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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Small molecules (less than 1,500 Da) include major biological signals that mediate host-

pathogen-microbiome communication. They also include key intermediates of metabolism

and critical cellular building blocks. Pathogens present with unique nutritional needs that

restrict pathogen colonization or promote tissue damage. In parallel, parts of host metabo-

lism are responsive to immune signaling and regulated by immune cascades. These interac-

tions can trigger both adaptive and maladaptive metabolic changes in the host, with

microbiome-derived signals also contributing to disease progression. In turn, targeting path-

ogen metabolic needs or maladaptive host metabolic changes is an important strategy to

develop new treatments for infectious diseases. Trypanosoma cruzi is a single-celled

eukaryotic pathogen and the causative agent of Chagas disease, a neglected tropical dis-

ease associated with cardiac and intestinal dysfunction. Here, we discuss the role of small

molecules during T. cruzi infection in its vector and in the mammalian host. We integrate

these findings to build a theoretical interpretation of how maladaptive metabolic changes

drive Chagas disease and extrapolate on how these findings can guide drug development.

1. Introduction

1.1. Small molecules, metabolites, and metabolomics

Metabolites are small organic molecules (50 to 1,500 Da) that play significant roles as the inter-

mediate or end product of metabolic activities [1]. They are categorized into primary and sec-

ondary metabolites [2]. Primary metabolites are those directly involved in biological

mechanisms such as growth, development, and reproduction, for example, amino acids. Their

chemical transformations in metabolism are functionally described in cellular biochemistry

[3]. Consequently, primary metabolism and central carbon metabolism are often used inter-

changeably. Secondary metabolites are not directly involved in the metabolism of the biologi-

cal system but rather can mediate activities that enhance its survival [4]. In addition to the

primary and secondary metabolites, some compounds of drug and food origin are also small
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molecules that can affect host-pathogen interactions [5]. Here, we will use “metabolites” in the

broadest sense encompassing all those molecules, including lipids (Fig 1) [6].

Metabolomics is the quantitative or semiquantitative analysis of a broad range of metabo-

lites [7,8]. The chemicals of interest in each investigation determine the selected metabolomics

workflow. In a targeted metabolomics experiment, only metabolites from a preexisting list are

analyzed, often from particular pathways [9]. The untargeted approach, on the other hand,

identifies as many metabolites as possible in a biological sample, without a preexisting inclu-

sion list and thus minimizing prior bias. Thus, the number of metabolites analyzed is usually

greater in untargeted workflows than in targeted workflows [3,9]. Mass spectrometry is often

employed in metabolomics to detect, identify, and quantify metabolites, commonly in combi-

nation with liquid chromatography for the characterization of polar or semipolar metabolites,

or gas chromatography for less polar or small volatile metabolites, or for polar molecules after

derivatization. An alternative technique is nuclear magnetic resonance [8].

Fig 1. The structural diversity of metabolites: Representative metabolite structures, as discussed in the text. The depicted molecules span a range of

chemical classes, including amino acids (arginine), nucleosides (adenosine), coenzymes (tetrahydrobiopterin), and fatty acids (TG). Figure created in

ChemDraw 20.1.

https://doi.org/10.1371/journal.ppat.1012012.g001

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012012 March 8, 2024 2 / 24

https://doi.org/10.1371/journal.ppat.1012012.g001
https://doi.org/10.1371/journal.ppat.1012012


The functions associated with these small molecules include structure, signaling, catabolic

activities, defense mechanisms, etc. [10]. For instance, some metabolites play a significant role

in interspecies crosstalk [8]. In the context of Chagas disease (CD), metabolites play a key role

in parasite-vector interactions, parasite-mammalian host interactions, and parasite-micro-

biome interactions [11]. Exogenous metabolites, such as those derived from the diet, can also

influence disease progression. These pathways have been exploited for drug development. In

this review, we cover recent research on these topics, as well as current challenges in the field

of CD-metabolite interactions.

1.2. T. cruzi infection and Chagas disease

Trypanosoma cruzi is the parasite responsible for CD, localized mostly in Latin America and

the Southern United States of America, with sporadic cases worldwide due to population

movements. This parasite infects 5 to 6 million people in endemic areas [12], resulting in

approximately 12,000 deaths annually with 70 million people at risk of infection [13]. In the

mammalian host, CD symptoms are localized in the gastrointestinal tract and heart, with

symptoms of cardiac arrhythmias, cardiomyopathy, apical cardiac aneurysms, megacolon, and

megaesophagus [14]. The parasite itself has broader tropism, most frequently including the

gastrointestinal tract, in a host- and parasite strain-specific manner [15].

The forms of the parasite that exist in the mammalian host are the intracellular amastigotes

and the extracellular trypomastigotes. Triatomine insects are the proven vectors of T. cruzi.
They depend on vertebrate hosts for blood meals, during which they take up trypomastigotes

and amastigotes. In the triatomine stomach, the trypomastigotes then transform into epimasti-

gotes. Epimastigotes make their way into the triatomine midgut to multiply. In the triatomine

hindgut, epimastigotes differentiate into infective metacyclic trypomastigotes. These trypo-

mastigotes get released with triatomine feces and urine during or after a blood meal, enabling

transmission to the vertebrate host to complete the T. cruzi lifecycle [16].

2. The triatomine vector and metabolites: Four-way interactions

between insect, insect microbiome, parasite, and mammalian host

Most research on T. cruzi interactions with triatomines has focused on proteins and on reac-

tive oxygen and nitrogen species [17]. However, T. cruzi in the triatomine gut will also encoun-

ter both insect-derived and triatomine gut microbiome-derived metabolites. For instance,

prodigiosin (Fig 1), produced by Serratia marcescens in the Rhodnius prolixus microbiota, can

kill T. cruzi [18,19]. Conversely, the vector microbiome can synthesize all 8 group B vitamins

and tetrahydrofolate, which may provide essential nutrients for T. cruzi given its auxotrophies

(see below) [20,21]. T. cruzi is also an auxotroph for many amino acids [22] and can use amino

acids as energy sources and inducers of parasite differentiation [23–25]. Actinomyces in the

vector microbiome may be a source of histidine [26], and functional capabilities across amino

acid metabolic pathways were found by metagenomic analysis of the R. prolixus gut micro-

biome [21]. Additional relevant metagenome-supported metabolic capabilities include carbo-

hydrate and nucleotide metabolism [21], which may likewise help address T. cruzi
auxotrophies and energy needs. Indeed, triatomine guts and feces contain a diverse range of

chemical classes, with lipids the most abundant [11,27]. Free fatty acids are an important

energy source for T. cruzi epimastigotes, if glucose is limiting, and are sufficient to induce T.

cruzi development from epimastigotes to metacyclic trypomastigotes [28–30]. Purines and

pyrimidines are present and may serve as sources for parasite proliferation. Interestingly, fecal

nucleotide levels differed between triatomine species, possibly leading to differential restric-

tions on parasite growth [27].
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This fecal material will be transferred through the bite wound into the mammalian host

along with salivary metabolites and the parasite [16]. The salivary biomolecules of most hema-

tophagous disease-transmitting vectors have been explored over the years to understand their

role in infection. However, they have been studied in triatomines primarily at the protein level,

with limited small molecule studies [31,32], except for lysophosphatidylcholine. Lysophospha-

tidylcholine is found in the saliva of R. prolixus [33]. This compound prevents blood clotting

[33], and by inference is important for the feeding behavior of the vector. Additionally, lyso-

phosphatidylcholine inhibits antiparasitic immune responses, and preadministration prior to

T. cruzi infection increased parasitemia [34,35]. T. cruzi itself is also a source of lysophosphati-

dylcholine [36,37]. An intriguing possibility, given the role of host lysophosphatidylcholine in

Plasmodium sexual differentiation [38], is that triatomine salivary levels of this molecule may

also be affecting parasite differentiation and virulence. Sandfly salivary adenosine (Fig 1) can

reshape antiparasitic immune responses to prevent killing of the related parasite Leishmania
and help Leishmania establish itself [39]. A similar mechanism may occur for adenosine from

triatomines, either fecal or salivary. Given that the nutritional environment influences parasite

infectivity [40], these results provide impetus to further explore the range of metabolites

involved in reshaping the microenvironment as T. cruzi transitions from vector to host.

3. Importance of exogenous metabolites for T. cruzi during

mammalian infection

As described above, parasite auxotrophies may play a role in vector colonization by T. cruzi
and will likewise be important during mammalian infection. Specifically, T. cruzi is reported

to be unable to synthesize purines, heme, folate, biopterin (important as a precursor for the

enzyme cofactor tetrahydrobiopterin (Fig 1)) [22,41], the diamines putrescine and cadaverine

(Fig 1, important precursors for the antioxidant trypanothione [42]), vitamin B1, vitamin B3,

vitamin B5 (Fig 1), vitamin B6, vitamin B7, vitamin B12 [43], and 9 amino acids (isoleucine,

leucine, valine, tryptophan, phenylalanine, tyrosine, lysine, histidine, and arginine (Fig 1))

[22,44,45]. These nutrients are available to T. cruzi in the mammalian cytosol [46–49], though

levels of tetrahydrobiopterin may become limiting under inflammatory conditions [50]. This

inflammation-induced restriction is counterbalanced by the observed increase in the expres-

sion of host genes involved in tetrahydrobiopterin production in infected cells in vitro [51],

which could be induced by the parasite to favor its growth, or as a response from the host to

compensate for biopterin depletion by the parasite. Regardless of the cause, this increase bene-

fits T. cruzi, as silencing of host enzymes involved in tetrahydrobiopterin synthesis inhibits in

vitro T. cruzi growth [52].

However, several of these auxotrophies were defined by extension from the better-studied

trypanosomatids Leishmania and T. brucei. Improved genomic studies, and T. cruzi-specific

studies, may in some cases lead to redefining of these restrictions [53], with the caveat that

presence of a gene in the parasite genome does not necessarily mean its expression across

stages and across sites of infection. Furthermore, when performed in T. cruzi, functional assays

often used exclusively epimastigotes in culture media, which may not fully represent the in

vivo environment encountered by amastigotes or trypomastigotes, where combinations of

nutrients may also be restricted or where nutrient levels may fluctuate in response to inflam-

mation [54]. In particular, even though T. cruzi has pyrimidine biosynthetic capabilities, inhib-

iting host pyrimidine nucleoside production by RNAi restricts T. cruzi growth during in vitro

epithelial cell infection [52], indicating that genetically defined auxotrophies do not account

for all parasite nutritional restrictions in vivo.

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012012 March 8, 2024 4 / 24

https://doi.org/10.1371/journal.ppat.1012012


Indeed, beyond the restrictions of auxotrophy, T. cruzi benefits from importing nutrients

from the host that favor its growth or metabolic activities. Parasite metabolic activities, and

thus scavenging needs, vary between stages of parasite invasion. For example, parasite glyco-

lytic transcripts decrease for the first 4 h of intracellular infection, followed by a rebound [55].

T. cruzi in vitro intracellular amastigote proliferation rate is dependent on glucose (Fig 1) and

glutamine availability and on glycolysis [56,57]. Infected cardiomyocyte and fibroblast cultures

present with comparable increases in glucose consumption from the culture media, increased

glycolytic gene expression, and increased lactate secretion [57,58]. Given that inhibiting glu-

cose import had stronger effects than targeted inhibitors of glycolysis [57], that decreased lev-

els of lactate dehydrogenase A (LDHA)AU : Pleaseprovidefullspellingfor}LDHA}atfirstmentioninthesentence}Giventhatinhibitingglucoseimporthadstrongereffectsthantargeted:::}ifthisindeedisanabbreviation:, the enzyme catalyzing interconversion of pyruvate and

lactate and a promoter of host glycolysis, increased intracellular parasite levels [52], and that T.

cruzi can use host-derived glucose [58], these observations suggest that the observed increase in

glucose import may directly be fueling T. cruzi metabolism. However, it should be noted that

amastigote glucose import capabilities may be context and time point dependent [59].

Host lipid biosynthetic genes are increased by 48 to 72 h postinfection [51], with accumula-

tion of lipid bodies in infected HeLa epithelial cells [60] and in heart tissue [61]. Cells deficient

in several lipid biosynthesis genes showed reduction in parasite burden [52]. T. cruzi gene

expression and protein expression patterns based on in vitro cultures indicate a shift in para-

site energy usage toward amino acid and fatty acid oxidation [51,62]. Parasite fatty acid oxida-

tion transcripts increase steadily up to a plateau at 24 h postinfection, though the timing of

these changes is strain dependent [55]. Furthermore, while able to produce major lipids, T.

cruzi in vitro intracellular amastigotes scavenge most of their triacylglycerols and diacylglycer-

ols from the host and use host lipids as sources for long-chain glycerophosphocholines [63].

Consequently, the T. cruzi amastigote lipidome is dependent on the host cell from which they

are derived [63]. Jointly, these characteristics would cause T. cruzi to benefit from the observed

increased lipid storage, either by providing substrates for parasite β-oxidation, or precursors

for parasite membrane lipids. T. cruzi grew better under in vitro conditions that favor β-oxida-

tion over glucose oxidation in epithelial cells [52]. This may also be through scavenging of host

β-oxidation intermediates that then fuel T. cruzi β-oxidation, or from the energy and reducing

intermediates produced by this pathway in the host. Host β-oxidation may also help promote

host cell survival to give T. cruzi the time to develop, whereas premature host cell mortality

would prevent T. cruzi expansion.

These observations with regard to parasite fatty acid oxidation are not necessarily contra-

dictory with the observation of parasite glucose usage, since fatty acid and glucose oxidation

can coexist to meet cellular energy needs and the flexibility to use both pathways for energy

generation may help facilitate the broad parasite tropism observed during acute infection in

vivo [64]. Given that transcript levels do not necessarily reflect protein levels, and neither mea-

surement reflects metabolic enzyme activity, which may be regulated allosterically, by covalent

modifications, by protein–protein interactions, or by substrate and product availability, meth-

ods that directly quantify nutrient usage by the parasite are overall more reliable, though more

challenging to implement. Flux-based studies are the most rigorous and least confounded of

these approaches. Inhibitor studies can provide valuable insight but should also be considered

with caution, as some compounds can promiscuously inhibit multiple pathways. Even a com-

pound targeting one metabolic pathway with high selectivity may unintentionally cause effects

on other metabolic pathways as cells seek to compensate for inhibition by up-regulating other

pathways. A further challenge with all these studies is that none of them directly measured par-

asite metabolism in situ, within tissues. Improvements in the spatial resolution of imaging

mass spectrometry and single-cell metabolomics may help partially address these concerns

[65,66].
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A preference for host cells that rely on β-oxidation has been interpreted to explain parasite

tropism to organs like the heart [52,67], likely due to the parasite growth-promoting mecha-

nisms hypothesized above. However, T. cruzi has strong tropism to gastrointestinal smooth

muscle [15], which prefers to use glucose to fuel contractions [68]. Furthermore, the β-oxida-

tion inhibitor etomoxir did not reduce intracellular amastigote parasite burden in epithelial

cells in vitro, suggesting that host β-oxidation may be less critical for T. cruzi growth in this

context [69]. These results should, however, be interpreted with care, given that parasite sub-

strate utilization in tissues may differ from what was defined in vitro. Preexisting gradients of

metabolite availability may also shape T. cruzi tropism [70,71]. For example, higher AMP at

the heart apex could be restricting T. cruzi through activation of AMP-activated protein kinase

(AMPK) [52,71]. However, modulating several individual metabolic pathways has yet to

change parasite spatial distribution ([70] and our own observations), suggesting that altering

T. cruzi spatial distribution would require combinations of metabolic effects, rather than indi-

vidual signals.

4. Host metabolic changes: Protective or maladaptive?

As described above, some of the infection-induced changes in host metabolic pathways may be

beneficial to the parasite, by providing nutrients that fuel parasite metabolism. In contrast,

restricting availability of metabolites essential to T. cruzi could restrict parasite growth. Indeed,

reduced levels of purines have been observed in mouse models and in human systems [72–74],

along with many other nutrients essential to T. cruzi: vitamins B2, B6, and B12, lysine, valine, argi-

nine, and phenylalanine [74], though with some conflicting results between studies [72]. A caveat

is that reduced levels of these nutrients cannot automatically be interpreted as direct uptake by the

parasite, given the low parasite burden during chronic infection and the observation that some of

these changes persist even after antiparasitic treatment, such as partial purine depletion [73,75].

Changes in host metabolism may alternatively contribute to exacerbating disease symp-

toms. Indeed, sites of persistent or worsening metabolic alterations during experimental CD

are distal to sites of highest parasite burden but concur with sites of CD symptoms (heart apex,

esophagus, colon) [70,73,76,77]. This lower metabolic resilience at sites of CD symptoms pro-

vides a metabolic explanation for CD tropism. Whether this is shaped by immune signals, par-

asite-derived molecules, microbiome metabolites, or all of these regulators in combination

remains to be determined. Metabolic elasticity, a measure of the ability of metabolic pathways

to respond to perturbations, decreases with age and varies between cell types [78]. A tissue-

specific loss of metabolic elasticity with age may thus be associated with the progressive emer-

gence of localized symptoms in CD over time.

Tissue purine depletion is observed during acute [72] and chronic infection in mouse mod-

els [73,77] and in humans [74], paralleled with increased levels of downstream molecules such

as xanthine and urate [72]. These changes were correlated with indicators of disease severity in

mice [73]. Conflicting results have been found in human studies: In one study, higher serum

uric acid was found in patients with more severe disease [79], whereas no difference was

observed between infected versus uninfected, asymptomatic versus symptomatic, or patients

with or without cardiomyopathy in an older study [80]. Beyond CD, higher uric acid is associ-

ated with proportionally higher risk of cardiovascular disease mortality [81]. Given the anti-

inflammatory role of adenosine, its role in promoting Th17 immune responses [82], and the

pro-inflammatory role of uric acid under conditions where other inflammation-activating sig-

nals are present [83], these changes could also be exacerbating CD progression. Furthermore,

uric acid impairs fatty acid metabolism [84] and thus could be contributing to disease-associ-

ated shifts in cardiac energy balance.
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Specifically, changes in transcripts encoding for fatty acid metabolic enzymes in vitro [51]

and in vivo [85], as well as changes in acylcarnitine abundance [70–73,76,77,86] (Fig 1), and in

glucose clearance [86] and glycolytic intermediates [72], may reflect changes in cardiac energy

balance between fatty acid oxidation and carbohydrate oxidation. Excessive reliance on fatty

acid oxidation and a lack of myocardial metabolic flexibility are associated with worse out-

comes in non-CD heart disease and may thus also be contributing to CD pathogenesis [87,88].

Indeed, treating mice with carnitine was associated with improved survival, in association with

metabolic restoration and improved cardiac strain during acute T. cruzi infection [70]. In con-

trast, accumulation of glucose without adequate metabolic processing can lead to deleterious

effects such as the formation of advanced glycation end products (AGEs, glycated host pro-

teins), which can in turn promote oxidative damage [57,89,90]. Thus, the infection-associated

increase in glucose import [57,58], as described above, could be one of the causes of the

increased oxidative stress observed in CD [91].

Impaired function of complex III of the mitochondrial electron transport chain is observed

in T. cruzi-infected mouse cardiomyocytes in vitro [92] and in the heart in acute and chronic

T. cruzi infection in rodent models [93–98], though this differs from transcriptional analyses

in the first 24 h of infection in human cardiomyocytes in vitro [99] and metabolomic analysis

of human patients [85]. Not only would complex III impairment reduce ATP production [97]

(though not in all studies; [94]) and thus affect cardiac muscle contractility, it also leads to elec-

tron leakage, causing the formation of damaging reactive oxygen species [98]. Increased mito-

chondrial reactive oxygen species production, increased myocardial hydrogen peroxide, and

increased indicators of oxidative damage are observed in the hearts of mice acutely and chroni-

cally infected with T. cruzi [95,100,101].

Antiparasitic responses are fueled by specific metabolic shifts. M1 macrophages are primarily

parasiticidal against T. cruzi and are important for acute-stage parasite control (see [102] for more

details on the relative roles of M1 and M2 macrophages during T. cruzi infection). M1 macrophage

activation with interferon gamma (IFNγAU : Pleasenotethat}IFNg}hasbeenfullyspelledoutas}interferongamma}atfirstmentioninthesentence}M1macrophageactivationwithinterferongammaðIFNgÞpromotesmacrophageglycolysis:::}Pleasecorrectifnecessary:) promotes macrophage glycolysis [103], and increased

glycolysis is also observed in monocytes from CD patients [104]. Production of reactive oxygen

and nitrogen species by T. cruzi-infected macrophages also necessitates glucose flux through the

pentose phosphate pathway [105]. Thus, the hypoglycemia observed in some infection models

could impair parasite clearance [106,107]. Impairing mitochondrial oxygen consumption also

reduces macrophage nitric oxide production [108]. In endothelial cells, TNFα treatment can like-

wise increase glucose oxidation and TCA cycle flux, promoting pro-inflammatory gene expression

[109]. Pro-inflammatory cytokine production by splenocytes requires fatty acid oxidation [110].

However, activating these metabolic pathways may also directly benefit the parasite. For example,

pretreatment of cardiomyocytes with the immune stimulant lipopolysaccharide (LPS)AU : Pleaseprovidefullspellingfor}LPS}atfirstmentioninthesentence}Forexample; pretreatmentofcardiomyocyteswiththeimmunestimulantLPS:::}ifthisindeedisanabbreviation:increased

parasite replication in a glucose import- or glycolysis-dependent manner [57]. Increased T cell gly-

colysis and oxidative phosphorylation are observed during acute T. cruzi infection in mouse mod-

els [111]. This may be helping parasite control, by fueling antiparasitic responses [104], but is also

associated with mitochondrial damage that impairs immune responses [111]. In parallel, IFNγ pro-

motes fatty acid oxidation in endothelial cells [112], which can benefit T. cruzi proliferation [52].

Lastly, these reactive oxygen and nitrogen species, stimulated by pro-inflammatory cytokines,

cause tissue damage and are direct causes of the mitochondrial impairment in CD [113].

5. Beyond cross-eukaryote interactions: Metabolic role of the

mammalian microbiome in Chagas disease

While the mammalian microbiome has considerable metabolic effects (for instanceAU : PleasenotethatasperPLOSstyle; donotusee:g:andforinstanceinthesamepaper:Hence; allinstancesof }e:g:}havebeenreplacedwith}forinstance}throughoutthetext:, [114])

and drives the pathogenesis of many diseases, its metabolic role in CD remains relatively
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understudied. Early studies in germ-free mice showed worse disease outcomes than in conven-

tional mice (for instance, [115]), however, with the caveat that such mice present with signifi-

cant immune-maturation defects [116]. T. cruzi infection persistently perturbs the gut

microbiome in mouse models [70,117,118] and in humans [119–121]. These changes were

correlated with metabolic alterations, in particular in bile acids and fatty acids [70,117]. Bacte-

rial metabolic genes encoding for key steps in fatty acid oxidation were increased by infection,

with genes involved in fatty acid synthesis, short-chain fatty acid (SCFA) synthesis, and amino

acid synthesis decreased by infection. The loss of anti-inflammatory SCFAs could be a direct

driver of inflammation and especially gastrointestinal damage in CD [118]. Furthermore, loss

of SCFA production could directly contribute to cardiac CD pathogenesis: SCFAs prevent

mitochondrial damage and reactive oxygen species production and serve as an alternative car-

diac fuel source [122]. However, it should be noted that these were metagenomic rather than

metatranscriptomic or metaproteomic studies.

Given that these compositional changes persist following treatment [119], the microbiome

may also be responsible for maintaining some of the metabolic changes that persist after T.

cruzi clearance, such as persistent purine depletion [73]. Indeed, purine biosynthetic genes are

at lower levels in the microbiome of infected mice [118]. A causal link between gut bacteria,

plasma levels of purines and uric acid, and non-CD cardiovascular disease severity has recently

been demonstrated [123].

6. External influences: Role of the diet

Beyond host and parasite genetics, human behavior also impacts disease progression (Fig 2).

The best studied behavioral determinant of CD progression is diet and its effects on metabo-

lism, intersecting with parasite invasion, parasite proliferation, and antiparasitic immune

responses. Severe malnutrition led to earlier mortality in experimental models of acute T. cruzi

Fig 2. Conceptual overview of metabolic interactions between T. cruzi, the microbiome, and the mammalian host. Curved arrows indicate

interactions. Diet, T. cruzi, the microbiome and immune responses all reshape host metabolic pathways. Some of these changes can impair parasite growth

or promote antiparasitic immune responses, while other changes are maladaptive and lead to impaired organ function and disease symptoms.

Figure created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1012012.g002
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infection, likely through depressed immune responses [124,125]. These results concur with

findings in the context of Plasmodium infection, where chronic malnutrition was correlated

with increased disease severity [126]. Protein deficiency also led to earlier and/or higher para-

sitemia in two acute infection models [127,128], whereas a third study only observed elevated

parasitemia in mice receiving a high protein diet [129]. The postulated mechanism for wors-

ened outcomes in low-protein settings is reduced inflammatory responses, impairing parasite

clearance [128,130], and higher levels of the vasoconstrictor endothelin-1 [128].

Several studies analyzed the impact of shifting lipid homeostasis through a high fat diet

(Table 1). In the acute stage, worse parasitemia was observed in mice fed a high-fat diet [131–

134], in association with higher cardiac inflammation [131,133], though this contrasts with

[135,136]. The functional impact during chronic infection was variable depending on the ven-

tricle [137]. In contrast, restricting fatty acids 10-fold by diet weight reduced parasitemia and

improved survival [138]. This may be linked to the parasite’s reliance on scavenging host lipids

[63]. Obesity increased the severity of acute experimental CD in mouse models, with higher

mortality, higher parasite burden, higher oxidative stress, and higher pro-inflammatory cyto-

kines [139]. This contrasts with findings in the context of malaria infection, where a high-fat

diet impaired Plasmodium liver infection [140]. One caveat with these studies is that many of

the high-fat diets are also higher caloric (for instance, [131,136]); thus, the observed effects

may reflect caloric differences rather than purely fat-driven effects.

Studies in humans show more conflicting results. In two studies, CD patients had lower

body mass index (BMI) than controls [141–143], whereas a study of indeterminate state CD

and symptomatic patients had higher BMI than controls [144,145], in association with

increased blood triglycerides [145]. Proportional associations between BMI and disease sever-

ity have also been reported [146]. Patients with anti-T. cruzi antibodies were less likely to be

PCR positive if they were overweight or obese, suggesting differential parasite dynamics and,

possibly, sequestration based on patient adipose tissue [147], mirroring findings in mice

[61,136]. Confounders include gastrointestinal discomfort in CD patients, which could have

led to the dietary alterations, study sites, and socioeconomic factors [141,142]. Whether effects

are direct, or via gut microbiota modulation, is also unclear.

Other nutrients can also alter outcomes of infection. Long-term vitamin C supplementation

increased cardiac damage at the chronic stage [148], while acute-stage treatment reduced para-

sitemia, cardiac parasite burden, and cardiac inflammation [149]. Vitamin A, B1, B5, and B6

deficiency increases parasitemia and cardiac damage in a rat model of infection [150–153]. In

contrast, little effect was observed for vitamin B2 deficiency [154]. Lysine supplementation

reduces parasitemia and improves survival [155]. Overall, dietary effects over an infected indi-

vidual’s life span are thus likely to strongly impact disease progression but require further

study, which may be challenging due to the need for large cohorts and long-term follow-up.

7. Translational applications: Chagas disease treatment

7.1 Relationship between metabolism and parasitological treatment failure

Treatment failure can be divided into parasitological treatment failure, where residual parasites

persist after antiparasitic treatment, and clinical treatment failure, when parasite clearance is

achieved but patient symptoms do not resolve. The current antiparasitic drugs nifurtimox and

benznidazole require activation by T. cruzi type I nitroreductase for activity. The endogenous

role of this enzyme is still unclear, but it may be involved in electron transfer from reducing

equivalents like NADH, with a postulated critical role in epimastigote to trypomastigote differ-

entiation and infectiveness [158]. Expression levels and activity of this nitroreductase control

drug sensitivity [159], though other factors are also involved as natural isolates with variable
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Table 1. Effect of high fat diet on experimental CD outcomes.

Parasite

strain

(DTU)

Mouse

strain

Mouse

sex

Time

point

Diet Effect on

cardiac

parasite

burden

Effect on

extracardiac

parasite

burden

Effect on

parasitemia

Effect on

inflammation

Proposed

mechanism

Reference

Brazil (TcI) CD-1 M Acute (to

day 30)

60 kcal% fat

(reference is 10%

fat)

Reduced

in high-fat

diet

Increased in

adipose tissue

in high-fat

diet

Reduced in

high-fat diet

Reduced Sequestration of

parasites in

adipose tissue

[135]

Berenice-78

(TcII)

Swiss F Acute (to

day 30)

452 kcal% and

20% fat (reference

is 332 kcal% and

4% fat)

Not

assessed

Not assessed Reduced in

high-fat diet

Not assessed Sequestration of

parasites in

adipose tissue

[136]

VL-10

(TcII)

C57BL/

6

F Acute (to

day 30)

60% of calories

come from fat

(reference is 10%)

Not

assessed

Not assessed Increased by

high-fat diet

Higher cardiac

TNFα, adipose

TNFα, adipose

IFNγ with high-fat

diet; no differences

in cardiac IFNγ

Effects of

cholesterol on

parasite invasion

and proliferation

[131]

Brazil (TcI) CD-1 M Acute (to

day 30)

60 kcal% fat

(reference is 10%

fat)

Not

assessed

Increased liver

parasite

burden

Not assessed Reduced

inflammation in

the liver under

high-fat diet,

reduced TNFα

Less antioxidants [156]

VL-10

(TcII)

C57BL/

6

M Acute

and

chronic

60% of calories

come from fat

(reference is 10%)

Not

assessed

Not assessed Increased by

high-fat diet

Higher plasma

IL10 and TNFα at

12 wk; no

difference in

cardiac

inflammatory

infiltrate; less liver

inflammatory

infiltrate

[134]

Y (TcII) C57BL/

6

M and F Acute Fish oil or corn

oil at

approximately

5%–6% of daily

energy intake

Reduced

by fish oil

only at day

12

Significantly

higher at day

7 only in the

fish oil group

Reduced nitric

oxide in the fish oil

groups only at time

points matching

observations on

parasite levels;

reduced PGE2

production by

splenocytes at day

12; increased

MCP1

[132]

Colombian

(TcI)

C57BL/

6

M Acute to

early

chronic

(to day

60)

17.8% olive oil

added to regular

diet or 16.8% lard

added to regular

diet (no

significant

differences in

calorie intake)

Increased

by lard

diet at day

30

Increased liver

parasite

burden by

lard diet at

day 30

None Heart CCL2

increased by lard

and adipose CCL2

decreased; no effect

on cellular

infiltration

Limited mortality

overall

[157]

Brazil (TcI) CD-1 Not

specified

Acute

and early

chronic

(to day

70)

60 kcal% fat

(reference is 10%

fat)

Not

assessed

Not assessed Later peak

parasitemia,

higher

parasitemia in

high-fat diet

Higher IFNγ and

TNFα in the hearts

of mice under

high-fat diet (day

30); no differences

in plasma IFNγ
and TNFα at day

70

Lower mortality in

high-fat diet;

enhanced glucose

tolerance in high-

fat diet

[133]

(Continued)
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benznidazole sensitivity did not have a clear correlation with nitroreductase sequence [160].

Metabolic context is also a critical determinant of drug efficacy. Parasitological treatment fail-

ure with benznidazole has been linked to parasite dormancy [161], but the factors regulating

dormancy in T. cruzi are still unknown. Benznidazole treatment directly leads to DNA damage

that may promote dormancy, but preexisting dormancy is also observed even in the absence of

benznidazole treatment [161,162]. Interestingly, in the related parasite Leishmania donovani,
dormancy has been tied to purine depletion [163], so that the lower purine levels observed

during T. cruzi infection could be contributing to this phenomenon [72–74,77]. Glutamine

metabolism also modulates the efficacy of azole treatments in eliminating intracellular T. cruzi
amastigotes, independently of parasite growth rate [164]. The colon had lower steady-state glu-

tamine than other tissues [70]. Additionally, the intestine is a major site of glutamine absorp-

tion and metabolism [165]. Thus, variable availability of glutamine in the colon may

contribute to parasite persistence at that site following azole treatment [166].

7.2 Treatments affecting T. cruzi metabolism

Targeting metabolic pathways that are unique to T. cruzi metabolism, which use divergent

enzymes compared to the homologous mammalian enzyme, or that are essential only in T.

cruzi and not the mammalian host, is a common strategy for drug development. Genome-

scale metabolic models provide candidates, such as jointly targeting parasite glutamate metab-

olism and the citric acid cycle, or glutamate metabolism and oxidative phosphorylation [167].

Indeed, the development of azoles for CD treatment relied on differential sterol profiles

between host and parasite [168]. Selectivity is achievable even with enzymes shared between T.

cruzi and the host, as demonstrated by GNF7686, which inhibits mitochondrial complex III of

the electron transport chain in T. cruzi only [169].

7.3 Immune modulation through metabolism to improve Chagas disease

symptoms

While the goal of current CD treatments is to clear the parasite, this is insufficient to fully

restore infection-associated metabolic alterations [73,75,170,171]. Metabolic modulators are

Table 1. (Continued)

Parasite

strain

(DTU)

Mouse

strain

Mouse

sex

Time

point

Diet Effect on

cardiac

parasite

burden

Effect on

extracardiac

parasite

burden

Effect on

parasitemia

Effect on

inflammation

Proposed

mechanism

Reference

Brazil (TcI) CD-1 M Chronic

(day

100–150)

60 kcal% fat

(reference is 10%

fat)

Not

assessed

Not assessed Not relevant

(chronic

stage)

High-fat reduced

inflammatory

infiltration in right

ventricle only (not

in left ventricle), at

120 days

postinfection;

increased cardiac

TNFα and IFNγ at

120 days

postinfection but

decreased at 160

High-fat diet

improved left

ventricle internal

diameter but

altered right

ventricle internal

diameter; worse

cardiac

hypertrophy with

high-fat diet in left

ventricle at day 120

and in right

ventricle at day 160

[137]

Berenice-78

(TcII)

Swiss F Chronic

(day 90)

452 kcal% and

20% fat (reference

is 332 kcal% and

4% fat)

Not

assessed

Not assessed Not relevant

(chronic

stage)

No significant

impact on serum

TNFα or cardiac

inflammatory

infiltrate

Lipolysis in

infected animals

[136]

https://doi.org/10.1371/journal.ppat.1012012.t001
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uniquely poised to address these changes, renormalize metabolism, and improve disease symp-

toms (Table 2). Large-scale immunomodulation through a therapeutic vaccine provided supe-

rior metabolic restoration compared to antiparasitic treatment with benznidazole alone, in

parallel with improved IFNγ levels [73]. Aspirin inhibits inflammatory prostaglandins while

also increasing the levels of the anti-inflammatory lipid mediator 15-epi-lipoxin A4. This

improved mean arterial pressure and decreased heart rate and hypertension in infected ani-

mals. However, aspirin reduced cardiac parasite burden, suggesting that these effects could be

due both to direct parasite clearance, as well as metabolic and immune modulation [172].

Similarly, L-arginine is metabolized by the inducible nitric oxide synthase pathway (iNOS),

which produces nitric oxide responsible for killing the parasite. Arginine is reduced during

acute infection. L-arginine treatment decreased parasitemia and reduced cardiac hypertrophy

[173]. Ameliorating cardiac inflammation and oxidative damage through treatment with a

SIRT1 agonist improved cardiac function, without altering cardiac parasite burden or cardiac

fibrosis [174]. Antioxidant treatments are also being tested in patients, with some promise in

late-stage disease, though most studies did not assess functional improvement (see [175] for a

systematic review).

Pentoxifylline is a phosphodiesterase inhibitor that reduces proinflammatory cytokines

through the manipulation of cyclic adenosine monophosphate levels (cAMP). Treating chroni-

cally infected mice with benznidazole, pentoxifylline, or the combination of the two reduced

TNFα signaling. Pentoxifylline and benznidazole also reduced cardiac fibrosis, cardiac

Table 2. Representative metabolism-modulating strategies tested in CD mouse models.

Parasite

strain

(DTU)

Mouse

strain

Mouse

sex

Time point of

the treatment

Treatment Effect on

cardiac

parasite

burden

Effect on

parasitemia

Effect on

electrocardiographic

and

echocardiographic

parameters

Effect on

cardiac

fibrosis

Effect on

inflammation

Proposed mechanism Reference

Colombian

(TcI)

BALB/

c

M or F 60–90 days

postinfection

Metformin

(500 mg/kg)

Unchanged Improved ECG,

improved cardiac

pumping

Reduced oxidative

stress

[180]

Brazil (TcI) CD-1 Not

specified

Day -20 to

day 71

postinfection

Metformin (50

mg/kg)

Reduced Unchanged Reduced oxidative

stress

[133]

Colombian

(TcI)

BALB/

c

M or F 60–90 days

postinfection

Resveratrol (15

mg/kg)

Reduced Improved ECG,

improved cardiac

pumping

Reduced oxidative

stress

[180]

Y (TcII) BALB/

c

M 2–32 days

postinfection

Aspirin (25

mg/kg)

Reduced Reduced Reduced heart rate,

mean arterial pressure

Reduced Increased

eosinophils,

reduced

neutrophils;

increased

nitrate

Anti-inflammatory [172]

Y (TcII) BALB/

c

Not

specified

Not specified

—study

ended 21

days

postinfection

L-arginine in

drinking water

(3.75 mg/ml)

Decreased Decreased Improved response to

cardiac stress

Increased

plasma nitrites

Compensating for

infection-induced

arginine deficiency,

leading to better

parasite killing

[173]

Sylvio X10

(TcI)

C57BL/

6

Not

specified

45–66 days

postinfection

SRT1720, 1

mg/mouse

Unchanged Multiple parameters

improved

Unchanged Reduced Reduced oxidative

stress and

inflammation

[174]

CL Brener

+ luciferase

(TcVI)

C3H/

HeJ

M 7–17 days

postinfection

Carnitine (in

drinking water

at 100 mg/kg

per day)

Unchanged Unchanged Assessed indirectly:

improved levels of

BNP as a marker of

cardiac strain

Unchanged Unchanged Improved cardiac

metabolism leading

to improved cardiac

function

[70]

Colombian

(TcI)

C57BL/

6

F 120–150 days

postinfection

Pentoxifylline

(20 mg/kg)

Unchanged Unchanged Improved Reduced Reduced Immunomodulation [177]

Colombian

(TcI)

C57BL/

6

F 120–150 days

postinfection

Pentoxifylline

(20 mg/kg)

Unchanged Improved Reduced Reduced Immunomodulation [178]

https://doi.org/10.1371/journal.ppat.1012012.t002
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hypertrophy, and cardiac electrical abnormalities [176–178]. Overall, modulating immune

responses through metabolism is a promising strategy for CD treatment, but studies in CD

patients are needed.

7.4 Beyond immunity: Alternative metabolic restoration strategies for

Chagas disease

Treatment with carnitine during acute experimental T. cruzi infection builds on findings of

infection-induced changes in acylcarnitines [70–73,76,77,86]. Carnitine treatment prevented

acute mortality, improved cardiac strain, and reset host cardiovascular metabolism, mitigating

infection-induced metabolic disruptions in the plasma and heart, with no effect on immune

responses. This was evident in the distinct metabolic profiles of vehicle-treated animals com-

pared to uninfected or benznidazole-treated animals, with carnitine-treated infected animals

showing a reduced difference to uninfected samples. However, carnitine treatment had a com-

paratively minor impact on the overall metabolite profiles of the esophagus and large intestine

and did not restore metabolism in these tissues [70]. The specific mechanism of action of car-

nitine is still under investigation, but the fact that carnitine is at the nexus of fatty acid and car-

bohydrate oxidation [179] suggests the possibility that synergistic effects or combination

treatments that target multiple metabolic pathways may be the best approach. Such multifacto-

rial mechanism of action may also underlie the protective effects of metformin in CD

[133,180]. Metformin is in clinical use for diabetes; it inhibits gluconeogenesis but also has

antioxidant and immunomodulatory properties, alters protein synthesis, and promotes lipoly-

sis and fatty acid oxidation [181]. In vitro, treatment with the experimental compound named

S205 (structurally undefined in the source manuscript) provided superior overall proteome

restoration and pyruvate and lactate levels [171]. These results indicate the potential of meta-

bolic restoration as a treatment strategy for CD. Restoring purine metabolism, for example, via

allopurinol, may be an interesting avenue to revisit [182], given the intersection between

purine metabolism and immunity [82], and the fact that nucleotides and nucleosides are strik-

ingly harder to renormalize with standard antiparasitic treatment [73].

8. Challenges and opportunities

New and newly implemented technologies such as single-cell mass spectrometry, spatial meta-

bolomics, and microbiome metagenomics [70,118,183] are increasingly providing insight into

the small molecules and metabolic pathways shaping host-T. cruzi-microbiome-environment

interactions (Box 1). Given that the T. cruzi lipidome differed between amastigotes isolated

Box 1. Challenges, gaps, and new techniques

a Challenges

1. Complexity of host-T. cruzi-microbiome-environment interactions and their

interdependence

2. Interdependence of metabolic pathways

3. Effect of spatial context

4. Bystander effects
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5. Dynamicity of metabolic changes, whereas any data acquisition is by its very

nature a specific single moment in time

6. Discrepancies between studies: usage of different parasite strains, different mouse

strains, and different time points

7. T. cruzi genetic diversity

8. Interperson and temporal variability, compounded by the slow progression of CD

9. Hard-to-access human samples

10. Transcriptome-level and protein-level analyses may not reflect metabolic flux

b Gaps in the field

1. Impact of other aspects of diet and behavior, beyond high-fat diet

2. Life course/life history effects, including infections with other pathogens

3. Coinfections, superinfections, and how they alter signaling pathways

4. Parasite gene expression in situ, inside tissues, and local parasite metabolic

alterations

5. Concentrations of key nutrients inside cells and their availability to the parasite

6. Effect of microenvironment, tissue, and inflammatory context on nutrient avail-

ability and parasite metabolic decisions

7. Mechanisms and consequences of bystander effects

8. Determinants of tissue metabolic resilience or lack thereof

9. Determinants of persistent metabolic changes after antiparasitic treatment

10. Signals and processes critical for T. cruzi development or growth inhibition in

triatomines

11. Lack of information on triatomine salivary, urinary and fecal metabolites and

their role in initiating infection

12. In vivo metabolic flux analyses

c New techniques

1. Spatially aware single-cell analyses

2. Multiorgan and cross-organ approaches like chemical cartography

3. New data analysis techniques, beyond classical correlations with their high false

positive rates

4. Gentler ways to purify cells that don’t cause artefactual metabolic changes

5. Cost reduction enabling greater implementation of flux analysis
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from different host cell lines in vitro [63], there is considerable potential for reshaping of the

T. cruzi lipidome and metabolome depending on host cell type and tissue context in vivo. New

techniques to analyze low-frequency cells [184,185] will therefore be critical to understand par-

asite metabolic shifts within the context of infected tissues. Reduction in costs and greater

accessibility of these techniques has increased their implementation in the context of CD.

However, cross-study comparability remains limited by the divergence in mouse strains,

parasite strains, and time points studied between laboratories. This is particularly concerning

given the broad genetic diversity within T. cruzi, in association with divergent disease symp-

toms [15,186]. However, this also represents an opportunity for systematic studies to unravel

the intersection of parasite genetics, host genetics, and metabolism with CD pathogenesis.

Coinfections and superinfections should also be considered, particularly in light of recent find-

ings that intrahost parasite strain diversity is correlated with parasitemia control and slower

deterioration of ECG parameters [187].

Given that only a minority of T. cruzi-infected individuals progress to severe CD [14],

understanding the impact of life history (including infections with other pathogens) and

cumulative behavioral effects beyond diet has the potential to provide more personalized esti-

mates of disease progression and patient outcomes. However, studies of metabolism in

humans are challenging due to the strong susceptibility of metabolism to postmortem effects,

its spatial and temporal dynamicity, and the interindividual variability compounded by the

long-term nature of CD.

A further challenge is the complexity of these interactions and their interdependence:

immunity shapes metabolism, metabolism shapes immunity, both are influenced by the

microbiome, and all can be affected by T. cruzi and by patient behavior. These linkages and

cross-system feedbacks make determination of causality challenging. A new systems perspec-

tive is thus necessary, which considers the cumulative effect of small codependent interactions,

perhaps conceptually extending from a framework similar to polygenic risk scores in genetics

(for instance, [188,189]). This will need new data analysis frameworks, supported by increased

implementation of time-course analyses rather than single-time point studies. A further,

underappreciated interdependence is between metabolic pathways themselves. Indeed, carbo-

hydrate oxidation and lipid oxidation, for example, are cross-regulated [179]. Inter-organ

communication and variability also need to be considered, as do fine-scale within organ and

cell-to-cell variability and effects. Indeed, single-cell metabolomics has revealed bystander

effects of infection, where uninfected but infection-adjacent cells also show metabolic shifts

[57,183]. Bystander cells have been ignored in traditional antiparasitic drug development but

may prove valuable targets for metabolism-modulating therapeutics. The mechanisms estab-

lishing and maintaining bystander effects and persistent metabolic changes following antipara-

sitic treatment remain to be determined. Cascading bystander effects and immune-mediated

metabolic regulation will also be critical to understand how such low and localized parasite

burden during chronic infection can nevertheless lead to metabolic changes on a macroscopic

level. Overall, expanding our understanding of these interactions will lead to new ways to

monitor and interrupt CD progression, focused on disease mechanisms.
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