times in PBS and fixed with methanol for 10

min at 24˚C. Air dried coverslips were permeabilized with PBS containing 0.1% Triton X-100

and 0.1 mg/ml RNaseA for 1 h at 37˚C. Samples were washed three times with PBS and stained

for 30 min with 50 mg/ml of PI (Propidium iodide), followed by three washes with PBS. Cover-

slips were air dried and were mounted in ProLong gold antifade reagent (Molecular Probes) and

viewed in Leica confocal microscope using an oil immersion 63X objective. Parasites load in the

infected THP-1 macrophages were microscopically estimated and results are expressed as num-

bers of parasites present per 100 macrophages at the indicated time points.

Statistical analysis

Statistical analysis was performed using Sigma Plot version 14.0. Student’s two-tailed paired t

test or two tailed Mann-Whitney test was used to determine differences between control and
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test groups with>95% confidence intervals. Number and size of LBs were quantified by Ima-

geJ software and graphs were plotted using Origin software. P values less than 0.05 was consid-

ered to be significant for all analyses.

Supporting information

S1 Fig. Demonstrates the recruitment of host Rab7, Rab8 or Rab27 on Ld-PVs in L. dono-
vani infected and uninfected macrophages and respective quantitation.

(TIF)

S2 Fig. Demonstrates the transfection of miR-1914-3p or control mimic in macrophages.

(TIF)

S3 Fig. Demonstrates the recruitment of host Rab18 and LBs stained with LipidTOX on

Ld-PVs in L. donovani infected and uninfected macrophages.

(TIF)

S4 Fig. Shows the inhibition of Rab18 expression by the overexpression of specific siRNA

in transfected macrophages.

(TIF)

S5 Fig. Shows that the transfection of Rab18 specific siRNA or overexpression of miR-

1914-3p specifically inhibits the recruitment of perilipin labelled LBs on Ld-PVs in macro-

phages.

(TIF)
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